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Abstract

Large-scale linear classification is widely used in many areas. The L1-regularized form can be
applied for feature selection; however, its non-differentiability causes more difficulties in training.
Although various optimization methods have been proposed in recent years, these have not yet
been compared suitably. In this paper, we first broadly review existing methods. Then, we discuss
state-of-the-art software packages in detail and propose two efficient implementations. Extensive
comparisons indicate that carefully implemented coordinate descent methods are very suitable for
training large document data.

Keywords: L1 regularization, linear classification, optimization methods, logistic regression,
support vector machines, document classification

1. Introduction

Recently, L1-regularized classifiers have attracted considerable attention because they can be used
to obtain a sparse model. Given a set of instance-label pairs(xi ,yi), i = 1, . . . , l , xi ∈ Rn, yi ∈
{−1,+1}, training an L1-regularized linear classifier involves the following unconstrained opti-
mization problem:

min
w

f (w)≡ ‖w‖1+C
l

∑
i=1

ξ(w;xi ,yi), (1)

where‖ · ‖1 denotes the 1-norm andξ(w;xi ,yi) is a non-negative (convex) loss function. The regu-
larization term‖w‖1 is used to avoid overfitting the training data. The user-defined parameterC> 0
is used to balance the regularization and loss terms.

If ‖w‖2 is used in (1), we obtain an L2-regularized classifier. Although L2 regularization is used
more commonly, an L1-regularized formula often produces a sparsew. Nonzero elements help to
select important features; in addition, the time required to produce predictions may be reduced.
Considerable literature has been published on the advantages of using L1regularization; see, for
example, Zhao and Yu (2006). However, an L1-regularized form (1)is not differentiable regardless

c©2010 Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh and Chih-Jen Lin.



YUAN , CHANG, HSIEH AND L IN

of its loss function. This drawback leads to greater difficulty in solving the optimization problem.
Therefore, certain considerations are required to handle the non-differentiability.

Many loss functions can be used for linear classification. A commonly used one is logistic loss:

ξlog(w;x,y) = log(1+e−ywTx). (2)

This loss function is twice differentiable. Note that minimizing logistic loss is equivalent to maxi-
mizing the likelihood, whereas minimizing the regularized loss in (1) is equivalentto maximizing
the posterior with independent Laplace priors on the parameters. Two other frequently used func-
tions are the L1- and the L2-loss functions:

ξL1(w;x,y) =max(1−ywTx, 0) and (3)

ξL2(w;x,y) =max(1−ywTx, 0)2. (4)

Because of the max(·) operation, the L1-loss function is not differentiable. On the other hand, L2
loss is differentiable, but not twice differentiable (Mangasarian, 2002). We refer to (1) with logistic
loss as L1-regularized logistic regression and (1) with L1/L2 loss as L1-regularized L1-/L2-loss
support vector machines (SVMs).

In some applications, we require a bias termb (also called as an intercept) in the loss function;
therefore,wTx in (2)–(4) is replaced withwTx+b. For example, the logistic loss function becomes

ξlog(w,b;x,y) = log
(

1+e−y(wTx+b)
)

.

The optimization problem then involves variablesw andb:

min
w,b

‖w‖1+C
l

∑
i=1

ξ(w,b;xi ,yi). (5)

Becauseb does not appear in the regularization term, most optimization methods used to solve
(1) can solve (5) as well. In this paper, except wheneverb is required, we mainly consider the
formulation (1).

Many papers have proposed optimization methods for large-scale L1-regularized logistic regres-
sion (i.e., usingξlog as the loss function). These studies did not consider L1- or L2-loss functions
because logistic loss has a probability interpretation and is twice differentiable. These methods
differ in various aspects such as the convergence speed, ease of implementation, and practical appli-
cability. With so many available methods, it is important to conduct a comprehensive comparison.
Schmidt et al. (2007, 2009) compared optimization methods for L1-regularized classifiers; how-
ever, they did not include some state-of-the-art solvers. Moreover, their comparison is based on the
number of function evaluations instead of the actual running time. In this paper, we categorize and
compare existing methods for logistic regression. We also extend some methodsto solve L2-loss
SVMs. We exclude L1 loss from the discussion because most methods for logistic regression or
L2-loss SVMs assume the differentiability of the loss functions. Readers interested in using L1-
loss SVMs can refer to Bradley and Mangasarian (1998), Zhu et al. (2004), Fung and Mangasarian
(2004), Mangasarian (2006), and references therein.
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1.1 Basic Properties of(1)

In this paper, we assume that the loss functionξ(w;xi ,yi) is convex, differentiable, and nonnegative.
The proof presented in Appendix A shows that (1) attains at least one global optimum. Unlike L2
regularization, which leads to a unique optimal solution, here, (1) may possess multiple optimal
solutions. We usew∗ to denote any optimal solution of (1). The convexity off (w) implies that all
optimal solutions have the same function value, which is denoted asf ∗. For more information about
the set of optimal solutions, see, for example, Hale et al. (2008, Section 2).

From standard convex analysis,w∗ is optimal for (1) if and only ifw∗ satisfies the following
optimality conditions:







∇ jL(w∗)+1= 0 if w∗j > 0,

∇ jL(w∗)−1= 0 if w∗j < 0,

−1≤ ∇ jL(w∗)≤ 1 if w∗j = 0,

(6)

whereL(w) is the loss term in (1):

L(w)≡C
l

∑
i=1

ξ(w;xi ,yi). (7)

1.2 Organization and Notation

The remainder of this paper is organized as follows. In Section 2, we briefly survey existing ap-
proaches. Section 3 lists state-of-the-art L1-regularized logistic regression packages compared in
this study. Sections 4–6 discuss these packages in detail; two of these (Sections 4.1.2 and 5.1) are
our proposed implementations. In Section 7, we extend several methods to train L2-loss SVMs.
Section 8 describes the extensive experiments that were carried out. Comparison results indicate
that decomposition methods (Section 4) are very suitable for large-scale document data. Finally, the
discussions and conclusions are presented in Section 9. A supplementaryfile including additional
details and descriptions of experiments is available athttp://www.csie.ntu.edu.tw/ ˜ cjlin/
papers/l1/supplement.pdf

In this study, we use consistent notation to describe several state-of-the-art methods that are
considered. The following table lists some frequently used symbols:

l : number of instances
n: number of features
i: index for a data instance
j: index for a data feature
k: iteration index for an optimization algorithm

We may represent training instances(xi ,yi), i = 1, . . . , l in the following form:

X =






xT
1
...

xT
l




 ∈ Rl×n and y =






y1
...
yl




 ∈ {−1,+1}l .

For any vectorv, we consider the following two representations for sub-vectors:

vt:s≡ [vt , . . . ,vs]
T and vI ≡ [vi1, . . . ,vi|I | ]

T ,
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whereI = {i1, . . . , i|I |} is an index set. Similarly,

XI ,: ≡






xT
i1
...

xT
i|I |




 . (8)

The functionτ(s) gives the first derivative of the logistic loss function log(1+es):

τ(s)≡
1

1+e−s. (9)

An indicator vector for thejth component is

ej ≡ [0, . . . ,0
︸ ︷︷ ︸

j−1

,1,0, . . . ,0]T . (10)

We use‖ · ‖ or ‖ · ‖2 to denote the 2-norm and‖ · ‖1 to denote the 1-norm.

2. A Survey of Existing Methods

In this section, we survey existing methods for L1-regularized problems. In Sections 2.1–2.3, we
focus on logistic regression and L2-loss SVMs for data classification. Section 2.5 briefly discusses
works on regression problems using the least-square loss.

2.1 Decomposition Methods

Decomposition methods are a classical optimization approach. Because it is difficult to update
all variables simultaneously, at each iteration, we can choose a subset ofvariables as the working
set and fix all others. The resulting sub-problem contains fewer variables and is easier to solve.
The various decomposition methods that have been applied to solve L1-regularized problems are
categorized into two types according to the selection of the working set.

2.1.1 CYCLIC COORDINATE DESCENTMETHODS

A simple coordinate descent method cyclically chooses one variable at a time and solves the fol-
lowing one-variable sub-problem:

min
z

g j(z)≡ f (w+zej)− f (w), (11)

whereej is defined in (10). This functiong j(z) has only one non-differentiable point atz= −w j .
In optimization, the cyclic method for choosing working variables is often calledthe Gauss-Seidel
rule (Tseng and Yun, 2007).

Several works have applied coordinate descent methods to solve (1) withlogistic loss. Here, a
difficulty arises in that sub-problem (11) does not have a closed-formsolution. Goodman (2004)
assumed nonnegative feature values (i.e.,xi j ≥ 0, ∀i, j) and then approximatedg j(z) by a function
A j(z) at each iteration.A j(z) satisfiesA j(z)≥ g j(z),∀z, andA j(0) = g j(0) = 0; therefore, minimiz-
ing A j(z) may reduce the function value. Moreover, there is a closed-form solutionfor minimizing
A j(z). Goodman (2004) actually studied a problem with additional constraintsw j ≥ 0; however, his
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approach can be extended to solve the original L1-regularized logistic regression by taking the sign
of w j into consideration.

Genkin et al. (2007) implemented a cyclic coordinate descent method calledBBR to solve L1-
regularized logistic regression.BBR approximately minimizes sub-problem (11) in a trust region
and applies one-dimensional Newton steps. Balakrishnan and Madigan (2005) reported an extension
of BBR for online settings.

In Section 4.1.2, we propose a coordinate descent method by extending Chang et al.’s (2008)
approach for L2-regularized classifiers. Chang et al. (2008) approximately solved the sub-problem
(11) by a one-dimensional Newton direction with line search. Experiments show that their approach
outperforms aBBR variant for L2-regularized classification. Therefore, for L1 regularization, this
approach might be faster thanBBR. Hereafter, we refer to this efficient coordinate descent method
asCDN (coordinate descent using one-dimensional Newton steps).

Tseng and Yun (2007) broadly discussed decomposition methods for L1-regularized problems.
One of their approaches is a cyclic coordinate descent method. They considered a general cyclic
setting so that several working variables are updated at each iteration. We show thatCDN is a special
case of their general algorithms.

If we randomly select the working variable, then the procedure becomes astochastic coordinate
descent method. Shalev-Shwartz and Tewari (2009, Algorithm 2) recently studied this issue. Duchi
and Singer (2009) proposed a similar coordinate descent method for the maximum entropy model,
which is a generalization of logistic regression.

2.1.2 VARIABLE SELECTION USING GRADIENT INFORMATION

Instead of cyclically updating one variable, we can choose working variables based on the gradient
information.1 This method for selecting variables is often referred to as the Gauss-Southwell rule
(Tseng and Yun, 2007). Because of the use of gradient information, the number of iterations is fewer
than those in cyclic coordinate descent methods. However, the cost per iteration is higher. Shevade
and Keerthi (2003) proposed an early decomposition method with the Gauss-Southwell rule to solve
(1). In their method, one variable is chosen at a time and one-dimensional Newton steps are applied;
therefore, their method differs from the cyclic coordinate descent methods described in Section 2.1.1
mainly in terms of finding the working variables. Hsieh et al. (2008) showed that for L2-regularized
linear classification, maintaining the gradient for selecting only one variable at a time is not cost-
effective. Thus, for decomposition methods using the gradient information, a larger working set
should be used at each iteration.

In the framework of decomposition methods proposed by Tseng and Yun (2007), one type of
method selects a set of working variables based on the gradient information. The working set can be
large, and therefore, they approximately solved the sub-problem. For thesame method, Yun and Toh
(2009) enhanced the theoretical results and carried out experiments withdocument classification
data. We refer to their method asCGD-GS because the method described in Tseng and Yun (2007)
is called “coordinate gradient descent” and a Gauss-Southwell rule is used.

2.1.3 ACTIVE SET METHODS

Active set methods are a popular optimization approach for linear-constrained problems. For prob-
lem (1), an active method becomes a special decomposition method because at each iteration, a

1. Becausef (w) is not differentiable,∇ jL(w)±1 is used according to the sign ofw j .
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sub-problem over a working set of variables is solved. The main difference from decomposition
methods described earlier is that the working set contains all non-zero variables. Therefore, an ac-
tive set method iteratively predicts what a correct split of zero and non-zero elements inw is. If the
split is correct, then solving the sub-problem gives the optimal values of non-zero elements.

Perkins et al. (2003) proposed an active set method for (1) with logistic loss. This implementa-
tion uses gradient information to predictw’s zero and non-zero elements.

2.2 Methods by Solving Constrained Optimization Problems

This type of method transforms (1) to equivalent constrained optimization problems. We further
classify them into two groups.

2.2.1 OPTIMIZATION PROBLEMS WITH SMOOTH CONSTRAINTS

We can replacew in (1) with w+−w−, wherew+ andw− are both nonnegative vectors. Then,
problem (1) becomes equivalent to the following bound-constrained optimization problem:

min
w+,w−

n

∑
j=1

w+
j +

n

∑
j=1

w−j +C
l

∑
i=1

ξ(w+−w−;xi ,yi)

subject to w+
j ≥ 0, w−j ≥ 0, j = 1, . . . ,n.

(12)

The objective function and constraints of (12) are smooth, and therefore, the problem can be solved
by standard bound-constrained optimization techniques. Schmidt et al. (2009) proposedProjec-
tionL1 to solve (12). This is an extension of the “two-metric projection” method (Gafni and Bert-
sekas, 1984). Limited-memory quasi Newton implementations, for example,LBFGS-B by Byrd
et al. (1995) andBLMVM by Benson and Moré (2001), require function/gradient evaluations and
use a limited amount of memory to approximate the Hessian matrix. Kazama and Tsujii (2003) pre-
sented an example of usingBLMVM for (12). Lin and Moŕe’s (1999) trust region Newton method
(TRON) can also be applied to solve (12). In addition to function/gradient evaluations,TRON needs
to calculate Hessian-vector products for faster convergence. Lin et al. (2008) appliedTRON to solve
L2-regularized logistic regression and showed thatTRON outperformsLBFGS for document data.
No previous work has appliedTRON to solve L1-regularized problems, and therefore, we describe
this in Section 5.1.

Koh et al. (2007) proposed an interior point method to solve L1-regularized logistic regression.
They transformed (1) to the following constrained problem:

min
w,u

n

∑
j=1

u j +C
l

∑
i=1

ξ(w;xi ,yi)

subject to −u j ≤ w j ≤ u j , j = 1, . . . ,n.

(13)

Equation (13) can be made equivalent to (12) by setting

w+
j =

u j +w j

2
andw−j =

u j −w j

2
.

To ensure thatw andu are in the interior of the feasible region set, Koh et al. (2007) added a log
barrier to the objective function of (13) and applied a Newton method.
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2.2.2 OPTIMIZATION PROBLEMS WITH NON-SMOOTH CONSTRAINTS

It is well-known that for any choice ofC in (1), there exists a correspondingK such that (1) is
equivalent to the following problem:

min
w

l

∑
i=1

ξ(w;xi ,yi)

subject to ‖w‖1≤ K.

(14)

See the explanation in, for example, Donoho and Tsaig (2008, Section 1.2). Notice that in (14), the
constraint is not smooth at{w | w j = 0 for somej}. However, (14) contains fewer variables and
constraints than (12). Lee et al. (2006) applied the LARS algorithm described in Efron et al. (2004)
to find a Newton direction at each step and then used a backtracking line search to minimize the
objective value. Kivinen and Warmuth’s (1997) concept of exponentiated gradient (EG) can solve
(14) with additional constraintsw j ≥ 0, ∀ j. In a manner similar to the technique for constructing
(12), we can remove the nonnegative constraints by replacingw with w+−w−. If k is the iteration
index,EG updatesw by the following rule:

wk+1
j =

wk
j exp

(
−ηk∇ j

(

∑l
i=1 ξ(wk;xi ,yi)

))

Zk
,

whereZk is a normalization term for maintaining‖wk‖1 = K, ∀k andηk is a user-defined learning
rate. Duchi et al. (2008) applied a gradient projection method to solve (14). The update rule is

wk+1 = argmin
w

{

‖
(
wk−ηk∇

(

∑l
i=1 ξ(wk;xi ,yi)

))
−w‖

∣
∣
∣ ‖w‖1≤ K

}

. (15)

They developed a fast algorithm to project a solution to the closest point satisfying the constraint.
They also considered replacing the gradient in (15) with a stochastic sub-gradient. In a manner sim-
ilar to (15), Liu et al. (2009) proposed a gradient projection method calledLassplore and carefully
addressed the selection of the learning rateηk. However, they evaluated their method only on data
with no more than 2,000 instances.2

Kim and Kim (2004) discussed a coordinate descent method to solve (14).They used the gradi-
ent information to select an elementw j for update. However, because of the constraint‖w‖1 ≤ K,
the whole vectorw is normalized at each step. Thus, the setting is very different from the un-
constrained situations described in Section 2.1.1. Kim et al. (2008) made further improvements to
realize faster convergence.

Active set methods have also been applied to solve (14). However, in contrast to the active
set methods described in Section 2.1.3, here, the sub-problem at each iteration is a constrained
optimization problem. Roth (2004) studied general loss functions including logistic loss.

2.3 Other Methods for L1-regularized Logistic Regression/L2-loss SVMs

We briefly review other methods in this section.

2. Although Table 1 in Liu et al. (2009) shows larger numbers, in Section 6of the same paper, they stated that “we use
a total of 2,000 samples in the following experiments.”

3189



YUAN , CHANG, HSIEH AND L IN

2.3.1 EXPECTATION MAXIMIZATION

Many studies have considered Expectation Maximization (EM) frameworks tosolve (1) with logis-
tic loss (e.g., Figueiredo, 2003; Krishnapuram et al., 2004, 2005). These works find an upper-bound
function f̂ (w) ≥ f (w),∀w, and perform Newton steps to minimizêf (w). However, as pointed out
by Schmidt et al. (2009, Section 3.2), the upper-bound functionf̂ (w) may not be well-defined at
somewi = 0 and hence certain difficulties must be addressed.

2.3.2 STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent methods have been successfully applied to solve (1). At each iteration,
the solution is updated using a randomly selected instance. These types of methods are known to
efficiently generate a reasonable model, although they suffer from slow local convergence. Under
an online setting, Langford et al. (2009) solved L1-regularized problems by a stochastic gradient
descent method. Shalev-Shwartz and Tewari (2009) combined Langford et al.’s (2009) method with
other techniques to obtain a new stochastic gradient descent method for (1).

2.3.3 QUASI NEWTON METHODS

Andrew and Gao (2007) proposed an Orthant-Wise Limited-memory quasi Newton (OWL-QN)
method. This method is extended fromLBFGS (Liu and Nocedal, 1989), a limited memory quasi
Newton approach for unconstrained smooth optimization. At each iteration, this method finds a
sub-space without considering some dimensions withw j = 0 and obtains a search direction simi-
lar to LBFGS. A constrained line search on the same sub-space is then conducted and the property
wk+1

j wk
j ≥ 0 is maintained. Yu et al. (2010) proposed a quasi Newton approach to solve non-smooth

convex optimization problems. Their method can be used to improve the line search procedure in
OWL-QN.

2.3.4 HYBRID METHODS

Shi et al. (2010) proposed a hybrid algorithm for (1) with logistic loss. They used a fixed-point
method to identify the set{ j |w∗j = 0}, wherew∗ is an optimal solution, and then applied an interior
point method to achieve fast local convergence.

2.3.5 QUADRATIC APPROXIMATION FOLLOWED BY COORDINATE DESCENT

Krishnapuram et al. (2005) and Friedman et al. (2010) replaced the loss term with a second-order
approximation at the beginning of each iteration and then applied a cyclic coordinate descent method
to minimize the quadratic function. We will show that an implementation in Friedman et al.(2010)
is efficient.

2.3.6 CUTTING PLANE METHODS

Teo et al. (2010) implemented a bundle (cutting plane) methodBMRM to handle non-smooth loss
functions. It includes an extension for L1 regularization.
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2.3.7 APPROXIMATING L1 REGULARIZATION BY L2 REGULARIZATION

Kujala et al. (2009) proposed the approximation of L1-regularized SVMsby iteratively reweighting
training data and solving L2-regularized SVMs. That is, using the current w j , they adjusted thejth
feature of the training data and then trained an L2-regularized SVM in the next step.

2.3.8 SOLUTION PATH

Several works have attempted to find the “solution path” of (1). The optimal solution of (1) varies
according to parameterC. It is occasionally useful to find all solutions as a function ofC; see, for
example, Rosset (2005), Zhao and Yu (2007), Park and Hastie (2007), and Keerthi and Shevade
(2007). We do not provide details of these works because this paper focuses on the case in which a
singleC is used.

2.4 Strengths and Weaknesses of Existing Methods

Although this paper will compare state-of-the-art software, we discuss some known strengths and
weaknesses of existing methods.

2.4.1 CONVERGENCESPEED

Optimization methods using higher-order information (e.g., quasi Newton or Newton methods) usu-
ally enjoy fast local convergence. However, they involve an expensive iteration. For example, New-
ton methods such asTRON or IPM need to solve a large linear system related to the Hessian matrix.
In contrast, methods using or partially using the gradient information (e.g., stochastic gradient de-
scent) have slow local convergence although they can more quickly decrease the function value in
the early stage.

2.4.2 IMPLEMENTATION EFFORTS

Methods using higher-order information are usually more complicated. Newton methods need to
include a solver for linear systems. In contrast, methods such as coordinate descent or stochas-
tic gradient descent methods are easy to implement. They involve only vector operations. Other
methods such as expectation maximization are intermediate in this respect.

2.4.3 HANDLING LARGE-SCALE DATA

In some methods, the Newton step requires solving a linear system ofn variables. Inverting ann×n
matrix is difficult for largen. Thus, one should not use direct methods (e.g., Gaussian elimination) to
solve the linear system. Instead,TRON andIPM employ conjugate gradient methods and Friedman
et al. (2007) use coordinate descent methods. We observe that for existing EM implementations,
many consider direct inversions, and therefore, they cannot handle large-scale data.

2.4.4 FEATURE CORRELATION

Methods that work on a block of variables at a time (e.g., decomposition methods) may be more
efficient if features are almost independent; however, they may be less efficient if features are highly
correlated.
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2.4.5 DATA TYPE

No method is the most suitable for all data types. A method that is efficient for one application may
be slow for another. This paper is focused on document classification, and a viable method must be
able to easily handle large and sparse features.

2.5 Least-square Regression for Signal Processing and Image Applications

Recently, L1-regularized problems have attracted considerable attention for signal processing and
image applications. However, they differ from (1) in several aspects. First, yi ∈ R, and therefore, a
regression instead of a classification problem is considered. Second, the least-square loss function
is used:

ξ(w;xi ,yi) = (yi−wTxi)
2. (16)

Third, in many situations,xi are not directly available. Instead, the product between the data matrix
X and a vector can be efficiently obtained through certain operators. We briefly review some of
the many optimization methods for least-square regression. If we use formulation (14) with non-
smooth constraints, the problem reduces to LASSO proposed by Tibshirani (1996) and some early
optimization studies include, for example, Fu (1998) and Osborne et al. (2000a,b). Fu (1998) ap-
plied a cyclic coordinate descent method. For least-square loss, the minimization of the one-variable
sub-problem (11) has a closed-form solution. Sardy et al. (2000) also considered coordinate descent
methods, although they allowed a block of variables at each iteration. Wu andLange (2008) con-
sidered a coordinate descent method, but used the gradient information for selecting the working
variable at each iteration. Osborne et al. (2000a) reported one of the earliest active set methods for
L1-regularized problems. Roth’s (2004) method for general losses (see Section 2.2.2) reduces to
this method if the least-square loss is used. Friedman et al. (2007) extendedFu’s coordinate de-
scent method to find a solution path. Donoho and Tsaig (2008) also obtained asolution path. Their
procedure requires solving a linear system of a matrixXT

:,JX:,J, whereJ is a subset of{1, . . . ,n}.
Figueiredo et al. (2007) transformed the regression problem to a bound-constrained formula in (12)
and applied a projected gradient method. Wright et al. (2009) proposedthe iterative minimization
of the sum of the L1 regularization term and a quadratic approximation of the loss term. In the
quadratic approximation, they used a diagonal matrix instead of the Hessian of the loss term, and
therefore, the minimization can be easily carried out. Hale et al. (2008) proposed a fixed point
method to solve (1) with the least-square loss (16). Their update rule is generated from a fixed-point
view; however, it is very similar to a gradient projection algorithm.

The dual of LASSO and the dual of (1) have been discussed in Osborne et al. (2000b) and Kim
et al. (2007), respectively. However, thus far, there have been few optimization methods for the
dual problem. Tomioka and Sugiyama (2009) proposed a dual augmented Lagrangian method for
L1-regularized least-square regression that theoretically convergessuper-linearly.

Most optimization methods for classification discussed in the earlier sections can handle general
smooth loss functions, and therefore, they can be applied to the regression problem. However, data
for classification applications may be very different from those for regression applications. For
example, in text classification, the numbers of instances and features are both large and data are
very sparse. However, in certain signal processing applications, the number of instances may be
much smaller than the number of features (i.e.,l ≪ n) and the data may be dense. Moreover, in
classification, the parameterC is often selected by cross validation; however, in signal processing,
the selection may be application dependent. Few optimization studies have investigated both types
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of applications. The interior point method for logistic regression by solving (13) has been applied to
the least-square regression problem (Kim et al., 2007). Duchi et al. (2008) compared their gradient
projection implementation (see Section 2.2.2) with interior point methods using both logistic and
least-square losses. In Section 2.1.2, we mentioned a decomposition methodCGD-GS by Yun and
Toh (2009). In the same paper, Yun and Toh have also investigated the performance ofCGD-GS on
regression problems.

In this paper, we focus on data classification, and therefore, our conclusions may not apply to
regression applications. In particular, the efficient calculation betweenX and a vector in some signal
processing applications may afford advantages to some optimization methods.

3. Methods and Software Included for Comparison

In the rest of this paper, we compare some state-of-the-art softwareBBR, SCD, CGD-GS, IPM,
BMRM, OWL-QN, Lassplore andGLMNET. We further develop two efficient implementations. One
is a coordinate descent method (CDN) and the other is a trust region Newton method (TRON). These
packages are selected because of two reasons. First, they are publiclyavailable. Second, they are
able to handle large and sparse data sets. We categorize these packagesinto three groups:

• decomposition methods,

• methods by solving constrained optimization problems,

• other methods,

and describe their algorithms in Sections 4–6. The comparison results are described in Sections 8.
Note that classification (logistic regression and L2-loss SVMs) is our focus, and therefore, software
for regression problems using the least-square loss (16) is not considered.

4. Decomposition Methods

This section discusses three methods sequentially or randomly choosing variables for update, and
one method using gradient information for the working set selection.

4.1 Cyclic Coordinate Descent Methods

From the current solutionwk, a coordinate descent method updates one variable at a time to generate
wk, j ∈ Rn, j = 1, . . . ,n+1, such thatwk,1 = wk, wk,n+1 = wk+1, and

wk, j =
[

wk+1
1 , . . . ,wk+1

j−1,w
k
j , . . . ,w

k
n

]T
for j = 2, . . . ,n.

To updatewk, j to wk, j+1, the following one-variable optimization problem is solved:

min
z

g j(z) = |w
k, j
j +z|− |wk, j

j |+L j(z;wk, j)−L j(0;wk, j), (17)

where
L j(z;wk, j)≡ L(wk, j +zej).
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Algorithm 1 A framework of coordinate descent methods

1. Givenw1.
2. Fork= 1,2,3, . . . (outer iterations)

(a) wk,1 = wk.
(b) For j = 1,2, . . . ,n (inner iterations)

• Findd by solving the sub-problem (17) exactly or approximately.
• wk, j+1 = wk, j +dej .

(c) wk+1 = wk,n+1.

For simplicity, hereafter, we useL j(z) in most places. If the solution of (17) isd, then we update
the jth element by

wk, j+1
j = wk, j

j +d.

Typically, a coordinate descent method sequentially goes through all variables and then repeats
the same process; see the framework in Algorithm 1. We refer to the process of updating everyn
elements (i.e., fromwk to wk+1) as an outer iteration and the step of updating one element (i.e., from
wk, j to wk, j+1) as an inner iteration. Practically, we only approximately solve (17), whereseveral
approaches are discussed below.

Using the same way to obtain the optimality condition in (6), for the one-variable functiong j(z),
we have thatz= 0 is optimal for (17) if and only if







L′j(0)+1= 0 if wk, j
j > 0,

L′j(0)−1= 0 if wk, j
j < 0,

−1≤ L′j(0)≤ 1 if wk, j
j = 0.

(18)

The optimality condition atz= 0 shows if modifyingwk, j
j may decrease the function value or not.

4.1.1 BBR

Genkin et al. (2007) propose a coordinate descent methodBBR for (1) and (5) with logistic loss.
This method is extended from Zhang and Oles (2001) for L2-regularizedlogistic regression. At each
inner iteration,BBR approximately solves the sub-problem (17) by a trust region Newton method.
With the trust region∆ j , it requires the stepz to satisfy

|z| ≤ ∆ j and wk, j
j +z

{

≥ 0 if wk, j
j > 0,

≤ 0 if wk, j
j < 0.

(19)

The first constraint confines the step size to be in the trust region and∆ j is updated at the end of

each inner iteration. Due to the non-differentiable point atz=−wk, j
j , the second constraint ensures

that the function is differentiable in the search space.
To approximately solve (17),BBR minimizes a quadratic function upper-bounding the function

g j(z) in the trust region. Thoughg j(z) is not differentiable, by considering both cases ofwk, j
j > 0

andwk, j
j < 0, we obtain the following form:

g j(z) = g j(0)+g′j(0)z+
1
2

g′′j (ηz)z2, (20)
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where 0< η < 1,

g′j(0)≡

{

L′j(0)+1 if wk, j
j > 0,

L′j(0)−1 if wk, j
j < 0,

and g′′j (ηz)≡ L′′j (ηz). (21)

Notice that whenwk, j
j = 0, g j(z) is non-differentiable atz= 0 andg′j(0) is not well-defined. We will

discuss this situation later.BBR finds an upper boundU j of g′′j (z) such that

U j ≥ g′′j (z), ∀|z| ≤ ∆ j .

Thenĝ j(z) is an upper-bound function ofg j(z):

ĝ j(z)≡ g j(0)+g′j(0)z+
1
2

U jz
2.

Any stepzsatisfyingĝ j(z)< ĝ j(0) leads to

g j(z)−g j(0) = g j(z)− ĝ j(0)≤ ĝ j(z)− ĝ j(0)< 0,

so the function value is decreased. If logistic loss (2) is used,BBR suggests settingU j as

U j ≡C
l

∑
i=1

x2
i j F
(
yi(wk, j)Txi ,∆ j |xi j |

)
, (22)

where

F(r,δ) =

{

0.25 if |r| ≤ δ,
1

2+e(|r|−δ)+e(δ−|r|)
otherwise.

If wk, j
j 6= 0, BBR minimizesĝ j(z) under the constraints (19) to obtain

d = min

(

max
(
P(−

g′j(0)

U j
,wk, j

j ),−∆ j
)
,∆ j

)

, (23)

where

P(z,w)≡

{

z if sgn(w+z) = sgn(w),

−w otherwise.

Now consider the case ofwk, j
j = 0, whereg′j(0) is not well-defined at this point. IfL′j(0)+1< 0, by

definingg′j(0)≡ L′j(0)+1, any 0< z≤−g′j(0)/U j gives a smaller ˆg j(z) thanĝ j(0). We thus obtain
the new point by mapping−g′j(0)/U j back to the trust region. The situation forL′j(0)−1 > 0 is

similar. We do not need to handle the situation−1≤ L′j(0) ≤ 1 as (18) andwk, j
j = 0 indicate that

z= 0 is the minimum ofg j(z).
The procedure ofBBR to approximately solve (17) is described in Algorithm 2. The major cost

is on calculatingg′j(0) andU j . For logistic loss,L′j(0) needed for calculatingg′j(0) is

L′j(0) =C
l

∑
i=1

yixi j

(

τ(yi(wk, j)Txi)−1
)

, (24)

3195



YUAN , CHANG, HSIEH AND L IN

Algorithm 2 BBR: Approximately solving the sub-problem by a trust region method

1. Givenwk, j and∆ j .
2. CalculateU j by (22).
3. Find a stepd by (23).
4. Update∆ j by ∆ j ←max(2|d|,∆ j/2).

whereτ(·) is defined in (9). From (22) and (24), the most expensive operation is on obtaining
wTxi , ∀i. A common trick for saving the running time is to storewTxi , ∀i and update them accord-
ing to

wTxi ← wTxi +d ·xi j . (25)

If wTxi , ∀i are available, both (22) and (24) needO(l) operations. Because maintainingwTxi via
(25) also takesO(l), the cost per inner iteration isO(l).

Unfortunately, there is no convergence proof yet for the methodBBR.

4.1.2 COORDINATE DESCENTMETHOD USING ONE-DIMENSIONAL NEWTON DIRECTIONS

(CDN)

BBR replaces the second derivative term in (20) with an upper boundU j . If we keep usingg′′j (0)
and obtain the one-dimensional Newton direction atz= 0, the local convergence may be faster.
This issue has been studied in L2-regularized logistic regression/SVMs, whereBBR reduces to the
approach by Zhang and Oles (2001), and Chang et al. (2008) showed that a coordinate descent
method using one-dimensional Newton directions is faster. Here, we extendChang et al.’s method
for L1-regularized problems. The new approach, referred to asCDN, is expected to be faster than
BBR following a similar reason.

A Newton direction is obtained from minimizing the second-order approximation,but g j(z)
is not differentiable due to the L1-regularization term. Thus, we consider only the second-order
approximation of the loss termL j(z) and solve

min
z

|wk, j
j +z|− |wk, j

j |+L′j(0)z+
1
2

L′′j (0)z
2. (26)

This problem can be reduced to a form commonly referred to as “soft-thresholding” in signal pro-
cessing. We show in Appendix B that (26) has the following closed-form solution:

d =







−
L′j (0)+1

L′′j (0)
if L′j(0)+1≤ L′′j (0)w

k, j
j ,

−
L′j (0)−1

L′′j (0)
if L′j(0)−1≥ L′′j (0)w

k, j
j ,

−wk, j
j otherwise.

(27)

Because (26) is only a quadratic approximation off (wk, j +zej)− f (wk, j), the directiond may not
ensure the decrease of the function value. For the convergence, Chang et al. (2008) consider a line
search procedure to findλ ∈ (0,1) such that the stepλd satisfies the sufficient decrease condition:

f (wk, j +λdej)− f (wk, j) = g j(λd)−g j(0)≤−σ(λd)2,

whereσ is any constant in(0,1). However, as pointed out by Tseng and Yun (2007), this condition
may not be suitable here due to the non-smooth regularization term‖w‖1. We follow Tseng and
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Algorithm 3 CDN: Approximately solving the sub-problem by Newton directions with line search

1. Givenwk, j . Chooseβ ∈ (0,1).
2. Calculate the Newton directiond by (27).
3. Computeλ = max{1,β,β2, . . .} such thatλd satisfies (28).

Yun (2007) to use a modified condition:

g j(λd)−g j(0)≤ σλ
(

L′j(0)d+ |w
k, j
j +d|− |wk, j

j |
)

. (28)

To find λ, CDN adopts a backtrack line search to sequentially checkλ = 1, β, β2, . . . , where
β ∈ (0,1), until λd satisfies (28). A description of howCDN approximately solves the sub-problem
(17) is in Algorithm 3.

In Appendix D, we explain that Algorithm 3 falls into a class of Gauss-Seidelcoordinate descent
methods in Tseng and Yun (2007). By showing that all required assumptions are satisfied, we can
directly enjoy some nice theoretical properties. First, following Lemma 3.4(b) inTseng and Yun
(2007), the line search procedure stops in a finite number of steps. Second, for (1) with logistic loss,
any limit point of{wk} is an optimum.

We discuss the computational cost. To obtain the sub-problem (26), we mustcalculateL′j(0)
andL′′j (0). For logistic loss,L′j(0) is shown in (24) and

L′′j (0) =C
l

∑
i=1

x2
i j

(

τ(yi(wk, j)Txi)
)(

1− τ(yi(wk, j)Txi)
)

. (29)

Similar to the situation inBBR, calculatingwTxi , ∀i is the major cost here. We can apply the same
trick in (25) to maintainwTxi , ∀i. In our implementation, we maintainewTxi instead:

ewTxi ← ewTxi ·eλdxi j . (30)

The line search procedure needs to calculateg j(λd). From (2), the main cost is still on obtaining
(w+λdej)

Txi , ∀i, so the trick in (30) is again useful. IfewTxi , ∀i are available, from (24), (29) and
(2), the cost per inner iteration is

(1+# line search steps)×O(l).

To reduce the cost for line search, Chang et al. (2008) obtain a function ĝ j(·) satisfyingĝ j(λd) >
g j(λd) and check ˆg j(λd)− g j(0) in (28). Calculating ˆg j(λd) is much easier thang j(λd), so we
may avoid calculating the lastg j(λd) in the line search procedure. In some iterations,λ = 1 already
satisfies (28), and therefore, this trick makes the cost of the line search procedure negligible. We do
not show details here; however, derivations can be found in Fan et al.(2008, Appendix G).

Next we describe two implementation techniques to improve the convergence speed. The first
one is to use a random permutation of sub-problems. In Algorithm 1, we cyclically consider vari-
ables to form one-variable sub-problems. Chang et al. (2008) show that solving sub-problems
in a random order may lead to faster convergence. That is, at thekth iteration, we randomly
permute{1,2, . . . ,n} to {πk(1),πk(2), . . . ,πk(n)} and update the elements ofw in the order of
{wπk(1),wπk(2), . . . ,wπk(n)}.
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The second implementation technique is shrinking. Past works such as Hsiehet al. (2008),
Joachims (1998), and Krishnapuram et al. (2005, Section 3.5) heuristically remove some variables
to obtain a smaller optimization problem. Ifw j has remained zero at many iterations, it is very
possible that the optimalw∗j is also zero. Therefore, we can remove such variables. Our shrink-
ing implementation is related to that in the softwareLIBSVM (Chang and Lin, 2001). From the
optimality condition (6),

−1< ∇ jL(w∗)< 1 implies w∗j = 0. (31)

We prove in Appendix C the following theorem:

Theorem 1 Assume{wk} globally converges tow∗. If −1 < ∇ jL(w∗) < 1, then there is Kj such
that for all k≥ K j ,

−1< ∇ jL(wk, j)< 1 and wk, j
j = 0.

Using this theorem, we design the following shrinking strategy. Before updating wk, j
j via approxi-

mately solving the sub-problem (17), if

wk, j
j = 0 and −1+Mk−1 < ∇ jL(wk, j)< 1−Mk−1, (32)

we conjecture thatwk, j
j may remain zero and hence remove it for optimization. We choose

Mk−1≡
maxj v j

l
,

where

v j ≡







|∇ jL(wk−1, j)+1| if wk−1, j
j > 0,

|∇ jL(wk−1, j)−1| if wk−1, j
j < 0,

max
(
∇ jL(wk−1, j)−1, −1−∇ jL(wk−1, j), 0

)
if wk−1, j

j = 0,

From (6),v j , j = 1, . . . ,n measure the violation of the optimality condition at the(k−1)st iteration.
The valueMk−1 reflects how aggressive we remove variables. It is large in the beginning, but
approaches zero in the end.

The shrinking implementation introduces little extra cost. When updating thejth component at
thekth iteration, we calculate

∇ jL(wk, j) = L′j(0;wk, j)

for the directiond in (27), regardless of implementing shrinking or not. Thus,∇ jL(wk, j) needed
for checking (32) is already available. Moreover, it can be used to calculatev j andMk, which are
needed for the next iteration.

4.1.3 STOCHASTIC COORDINATE DESCENTMETHOD (SCD)

Shalev-Shwartz and Tewari (2009) propose a stochastic coordinate descent method (SCD) to solve
the bound-constrained problem in (12). At thekth iteration,SCD randomly chooses a working
variable from{w+

1 , . . . ,w
+
n , w−1 , . . . ,w

−
n }. The one-variable sub-problem is

min
z

g j(z)≡ z+L j(z;wk,+−wk,−)−L j(0;wk,+−wk,−),
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Algorithm 4 SCD for L1-regularized logistic regression

1. Given(w+,w−) andU j > 0.
2. While(w+,w−) is not optimal for (12)

(a) Select an element from{w+
1 , . . . ,w

+
n ,w

−
1 , . . . ,w

−
n }.

(b) Updatew+
j or w−j by (36)–(37).

subject to the non-negativity constraint

wk,+
j +z≥ 0 or wk,−

j +z≥ 0,

according to whetherw+
j or w−j is the working variable.SCD considers a second-order approxima-

tion similar toBBR:

ĝ j(z) = g j(0)+g′j(0)z+
1
2

U jz
2, (33)

where

g′j(0) =

{

1+L′j(0) for w+
j

1−L′j(0) for w−j
and U j ≥ g′′j (z), ∀z.

BBR considersU j to be an upper bound ofg′′j (z) only in the trust region, whileSCD finds a global
upper bound ofg′′j (z). For logistic regression, following (9) and (29), we haveτ(·)(1− τ(·))≤ 0.25
and

U j = 0.25C
l

∑
i=1

x2
i j ≥ g′′j (z), ∀z. (34)

Shalev-Shwartz and Tewari (2009) assume−1≤ xi j ≤ 1, ∀i, j, so a simpler upper bound is

U j = 0.25Cl. (35)

Using the direction obtained by minimizing (33) and taking the non-negativity into considera-
tion, SCD updatesw by the following way:

If w+
j is selected

w+
j ← w+

j +max(−w+
j , −

1+L′j(0)

U j
) (36)

Else

w−j ← w−j +max(−w−j , −
1−L′j(0)

U j
) (37)

A description ofSCD is in Algorithm 4.

4.2 CGD-GS: a Decomposition Method Using Gradients for Selecting Variables

Instead of updating one variable at a time, some decomposition methods choosea larger working set
J ⊂ N ≡ {1, . . . ,n}. We discuss a Gauss-Southwell method for selectingJ (Tseng and Yun, 2007;
Yun and Toh, 2009). This method, referred to asCGD-GS, can handle any smooth loss function
includingξlog.

3199



YUAN , CHANG, HSIEH AND L IN

Following the principle of decomposition methods, ifwk is the current solution andJ is the set
of working variables, one should solve the following sub-problem:

min
d

L(wk+d)−L(wk)+‖wk+d‖1−‖wk‖1

subject to d j = 0, ∀ j /∈ J.

Because it is still difficult to solve this sub-problem,CGD-GS considers a quadratic approximation
of the loss term:

min
d

qk(d)≡ ∇L(wk)Td+
1
2

dTHd+‖wk+d‖1−‖wk‖1

subject to d j = 0, ∀ j /∈ J,
(38)

whereH is either∇2L(wk) or its approximation. To ensure the convergence,CGD-GS conducts a
backtrack line search to findλ such thatλd satisfies

f (wk+λd)− f (wk)≤ σλ
(

∇L(wk)Td+ γdTHd+‖wk+d‖1−‖wk‖1

)

, (39)

where 0< σ < 1 and 0≤ γ < 1. This condition is the same as (28) ifγ = 0 andJ contains only
one element. Tseng and Yun (2007) used (39) for both the cyclic selection(Gauss-Seidel) or the
selection using gradient information (Gauss-Southwell).

For selectingJ using gradients, Tseng and Yun (2007) proposed two possible ways. The first
one, referred to as the Gauss-Southwell-r rule, requiresJ to satisfy

‖d(J)‖∞ ≥ v‖d(N)‖∞, (40)

wherev∈ (0,1) is a constant andd(J) andd(N) are the solution of (38) by consideringJ andN as
the working set, respectively. This condition connects the directions of solving sub-problems using
a subset and a full set. The other condition for selectingJ is

qk(d(J))≤ v·qk(d(N)), (41)

wherev∈ (0,1) andqk(d) is defined in (38). This condition is referred to as the Gauss-Southwell-q
rule. Algorithm 5 summarizes the procedure.

The remaining issues are how to solve the sub-problem (38) and how to obtain J satisfying
(40) or (41). TheCGD-GS implementation considers a diagonal matrix with positive entries asH.
For example,H j j = max(∇2

j j L(w
k),ε), whereε is a small positive value. Then, the sub-problem

becomes|J| separable one-variable problems like (26). Each one-variable problemhas a simple
closed-form solution. Further, it is easy to find indices satisfying (40) or(41). For example, the rule
(40) becomes to find the larger elements ofd(N). Tseng and Yun (2007) proved that any limit point
of {wk} is an optimum of (1).

We discuss the computational cost for logistic regression. IfH is diagonal, then solving (38)
takes onlyO(|J|) operations. Constructing (38) is more expensive because we need to calculate

∇L(w) =C
l

∑
i=1

(
τ(yiwTxi)−1

)
yixi . (42)

Yun and Toh (2009) apply a trick similar to (30) and maintainewTxi , ∀i, but the gradient calculation
still needsO(ln). This high cost may not pay off, and therefore, Hsieh et al. (2008) favor decom-
position methods without maintaining the gradient. Finding the working setJ is another potentially
expensive step, but it is cheap for a diagonalH.
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Algorithm 5 CGD-GS for L1-regularized logistic regression

1. Givenw1. Choose (40) or (41) as the strategy for selecting working sets. Given0< β,σ < 1
and 0≤ γ < 1.

2. Fork= 1,2,3, . . .
• Choose anH and a working setJ.
• Getdk by solving the sub-problem (38).
• Computeλ = max{1,β,β2, . . .} such thatλdk satisfies (39).
• wk+1 = wk+λdk.

5. Methods by Solving Constrained Optimization Problems

Section 2.2 lists several methods for L1-regularized classification by solving the bound-constrained
problems (12), (13), and (14). In this section, we discussTRON, IPM, andLassplore in detail.

5.1 A Trust Region Newton Method (TRON)

We apply the trust region Newton method in Lin and Moré (1999) to solve (12). A previous study of
this method for L1-regularized logistic regression is by Lee (2008). For convenience, in this section,
we slightly abuse the notation by redefining

w≡
[
w+

w−

]

∈ R2n. (43)

Then, problem (12) can be written in a general form of bounded-constrained problems:

min
w

f̄ (w)

subject to w ∈Ω≡ {w | l j ≤ w j ≤ u j ,∀ j},

where f̄ (w) denotes the objective function of (12), andl andu are lower and upper bounds, respec-
tively.

At the kth iteration of the trust region Newton method, we have an iteratewk, a size∆k of the
trust region, and a quadratic model

qk(d)≡
1
2

dT∇2 f̄ (wk)d+∇ f̄ (wk)Td

to approximate the valuēf (wk+d)− f̄ (wk). Next, we find a stepdk by approximately solving the
following trust region problem

min
d

qk(d)

subject to ‖d‖ ≤ ∆k, wk+d ∈Ω.
(44)

We then updatewk and∆k by checking the ratio

ρk =
f̄ (wk+dk)− f̄ (wk)

qk(dk)
(45)
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Algorithm 6 A trust region method for L1-regularized logistic regression

1. Givenw1.
2. Fork= 1,2,3, . . . (outer iterations)

• Approximately solve (44) and obtain a directiondk; see Algorithm 7.
• Computeρk via (45).
• Updatewk to wk+1 according to (46) and update∆k to ∆k+1.

Algorithm 7 TRON: Finding a directiondk by approximately solving (44)

1. Given 0< ε < 1. Find the Cauchy stepdk,C and the Cauchy point

wk,1 = wk+dk,C and dk,1 = dk,C.

2. Fort = 1, . . . ,2n+1 (inner iterations)
• FindFt andBt (free/bounded sets) atwk,t by (50).
• If Ft = /0, then stop and returndk = wk,t −wk.
• Approximately solve

min
vFt

qk(dk,t +v)

subject to ‖dk,t +v‖ ≤ ∆k, vBt = 0,

by Conjugate Gradient (CG) methods. Denote the solution asvk,t .
• Projected line search onwk,t +λvk,t to obtainwk,t+1 anddk,t+1; see Equation (55). We

ensure thatFt ⊂ Ft+1 and|Ft |< |Ft+1|.
• If one of the following situations occurs:

‖∇qk(dk,t+1)Ft‖ ≤ ε‖∇ f̄ (wk)Ft‖,

or CG abnormally stops (explained in text), then stop and return

dk = wk,t+1−wk.

of the actual reduction in the function to the predicted reduction in the quadratic model. The direc-
tion dk is accepted ifρk is large enough:

wk+1 =

{

wk+dk if ρk > η0,

wk if ρk ≤ η0,
(46)

whereη0 > 0 is a pre-specified value. The size∆k of the trust region is then updated according to the
reduction of the function value. If the reduction is significant, then∆k is enlarged. Otherwise, we
reduce∆k. More details can be found in Lin and Moré (1999). The framework of our trust region
method is given in Algorithm 6. Earlier works applying trust region methods for L2-regularized
problems include, for example, Lin et al. (2008). The algorithm here is morecomplicated due to
the bound constraints.
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5.1.1 CAUCHY POINT

A challenge for minimizing bound-constrained problems is to quickly identify bounded components
at an optimal solution (i.e., components which are upper- or lower-bounded). Because eachw j can
be either bounded or free, the number of combinations is exponential. One commonly used approach
takes the negative gradient direction to obtain a new point and projects it back to the feasible region
Ω. With a proper line search to ensure the reduction of the quadratic modelqk(d), not only do
we effectively guess the set of bounded components at an optimum, but also the convergence is
guaranteed. To be more precise, we find a step sizeλ > 0 so that

qk(dk,C)≤ qk(0)+σ∇qk(0)Tdk,C and ‖dk,C‖ ≤ ∆k, (47)

where
dk,C = P[wk−λ∇ f̄ (wk)]−wk (48)

is called the Cauchy step in bound-constrained optimization andσ ∈ (0,1/2) is a constant. The
projection operatorP[·] mapswk−λ∇ f̄ (wk) back to the feasible regionΩ:

P[w j ] = min(u j , max(w j , l j)) , (49)

so some components become bounded. Although the negative gradient direction is projected in
(48), the resulting direction is still a descending one (i.e.,∇qk(0)Tdk,C < 0). Hence, one can always
find a smallλ > 0 such that (47) is satisfied. The pointwk,C≡wk+dk,C is referred to as the Cauchy
point.

5.1.2 NEWTON DIRECTION

Gradient descent methods suffer from slow convergence, so in (48)we should have used the Newton
direction. However, the second-order information is accurate only if there are no bound constraints.
Lin and Moŕe (1999) propose using Newton directions on the subspace of the Cauchy point’s free
components. Recall that we find the Cauchy point to predict the bounded elements at an optimum.
We obtain the free/bounded sets at the Cauchy point

F ≡ F(wk,C) = { j | l j < wk,C
j < u j} and B≡ B(wk,C) = { j | j /∈ F}, (50)

and find a Newton direction on the spaceF by solving

min
vF

qk(dk,C+v)

subject to ‖dk,C+v‖ ≤ ∆k, vB = 0.
(51)

If the free set at the Cauchy point is close to that at an optimum, using a Newton direction on this
sub-space leads to fast convergence.

Because (51) does not enforce the feasibility ofwk,C + v, one needs a projected line search
procedure similar to (47)–(48). Details are shown later in (55). The resulting point may contain
more bounded components than the Cauchy point. In this situation, Lin and Moré (1999) continue
to minimize a quadratic approximation on the new sub-space. They thus generate inner iterates
wk,1 = wk,C,wk,2,wk,3, . . ., until that the free/bounded sets do not change. Ifm inner iterations are
taken, then the directiondk for thekth trust region iteration in Algorithm 6 is

dk = wk,m+1−wk.
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Details of our procedure are described in Algorithm 7. Because each inner iteration enlarges the
bounded set, the number of inner iterations is bounded by 2n, the number of variables. In practice,
very few inner iterations (one or two) are taken. Another reason to take inner iterations is for the
quadratic convergence proof in Lin and Moré (1999).

Let t be the inner-iteration index andBt ,Ft be bounded/free sets atwk,t . With vBt = 0,

qk(dk,t +v) =
1
2

vT
Ft

∇2 f̄ (wk)Ft ,Ft vFt +∇qk(dk,t)T
Ft

vFt +qk(dk,t), (52)

so minimizingqk(dk,t +v) is equivalent to solving the following linear system

∇2 f̄ (wk)Ft ,Ft vFt =−∇qk(dk,t)Ft . (53)

To solve (53), we conduct conjugate gradient (CG) iterations until

‖∇2 f̄ (wk)Ft ,Ft vFt +∇qk(dk,t)Ft‖= ‖∇qk(dk,t+1)Ft‖ ≤ ε‖∇ f̄ (wk)Ft‖ (54)

is satisfied, whereε is a given positive constant. See Section 5.1.3 for reasons to choose CG.CG
may stop before reaching (54) if either the iterate causes our search direction to exceed the trust
region boundary or the singularity of the matrix∇2 f̄ (wk)Ft ,Ft is detected.

Once a directionvk,t is identified, we conduct a projected line search to ensure the feasibility
and the sufficient decrease ofqk(d). This procedure is similar to (47)–(48) for the Cauchy step. We
find λ (e.g., by a backtrack line search) such that

wk,t+1 = P[wk,t +λvk,t ], dk,t+1 = wk,t+1−wk, and

qk(dk,t+1)≤ qk(dk,t)+σ∇qk(dk,t)T
Ft
(dk,t+1−dk,t)Ft ,

(55)

whereP[·] is defined in (49) andσ is the same as that in (47).

5.1.3 HESSIAN-VECTOR PRODUCT

CG is very suitable for solving the linear system (53) as it requires only Hessian-vector products.
For logistic regression,

∇2 f̄ (w)Ft ,Ft =C

[
XT

−XT

]

Ft ,:

D
[
X −X

]

:,Ft
, (56)

whereD is anl × l diagonal matrix with

Dii = τ
(
yi(w+−w−)Txi

)(
1− τ(yi(w+−w−)Txi)

)
. (57)

The matrix∇2 f̄ (w)Ft ,Ft may be too large to be stored. If using CG, the Hessian-vector product can
be conducted by a sequence of matrix-vector products:

∇2 f̄ (wk,t)Ft ,Ft vFt =C

[
XT

−XT

]

Ft ,:

(

D
([

X −X
]

:,Ft
vFt

))

. (58)

Thus, the memory problem is solved.
In Lin et al. (2008) for L2-regularized problems, Hessian-vector products are only needed in

CG, but here they are also used in the projected line search for calculatingqk(dk,t+1)− qk(dk,t);
see (52) and (55). Moreover, in (58) we use only a sub-matrix of the Hessian, so|Ft | columns of
[
X −X

]
are needed. Because in general|Ft | is smaller than the number of variables, calculating

(58) may be faster than the product between the whole Hessian and a vector. To quickly accessX’s
columns, storing the data matrixX in the column format is more suitable. For a discussion between
row and column formats, see Lin et al. (2008, Section 4.3).
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5.1.4 CONVERGENCE

From Theorem 2.1 of Lin and Moré (1999), any limit point of{wk} is an optimum of (12). For
the local convergence rate, in Appendix E, we indicate that in generalTRON can achieve quadratic
convergence.

5.2 An Interior Point Method ( IPM)

Koh et al. (2007) proposed an interior point method to solve (13) with logisticloss. In (13), we omit
the bias termb, but Koh et al. (2007) included this term. They consider a log barrier function so that
(w,u) is an interior point of the feasible region:

φt(b,w,u)≡ t

(
n

∑
j=1

u j +C
l

∑
i=1

ξ(w,b;xi ,yi)

)

−
n

∑
j=1

log(u2
j −w2

j ),

wheret > 0 is a parameter. The unique minimizer(b∗(t),w∗(t),u∗(t)) under any givent forms a
curve called the “central path,” which approaches an optimal solution of (13) ast→ ∞. An interior
point method thus alternatively minimizesφt(b,w,u) and adjustst. From a set of(w,b) on the
search path, we can construct a feasible solution to the dual problem of (13) and evaluate the duality
gap. The duality gap is guaranteed to converge to 0 as we walk along the central path whent→ ∞.
Thus, we can check the duality gap for the stopping condition.

At thekth iteration, using the currenttk, interior point methods approximately minimizeφtk(b,w,u)
by finding a Newton direction. The following linear system is solved:

∇2φtk(b
k,wk,uk)





∆b
∆w
∆u



=−∇φtk(b
k,wk,uk). (59)

For logistic loss,

∇φt(b,w,u) =















tC∑l
i=1yi

(
τ(yi(wTxi +b))−1

)

tC∑l
i=1

(
τ(yi(wTxi +b))−1

)
yixi +






2w1/
(
u2

1−w2
1

)

...
2wn/

(
u2

n−w2
n

)






ten−






2u1/
(
u2

1−w2
1

)

...
2un/

(
u2

n−w2
n

)




















and

∇2φt(b,w,u) =





tCyTDy tCeT
l DX 0T

tCXTDel tCXTDX+D1 D2

0 D2 D1



 ,

whereτ(·) is defined in (9),en ∈ Rn andel ∈ Rl are the vectors of all ones,D is similar to (57) but
includesb, andD1 andD2 aren×n diagonal matrices:

(D1) j j = 2
(
u2

j +w2
j

)
/
(
u2

j −w2
j

)2
and (D2) j j =−4u jw j/

(
u2

j −w2
j

)2
.
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Algorithm 8 IPM for L1-regularized logistic regression

1. Givenb1 and an interior point(w1,u1). Let t1 = 1
Cl .

2. Fork= 1,2,3, . . .

• Obtain a Newton direction





∆b
∆w
∆u



 by solving (59).

• A backtrack line search procedure to ensure the sufficient decreaseof φtk(·)
• Update





bk+1

wk+1

uk+1



=





bk+λ∆b
wk+λ∆w
uk+λ∆u



 .

• Construct a dual feasible point and evaluate the duality gapη.
• Set

tk+1 =

{

max
(
µmin(2n/η, tk), tk

)
if λ≥ smin,

tk otherwise,

whereµ andsmin are constants.

Koh et al. (2007) apply preconditioned conjugate gradient methods (PCG) to solve (59) with diag-
onal preconditioning.

For the convergence, a backtrack line search procedure is needed toensure the sufficient de-
crease ofφtk(·). Koh et al. (2007) did not discuss details of their method’s convergence. However,
because interior point methods are a type of Newton methods, they often enjoy fast local conver-
gence.

5.3 Lassplore Method

Liu et al. (2009) apply Nesterov’s method (Nesterov, 2003) to solve (14). This method can handle
(14) with and without the bias term. For simplicity, we do not consider the bias term. In addition to
the sequence of iterations{wk}, for faster convergence, Nesterov’s method uses another sequence
of searching points{sk}, where

sk = wk+βk(wk−wk−1),

for some positive parameterβk. Fromsk, we obtainwk+1 by taking the negative gradient direction:

wk+1 = sk−λk∇L̄(sk),

where

L̄(w)≡
l

∑
i=1

ξi(w;xi ,yi)

is the objective function of (14) andλk is the step size. Note that̄L(w) is different fromL(w) defined
in (7) because the penalty parameterC is not needed in (14). Liu et al. (2009) suggest to estimate
βk by

βk =
γk(1−αk−1)

αk−1(γk+
αk
λk
)
, (60)
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Algorithm 9 Lassplore for solving (14)

• Givenw0 andw1, α0 = 0.5, λ1 > 0, γ1≥ 0.
• For k= 1,2,3, . . .

1. While 1 do
– Computeαk ∈ (0,1) as the root ofηk(α), βk by (60), andγk+1 by (61).
– Computesk = xk+βk(wk−wk−1).
– Computewk+1 by (63).
– If L̄(wk+1) satisfies (62)

goto Step 2.
Else

λk← λk/2.
2. Find the initialλk+1 for the next iteration by an adaptive scheme.3

whereαk ∈ (0,1) is the root of a quadratic function

ηk(α)≡
α2

λk
+ γkα− γk

andγk ≥ 0 satisfies
γk+1 = (1−αk)γk if k≥ 1 andγ1≥ 0. (61)

We haveαk ∈ (0,1) becauseηk(0) =−γk < 0 andηk(1) = 1/λk > 0.
Lassplore applies an adaptive line search scheme that adjustsλk so thatwk+1 satisfies

L̄(wk+1)≤ L̄(sk)+∇L̄(sk)T(wk+1−sk)+
1

2λk
‖wk+1−sk‖22. (62)

The new solutionwk+1 generated from the above process may not satisfy the constraint in (14), so
Lassplore projects the solution to the feasible region:

wk+1≡ argmin
w
{‖(sk−λk∇L(sk))−w‖ | ‖w‖1≤ K}. (63)

This projection is related to (15) in Section 2.2.2, butLassplore applies the method in Liu and Ye
(2009) to efficiently compute (63).

A summary ofLassplore is given in Algorithm 9.

6. Three Other Methods for L1-regularized Logistic Regression

We describe details of three more methods because they are included in our comparison.

6.1 Orthant-Wise Limited-memory Quasi-Newton (OWL-QN)

LBFGS (Liu and Nocedal, 1989) is a limited memory quasi Newton method for unconstrained
smooth optimization. It can not deal with (1) because of the non-differentiability. Andrew and
Gao (2007) modifiedLBFGS to solve (1) and named their method asOWL-QN. Here, we discuss
how they handle the non-differentiability.

3. See Liu et al. (2009, Algorithm 3) for details.
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From earlier discussion, we know that (1) is differentiable in a region where the sign ofw j does
not change. Thus,OWL-QN restricts the search space to such a region (called orthant). At thekth
iteration, it searcheswk+1 on the space:

Ωk ≡ {w ∈ Rn | sgn(w j) = sk
j , j = 1, . . . ,n},

where

sk
j ≡

{

sgn(wk
j) if wk

j 6= 0,

sgn(−∇̄ j f (wk)) otherwise,
(64)

and

∇̄ j f (w)≡







L′j(w)+1 if w j > 0 or (w j = 0 andL′j(w)+1< 0),

L′j(w)−1 if w j < 0 or (w j = 0 andL′j(w)−1> 0),

0 otherwise

(65)

is defined as the pseudo gradient off (w). In (64), if wk
j = 0, we consider the space wherew j

can be moved by taking the negative gradient direction.OWL-QN then approximately minimizes a
quadratic approximation of (1) in the search spaceΩk:

min
d

f (wk)+ ∇̄ f (wk)Td+
1
2

dTHkd

subject to wk+d ∈Ωk,

(66)

whereHk approximates the Hessian off (wk) by the first-order information gathered from previous
iterations. Details for gettingHk can be found in Liu and Nocedal (1989). To approximately solve
(66),OWL-QN finds the minimum of the quadratic objective function:

dk =−H−1
k ∇̄ f (wk), (67)

obtains a direction̄dk by confiningdk on the same orthant as−∇̄ f (wk):

d̄k
j =

{

dk
j if sgn(dk

j ) = sgn(−∇̄ j f (wk)),

0 otherwise,
(68)

and then conducts a backtracking line search to findλ such that the sufficient decrease of the function
value is satisfied. Note thatwk+1 must be inΩk, so following (64),

wk+1
j =

{

wk
j +λd̄k

j if sgn(wk
j +λd̄k

j ) = sk
j ,

0 otherwise.

Algorithm 10 summarizes the procedure.
Regarding the convergence, Yu et al. (2010, Appendix D) point out that the proof by Andrew and

Gao (2007) is flawed. Yu et al. (2010) give the convergence proof for a slightly modified algorithm.
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Algorithm 10 OWL-QN: An extension ofLBFGS for L1-regularized logistic regression

1. Givenw1.
2. Fork= 1,2,3, . . .

• Compute∇̄ f (wk) by (65).
• ObtainHk by information gathered from previous iterations and computedk by (67).
• Computed̄k by (68).
• Findwk+1 ∈Ωk by a backtracking line search.

6.2 Generalized Linear Model with Elastic Net

Friedman et al. (2010) proposedGLMNET to handle least-square and log-linear losses with L1/L2
regularization. Here, we discuss howGLMNET solves L1-regularized logistic regression. Although
GLMNET can solve (5) with the bias term, for simplicity, we only indicate howGLMNET solves (1).

Because of the twice differentiability of the logistic loss function, the gradientof L(w) is shown
in (42) and the Hessian is

∇2L(w) =CXTDX, (69)

whereD ∈ Rl×l is a diagonal matrix with

Dii = τ(yiwTxi)
(
1− τ(yiwTxi)

)
(70)

andτ(·) is defined in (9). See similar formulations derived earlier forTRON in (56) and (57). Given
the current solutionwk, GLMNET considers a quadratic approximation ofL(w). By the second-order
Taylor expansion,

f (wk+d)− f (wk)

=
(

‖wk+d‖1+L(wk+d)
)

−
(

‖wk‖1+L(wk)
)

≈∇L(wk)Td+
1
2

dT∇2L(wk)d+‖wk+d‖1−‖wk‖1.

Then,GLMNET solves the Newton-like system

min
d

qk(d)≡ ∇L(wk)Td+
1
2

dT∇2L(wk)d+‖wk+d‖1−‖wk‖1 (71)

by a cyclic coordinate descent method. Following the framework in Algorithm 1, d’s values are
sequentially updated by minimizing the following one-variable function:

g j(z)≡ qk(d+zej)−qk(d)

= |wk
j +d j +z|− |wk

j +d j |+Bz+
1
2

Az2,

where
B≡ ∇ jL(wk)+∑

t
∇2

jt L(w
k)dt and A≡ ∇2

j j L(w
k)

can be calculated using (42) and (69). It is easy to minimizeg j(z) by (27).4

4. In GLMNET implementation, instead of findingz, a different but equivalent update is used to get newwk
j +d j .
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Algorithm 11 GLMNET for L1-regularized logistic regression

1. Givenw1.
2. Fork= 1,2,3, . . .

• Let dk← 0.
• While dk is not optimal for minimizingqk(d)

– For j = 1, . . . ,n
∗ Solve the following one-variable problem by (27):

z̄= argmin
z

qk(dk+zej)−qk(dk).

∗ dk
j ← dk

j + z̄.
• wk+1 = wk+dk.

Because calculating the matrixD involves many exponential operations,GLMNET also consid-
ers using an approximation of∇2L(w) and minimizes

qk(d)≡ ∇L(wk)Td+
1
2

dTHd+‖wk+d‖1−‖wk‖1,

whereH ≡ 0.25CXT
IX andI is an identity matrix. That is, we use a cheaper but less accurate

approximation off (wk+d)− f (wk). A sketch ofGLMNET is in Algorithm 11.
We briefly describe someGLMNET’s implementation details.GLMNET applies a shrinking tech-

nique to solve a smaller optimization problem than (71); see similar techniques fordecomposition
methods in Section 4.1.2. Using a sparse representation ofw and maintaining an index setΩ to
indicate the non-zero elements ofd, GLMNET solves a smaller problem by a coordinate descent
method:

min
dΩ

∇L(wk)Td+
1
2

dTHd+‖wk+d‖1−‖wk‖1.

GLMNET conducts feature-wise normalization before solving the optimization problem. That is, it
solves (1) by replacingxi with x̃i , where

x̃i j ≡
xi j − x̄ j

σ j
,∀i, j, x̄ j =

∑l
i=1xi j

l
,∀ j, andσ j =

√
l

∑
i=1

x2
i j −

l

∑
i=1

x̄2
j ,∀ j.

Notice that there is no guarantee thatGLMNET converges to an optimum. Furthermore, the
function value may not decrease becauseGLMNET does not conduct a line search procedure on the
directiond. For minimizing the quadratic approximationqk(d), GLMNET measures the relative step
change in the successive coordinate descent iterations. Deciding whento stop minimizingqk(d) is
an issue because a strict stopping condition may already cause long running time forq1(d).

6.3 Bundle Method

Bundle method is a cutting plane approach for minimizing non-smooth convex problems. Teo et al.
(2010) proposed a bundle methodBMRM to handle non-differentiable loss functions (e.g., L1 loss).
They provide an extension to handle L1 regularization. Interestingly,BMRM applies cutting planes
only to the loss function, regardless of whether it is differentiable or not. Therefore, for problem (1)
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Algorithm 12 BMRM for L1-regularized logistic regression

1. Givenw1.
2. Fork= 1,2,3, . . .

• Compute and storeak andbk by (73).
• Obtainwk+1 by solving the linear program (76).

with logistic loss,BMRM uses a non-smooth method to handle the smooth loss function and some
other ways for the non-smooth regularization term‖w‖1.

Let wk be the solution at thekth iteration. Using the convexity of the loss function,BMRM
builds a cutting plane (i.e., the first-order Taylor expansion) ofL(w) atw = wk:

L(w)≥∇L(wk)T(w−wk)+L(wk)

=aT
k w+bk, ∀w,

(72)

where
ak ≡ ∇L(wk) and bk ≡ L(wk)−aT

k wk. (73)

If L(w) is non-differentiable, in (72),BMRM substitutes∇L(w) with the sub-gradient ofL(w).
BMRM maintains all cutting planes from the earlier iterations to form a lower-bound function

for L(w):
L(w)≥ LCP

k (w)≡ max
1≤t≤k

aT
t w+bt , ∀w. (74)

BMRM obtainswk+1 by solving the following sub-problem:

min
w

‖w‖1+LCP
k (w). (75)

Using (74) and the splitting ofw in (12) byw = w+−w−, Equation (75) can be reformulated to the
following linear programming problem:

min
w+,w−,ζ

n

∑
j=1

w+
j +

n

∑
j=1

w−j +ζ

subject to aT
t (w

+−w−)+bt ≤ ζ, t = 1, . . . ,k,

w+
j ≥ 0, w−j ≥ 0, j = 1, . . . ,n.

(76)

A summary of theBMRM approach is given in Algorithm 12. Teo et al. (2010, Appendix C) in-
dicated that because of the L1 regularization, the convergence result has not been fully established
yet.

7. L1-regularized L2-loss Support Vector Machines

Previous sections have focused on L1-regularized logistic regression. Now we consider (1) with the
L2-loss function (4). The optimization problem can be rewritten as

min
w

f (w)≡ ‖w‖1+C ∑
i∈I(w)

bi(w)2, (77)
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where

bi(w)≡ 1−yiwTxi and I(w)≡ {i | bi(w)> 0}. (78)

Therefore, the sum of losses is

L(w) =C ∑
i∈I(w)

bi(w)2. (79)

In contrast to logistic loss, the L2-loss function is differentiable but not twice differentiable (Man-
gasarian, 2002). Thus, some methods discussed in Sections 4–6 may not be directly applicable
because they use second-order information. However, as shown in Mangasarian (2002, Section 3),
(79) is twice differentiable at all but{w | bi(w) = 0 for somei}. Moreover,∇L(w) is globally Lip-
schitz continuous, so a generalized Hessian exists everywhere. Using ageneralized Hessian, we
may modify algorithms using the second-order information for L1-regularized L2-loss SVMs. In
the following two sections, we extendCDN andTRON to solve (77).

7.1 CDN for L2-loss SVMs

To applyCDN for L2-loss SVMs, in the sub-problem (17), we have

L j(z) =C ∑
i∈I(wk, j+zej )

bi(wk, j +zej)
2.

For a second-order approximation similar to (26), we needL′j(0) andL′′j (0):

L′j(0) =−2C ∑
i∈I(wk, j )

yixi j bi(wk, j).

Unfortunately,L′′j (0) is not well-defined if there exists somei such thatbi(wk, j) = 0. Following
Chang et al. (2008), we consider the generalized second derivative:

2C ∑
i∈I(wk, j )

x2
i j . (80)

By replacingL′′j (0) in (26) with the above quantity, we can easily obtain a directiond. However,
the value in (80) may be zero ifxi j = 0, ∀i ∈ I(wk, j). To apply the convergence result in Tseng and
Yun (2007), we ensure the strict positivity by taking

max

(

2C ∑
i∈I(wk, j )

x2
i j , ε

)

, (81)

whereε is a small positive value. Following the explanation in Appendix F, we have the finite
termination of the line search procedure and the asymptotic convergence ofthe function value.

Like the situation for logistic regression, the major cost for finding the Newtondirectiond and
for the line search procedure is to calculatewTxi , ∀i ∈ I . We maintainbi(w), ∀i using the same
trick in (25). All other implementation techniques discussed in Section 4.1.2 for logistic regression
can be applied here.
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7.2 TRON for L2-loss SVMs

We applyTRON to solve the bound-constrained problem (12) using L2 loss. Following the notation
in Section 5.1,w ∈ R2n is defined in (43) and̄f (w) is the objective function in (12).

The quadratic modelqk(d) requires the gradient and the Hessian off̄ (w). We have

∇ f̄ (w) = e+2C
(
X̄T

I ,:X̄I ,:w− X̄T
I ,:yI
)
,

wheree∈ R2n is a vector of all ones,̄X ≡
[
X −X

]
, andI is defined in (78).X̄I ,: denotes a sub-

matrix including X̄’s rows corresponding toI ; see (8). Note thatbi(w) defined in (78) is now
calculated by

1−yi(w1:n−w(n+1):2n)
Txi .

Following Mangasarian (2002) and Fan et al. (2008, Appendix D), we consider the generalized
Hessian matrix:

2CX̄TDX̄,

whereD ∈ Rl×l is a diagonal matrix with

Dii =

{

1 if bi(w)> 0,

0 if bi(w)≤ 0.

We then apply Algorithm 7 to approximately minimizeqk(d). For the Hessian-vector product, only
instances in the index setI and variables in the free setF are considered. Thus, the Hessian-vector
product in (58) becomes

2CX̄T
I ,F (DI ,I (X̄I ,FvF)) ,

wherev is a vector inR2n.
Regarding the convergence, from Theorem 2.1 of Lin and Moré (1999), any limit point of{wk}

is an optimal solution. However, without the twice differentiability, it is unclear ifthe local quadratic
convergence holds.

8. Numerical Experiments

In Sections 4–7, we have described details of several large-scale optimization methods for L1-
regularized linear classification. In this section, we conduct experiments toinvestigate their perfor-
mances. We describe data sets and experimental settings first. Then, we comprehensively compare
methods for logistic regression and L2-loss SVMs. Programs used in this paper are available at
http://www.csie.ntu.edu.tw/ ˜ cjlin/liblinear/exp.html .

8.1 Data Sets

Table 1 lists data statistics. Most data sets include documents, where the numbers of both fea-
tures and instances are large. An exception is the problema9a from UCI “adults” data sets; it has
l ≫ n. For other document sets,real-sim includes some Usenet articles,news20 is a collection of
news documents,rcv1 is an archive of manually categorized newswire stories from Reuters, and
yahoo-japan/yahoo-korea are document data from Yahoo!. Exceptyahoo-japan andyahoo-korea,
other data sets are publicly available athttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/
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Data set l n #nz
a9a 32,561 123 451,592
real-sim 72,309 20,958 3,709,083
news20 19,996 1,355,191 9,097,916
rcv1 677,399 47,236 49,556,258
yahoo-japan 176,203 832,026 23,506,415
yahoo-korea 460,554 3,052,939 156,436,656

Table 1: Statistics of data sets:l andn denote the numbers of instances and features in a data set,
respectively. The column #nz indicates the number of non-zero entries.

Data set
LR without bias LR with bias L2-loss SVM
C Density Acc. C Density Acc. C Density Acc.

a9a 4.0 94.3 85.2 2.0 89.3 85.3 0.5 90.2 85.2
real-sim 4.0 16.8 97.1 4.0 16.2 97.0 1.0 18.9 97.1
news20 64.0 0.2 95.1 64.0 0.2 94.9 64.0 0.7 96.1
rcv1 4.0 23.8 97.8 4.0 23.0 97.8 1.0 25.9 97.8
yahoo-japan 4.0 1.3 91.9 4.0 1.0 93.1 1.0 1.4 92.2
yahoo-korea 4.0 1.0 87.6 4.0 0.9 87.7 1.0 1.0 87.7

Table 2: The best parameterC, the model density (%), and the testing accuracy (%). We conduct
five-fold cross validation on the training set to selectC in

{
2k | k=−4,−3, . . . ,6

}
. Using the

selectedC, we build a model to predict the testing set.

datasets/ . For every document data set, instance-wise normalization has been conducted so that
the length of each instance is one.

To estimate the testing accuracy, a stratified selection is taken to split each data set into one fifth
for testing and the rest for training.

8.2 Experimental Settings

We consider the following implementations discussed in Sections 4–7.

• BBR: the cyclic coordinate descent method for logistic regression is describedin Section 4.1.1.
We download version 4.03 fromhttp://www.bayesianregression.org/ .
• CDN: the cyclic coordinate descent methods for logistic regression and L2-loss SVMs are re-

spectively described in Sections 4.1.2 and 7.1. To check the sufficient decrease condition, we use
σ = 0.01 andβ = 1/2. For L2-loss SVM, we useε = 10−12 in (81). The implementation is the
same as that included in version 1.6 of our softwareLIBLINEAR (http://www.csie.ntu.edu.
tw/ ˜ cjlin/liblinear/ ).
In Section 4.1.2, we discuss the shrinking technique forCDN. We defer the investigation of its
effectiveness to Section 8.4. In all other places of the comparison, we run CDN with the shrinking
strategy.
• SCD: the stochastic coordinate descent method for logistic regression is described in Section

4.1.3. The source code is available athttp://ttic.uchicago.edu/ ˜ tewari/code/scd/ .
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• CGD-GS: the block coordinate gradient descent method for logistic regression is described in
Section 4.2. Following Yun and Toh’s (2009) settings, we choose

H = diag
[

min
(
max(∇2

j j L(w
k),10−10),1010)

]

j=1,...,n

and apply the Gauss-Southwell-r rule to choose the working setJ; see Equation (40). Note
that from Table 9 of Yun and Toh (2009), implementations using Gauss-Southwell-r and Gauss-
Southwell-q rules perform similarly on document data. We use default values for all parameters;
see Section 5.1 in Yun and Toh (2009). In particular,σ = 0.1, β = 1/2, andγ = 0. The source
code is available athttp://www.math.nus.edu.sg/ ˜ matys/ .
• TRON: the trust region Newton methods for logistic regression and L2-loss SVMsare respectively

described in Sections 5.1 and 7.2. In the projected line search (47) and (55), we useσ = 0.01 and
β = 0.1. For the stopping condition of the CG procedure in Algorithm 7, we useε = 0.1. The
parameterη0 in (46) is 0.0001.
• IPM: the interior point method for logistic regression is described in Section 5.2. For small and

dense data sets,IPM solves a linear system in Algorithm 8 by Cholesky factorization. For large
and sparse data sets, it applies a preconditioned conjugate gradient methodto approximately solve
the linear system. In the experiment, we only consider the large and sparse setting. We use default
parameters:σ = 0.01 andβ = 1/2 for the line search procedure. To updatetk, we usesmin = 1/2
andµ= 2. The source code (version 0.8.2) is downloaded fromhttp://www.stanford.edu/

˜ boyd/l1_logreg/ .
As w lies in the interior of the feasible region, everyw j is non-zero afterIPM stops. To gain the
sparsity, following the condition (31), Koh et al. (2007) assign thosew j satisfying|∇ jL(w)| ≤
0.9999 to zero. However, if we have not run enough iterations to obtain an accurate solution, this
modification ofw may result in an erroneous model. We thus add another condition|w j | < 1 in
deciding ifw j should be assigned to zero. We will address this issue again in Section 8.3.
We find that because of a problem of not initializing an element in an array, the previous ver-
sion (0.8.1) ofIPM is two or three times slower than the latest version (0.8.2). This observation
indicates the difficulty in comparing software. Some minor issues may significantlyaffect the
conclusions.
• OWL-QN: the quasi Newton method is described in Section 6.1. The source code (version 1.1.2)

is available athttp://research.microsoft.com/en-us/um/people/jfgao / .
• GLMNET: the method is described in Section 6.2 for logistic regression. Following the default

setting, we use the full Hessian in (71) instead of an approximation. We gradually reduce the
stopping tolerance to obtain different models. The coordinate descent method for minimizing the
quadratic approximationqk(d) stops according to a tolerance the same as the overall stopping
tolerance. The source code (version 1.5) is available athttp://cran.r-project.org/web/
packages/glmnet/index.html .
• Lassplore: this method is described in Section 5.3. We check the 1-norm of the optimal solution

(obtained by other solvers) to calculate the valueK in (14). The source code (version 1.0) is
available athttp://www.public.asu.edu/ ˜ jye02/Software/lassplore .
• BMRM: this bundle method is described in Section 6.3. We apply it to both logistic regression and

L2-loss SVMs. The linear programming problem (76) is solved via GNU Linear Programming
Kit (GLPK). The source code (version 2.2) andGLPK are available athttp://users.rsise.
anu.edu.au/ ˜ chteo/BMRM.html andhttp://www.gnu.org/software/glpk/ , respectively.
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GLMNET is implemented in Fortran along with an R interface.CGD-GS and Lassplore are
primarily implemented in MATLAB, but expensive operations are coded in C/C++. All other solvers
are implemented in C/C++ with double precision.

Some implementations (SCD, TRON, OWL-QN, andBMRM) solve (1), while some (CGD-GS,
IPM, GLMNET, andLassplore) consider the bias term and solve (5).BBR5 and ourCDN implemen-
tation can handle both (1) and (5). According to whether the bias term is considered, we categorize
methods into two groups for comparison.6 Moreover, for certain solvers their formulations are
scaled by a constant. We ensure that equivalent optimization problems are solved.

Software such asIPM andGLMNET supports finding a solution path of variousC values. How-
ever, in our experiments, we focus on the performance of an algorithm using a fixedC. For all
methods, we set the initial solutionw1 = 0.

The parameterC is chosen by five-fold cross validation (CV) on the training set. Using models
trained under the bestC, we predict the testing set to obtain the testing accuracy. The bestC, the
model density (the number of non-zero coefficients inw divided byn), and the corresponding testing
accuracy are recorded in Table 2.

In the rest of this section, we compare the training speed of solvers for logistic regression and
L2-loss SVMs by using the best parameterC of each data set. We run all experiments on a 64-bit
machine with Intel Xeon 2.0GHz CPU (E5504), 128KB L1 cache, 1GB L2 cache, and 32GB main
memory. We use GNU C/C++/Fortran compilers (version 4.4.1) and ensure that for each package
the “-O3” optimization flag is set.

8.3 Comparing Methods for L1-regularized Logistic Regression

We separately compare solvers for optimization problems without/with the bias term.The first
group, which solves (1), includesBBR, CDN, SCD, TRON, OWL-QN, and BMRM. We begin at
showing in Figure 1 the relation between the function value and the training time. In each figure,
thex-axis is the training time and they-axis is the relative difference to the optimal function value:

f (w)− f ∗

f ∗
, (82)

where f ∗ is obtained by runningTRON with a strict stopping condition. Bothx-axis andy-axis are
log-scaled. We draw a dotted reference line in Figure 1 to indicate the relative error 0.1. From
Figure 1,BBR andCDN can more quickly give a good solution thanSCD, TRON, OWL-QN, and
BMRM. However, quasi Newton and Newton methods may have faster local convergence. In Figures
1(c) and 1(d),TRON’s curve is almost vertical in the end. This fast local convergence is mainly
useful for problems such asa9a, for whichBBR andCDN are less competitive. We note thata9a is
not a document data set and its number of features is much smaller than the number of instances.
Earlier studies for L2-regularized classifiers have shown that coordinate descent methods are less
competitive for this type of data (Hsieh et al., 2008). The same situation seems tooccur here for L1
regularization.

It is surprising thatSCD is much slower thanCDN andBBR because they are all coordinate
descent methods. We modifyCDN to randomly select working variables, a stochastic method similar
to SCD; the result was still much faster thanSCD, suggesting that the stochastic selection is not the

5. BBR considers bias term as a feature and allows users to use an option“-I” to specify weights to individual features.
6. For simplicity, we applyBBR only to solve (1).
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Figure 1: Relative difference between the objective function and the optimum value, versus training
time. Logistic regression without using the bias term. Bothx-axis andy-axis are log-scaled.

culprit. It turns out that a too large upper bound of the second derivative causes the slow convergence
of SCD. Whenxi j ∈ [−1,1], SCD replaces∑l

i=1x2
i j in (34) with l . Then itsU j in (35) is much larger

thanU j in (22) for BBR. Therefore,SCD’s step size−g′j(0)/U j is often too small.
Equation (82) cannot be used for a practical stopping condition because f ∗ is not easily avail-

able. Instead, we often rely on the gradient information. Now (1) is not differentiable, so we follow
the optimality condition (6) to define the minimum-norm sub-gradient:

∇S
j f (w)≡







∇ jL(w)+1 if w j > 0,

∇ jL(w)−1 if w j < 0,

sgn(∇ jL(w))max(|∇ jL(w)|−1,0) otherwise.

Since∇Sf (w) = 0 if and only if w is optimal, we can check‖∇Sf (w)‖ for the stopping condition.
Figure 2 shows the scaled 2-norm of the minimum-norm sub-gradient,

l
min(∑i:yi=11,∑i:yi=−11)‖∇Sf (w1)‖

‖∇Sf (w)‖, (83)

along the training time. From Figure 2,CDN andBBR are the best in the early stage of the procedure,
while Newton and quasi Newton methods such asTRON andOWL-QN have faster local conver-
gence. This observation is consistent with Figure 1. Some methods (e.g., decomposition methods)
do not calculate∇Sf (w) in their procedures, so a gradient-based stopping condition may introduce
extra cost. However, these methods may be able to use approximate gradientvalues obtained during
the calculation. For example, coordinate descent methods calculate only∇ j f (wk, j), j = 1, . . . ,n
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Figure 2: The 2-norm of the minimum-norm sub-gradient (83) versus training time. Logistic re-
gression without using the bias term. Bothx-axis andy-axis are log-scaled.

instead of∇ f (wk+1), but these values can be directly used in a stopping condition; see details in
Appendix F of Fan et al. (2008).

In Figure 3, we investigate how the testing accuracy is improved along the training time. The
testing accuracy is the percentage of correct predictions on the testing set. Results show thatBBR
andCDN achieve the final accuracy more quickly. In addition, we are interested in the progress of
these methods on gaining the sparsity. Figure 4 shows the number of non-zero coefficients ofw and
the training time. For most data sets,BBR andCDN more efficiently obtain a sparse solution.

Next, we compare methods solving (5) with the bias term. These solvers includeCDN, CGD-
GS, IPM, Lassplore, andGLMNET. AlthoughBBR can solve (5), we omit it in the comparison as its
performance is similar to that of solving (1). Following the comparison for methods solving (1), we
begin with checking the running time to reduce the relative error of the function value and the scaled
norm of the minimum-norm sub-gradient; see (82) and (83), respectively. The results are given in
Figures 5 and 6. The reference valuef ∗ is obtained usingIPM with a strict stopping condition. From
Figure 5,CDN is the fastest,IPM comes the second, andCGD-GS is the third. However, in Figure 6
for reducing the gradient norm,IPM often surpassesCDN in the final stage.

GLMNET gives good performances in Figures 5(b)–5(d). In particular, it hasfast local conver-
gence; see curves that are close to vertical in Figures 5(c) and 5(d).This fast local convergence is
due to using the quadratic approximationqk(d), which generates a Newton-like direction. We find
that the approximation of replacingD in (69) with a constant diagonal matrix is effective for micro-
array data used in Friedman et al. (2010). However, for large document sets, using the exact Hessian
is better. Unfortunately,GLMNET fails to generates results foryahoo-japan andyahoo-korea after
sufficient running time. We find that setting an appropriate stopping tolerance for minimizing the
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Figure 3: The testing accuracy versus training time (log-scaled). Logistic regression without using
the bias term. Curves ofBMRM may not be shown because values are out of the range.
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Figure 4: The number of non-zero coefficients versus training time (log-scaled). Logistic regression
without using the bias term. Curves ofBMRM may not be shown because values are out of the
range. The solid horizontal line indicates the final number of non-zero coefficients.
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Figure 5: Relative difference between the objective function and the optimum value, versus training
time. Logistic regression with the bias term. Bothx-axis andy-axis are log-scaled.
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Figure 6: The 2-norm of the minimum-norm sub-gradient (83) versus training time. Logistic re-
gression with the bias term. Bothx-axis andy-axis are log-scaled.
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Figure 7: The testing accuracy versus training time (log-scaled). (log-scaled). Logistic regression
with the bias term.

quadratic approximation in (71) is sometimes difficult. This issue might cause the problem in train-
ing yahoo-japan andyahoo-korea. For IPM, the performance is in general competitive. BecauseIPM
is a type of Newton method, it has fast local convergence.

The result thatCDN is faster thanCGD-GS is worth for further discussion. Tseng and Yun
(2007) show that for some least-square regression problems, an implementation similar toCDN
(i.e., a Gauss-Seidel rule for selecting working variables) is slower thanCGD-GS, which selects
variables using the gradient information. This result is opposite to ours. Two issues might cause
the different results. First, problems are different. We aim at classifyinglarge and sparse document
data, but they solve regression problems. Second, we implement two techniques (permutation of
sub-problems and shrinking) to improve the convergence.

Yun and Toh (2009) show that for some document data sets used here, their CGD-GS is faster
thanIPM. However, our results indicate thatIPM is better. This difference is apparently due to that
Yun and Toh (2009) run an earlier version (0.8.1) ofIPM. We indicate in Section 8.2 that a minor
problem in this version causes this version to be two or three times slower than alater version (0.8.2)
used here.

Figure 7 indicates the testing accuracy versus the training time. We can see in Figures 7(e) and
7(f) thatIPM’s accuracy may not improve as the training time increases. As we mentioned in Section
8.2, this result is because we modify certainw elements to zero. In the middle of the procedure,w is
not close to an optimum yet, but many elements have satisfied|∇ jL(w)| ≤ 0.9999 and are trimmed
to zero. Hence, the resulting accuracy may be worse than that in the early stage of the procedure.
In fact, due toIPM’s densew throughout iterations, to get the final sparsity and the testing accuracy,
we need to accurately solve the optimization problem.
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Figure 8: The number of non-zero coefficients versus training time (log-scaled). Logistic regression
with the bias term. The solid horizontal line indicates the final number of non-zero coefficients.

Figure 8 presents the number ofw’s non-zero coefficients. Similar to methods solving (1), all
methods here, exceptCGD-GS, have solutions with many non-zero coefficients in the beginning and
gradually gain the sparsity. In contrast,CGD-GS’s numbers of non-zero coefficients in the whole
optimization process are not much more than those of the final solutions. We find that this nice
property is from using the gradient information for selecting working variables. In contrast, without
the gradient information,CDN wrongly updates some elements ofw to be non-zeros in the early
stage of the procedure.

In summary, for large document data, coordinate descents methods such as CDN perform well
in the early stage of the optimization procedure. As a result, they achieve the final accuracy more
quickly. However, for some applications, a correct sparsity pattern of the model is important and a
more accurate solution is sought. Then,GLMNET by combining both Newton-type and coordinate
descent approaches is useful.

8.4 Comparing Methods for L1-regularized L2-loss SVMs and Investigating CDN’s
Shrinking Strategy

In Section 7, we have extendedCDN andTRON to handle L2 loss, so methods included for compar-
ison areCDN, TRON, andBMRM. Note that we solve (77) without considering the bias term.

Following the experiment for logistic regression, we plot the relative difference to the optimal
function value in Figure 9 and the scaled norm of the minimum-norm sub-gradient in Figure 10.
The referencef ∗ is obtained by runningTRON with a strict stopping condition. One can see that
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Figure 9: Relative difference between the objective function and the optimum value, versus training
time. L2-loss SVMs without using the bias term. Bothx-axis andy-axis are log-scaled.

CDN’s training time is the shortest among the three solvers andTRON is better thanBMRM. BMRM
does not properly decrease the function value and the norm of gradient on large data sets.

In Figures 9 and 10, we also present results ofCDN without implementing the shrinking strategy
(denoted asCDN-NS). In most cases, the implementation with shrinking is only slightly better.
However, shrinking is effective if the sparsity is high (e.g.,news20 andyahoo-japan). In such a
situation, mostw components are zero. We can safely remove some zero components and more
efficiently solve smaller optimization problems.

9. Discussions and Conclusions

In Section 2.5, we briefly discuss optimization methods for L1-regularized least-square regression.
Some comparisons can be seen in, for example, the experiment section of Wright et al. (2009) and
Yun and Toh (2009). Note that an optimization method may perform differentlyon classification
and regression problems. For instance, Yun and Toh (2009) show thatCGD-GS is faster thanCDN
for regression problems, but here we have an opposite observation for document classification.

Figures 1–8 indicate thatCDN is faster for solving (1) than (5). Our past work (Huang et al.,
2010, Section 5) has indicated that the bias term may affect the running time ofthe same optimiza-
tion method. As the accuracy does not differ much, it seems that in generalthe bias term should not
be considered.

Among quasi Newton and Newton approaches,IPM andOWL-QN are faster thanTRON. This
result seems to indicate thatTRON suffers from the difficulty for findingw’s final non-zero coeffi-
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Figure 10: The 2-norm of the minimum-norm sub-gradient (83) versus training time. L2-loss SVMs
without using the bias term. Bothx-axis andy-axis are log-scaled.

cients. However,IPM’s w elements are all non-zeros, so we must accurately solve the optimization
problem before trimming some elements to zero.

Figures 9 and 10 indicate thatCDN/TRON for L2-loss SVMs is faster thanCDN/TRON for
logistic regression. Each iteration ofCDN/TRON for L2-loss SVMs is cheaper because no exp/log
operations are involved. Because the accuracy is similar, in general we prefer L2-loss SVMs over
logistic regression.

The choice of the regularization parameterC affects the performance of solvers. In Figure 11,
we present results on thercv1 data set with regularization parameters 10C∗ and 0.1C∗, respectively,
whereC∗ = 4 is the best parameter obtained from cross validation; see Table 2. Resultsshow that
all solvers take longer running time whenC is large. Therefore, one should avoid a value much
larger thanC∗ by trying from a smallC. Moreover, methods using low-order (e.g., gradient only)
information seem to be more sensitive to the change ofC. For example, withC∗ and 0.1C∗ we
respectively observe in Figures 1(d) and 11(b) thatCDN is faster thanOWL-QN, but with 10C∗,
OWL-QN surpassesCDN in the final stage.

GLMNET iteratively considers quadratic approximations and applies coordinate descent meth-
ods at each iteration. The discussion in Section 8.3 indicates thatGLMNET’s speed may be further
improved if an adaptive stopping condition is properly designed for minimizing each quadratic ap-
proximation.

It is challenging to efficiently solve L1-regularized linear classification problems. The 1-norm
term causes the non-differentiability of the objective function. In this paper, we review many exist-
ing methods for logistic regression and L2-loss SVMs. We discuss some state-of-the-art methods

3224



COMPARING METHODS AND SOFTWARE FORL1-REGULARIZED L INEAR CLASSIFICATION

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Log−scaled Training Time (sec)

R
el

at
iv

e 
F

un
ct

io
n 

V
al

ue
 D

iff
er

en
ce

 

 

BBR
CDN
SCD
TRON
BMRM
OWL−QN

(a) rcv1 with 10C∗

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Log−scaled Training Time (sec)

R
el

at
iv

e 
F

un
ct

io
n 

V
al

ue
 D

iff
er

en
ce

 

 

BBR
CDN
SCD
TRON
BMRM
OWL−QN

(b) rcv1 with 0.1C∗

Figure 11: A comparison of logistic regression solvers with regularization parameters 10C∗ and
0.1C∗. Bothx-axis (relative difference between the objective function and the optimum value) and
y-axis (training time) are log-scaled.

in detail. Our extensive comparison shows that carefully implemented coordinate descent methods
are effective for L1-regularized classification with large-scale document data.
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Appendix A. Existence of Optimal Solutions of(1)

Consider the following level set:
S≡ {w | f (w)≤ f (0)}.

We prove thatSis compact (closed and bounded). Clearly,Sis closed due to the continuity off (w).
If S is not bounded, then there is a sequence{wk} ⊂ Ssuch that‖wk‖1→ ∞. Because we assume
that ξ(w;xi ,yi) ≥ 0, f (wk) ≥ ‖wk‖1. Then, f (wk)→ ∞ contradictsf (wk) ≤ f (0). Thus,S is a
compact set. From Weierstrass’ Theorem,f (w) has at least one minimum inS.

Appendix B. Solution of (26)

We consider the following general form withA> 0:

min
z

|w j +z|+Bz+
1
2

Az2. (84)

Clearly,

|w j +z|+Bz+
1
2

Az2 =

{

g1(z) if z≥−w j ,

g2(z) if z≤−w j ,
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where

g1(z)≡ w j +z+Bz+
1
2

Az2 and g2(z)≡−w j −z+Bz+
1
2

Az2.

By checking if the minimum of the quadratic function occurs on the right or the left side of−w j ,
we know

arg min
z≥−w j

g1(z) =

{

−B+1
A if B+1≤ Awj ,

−w j otherwise,

and

arg min
z≤−w j

g2(z) =

{

−B−1
A if B−1≥ Awj ,

−w j otherwise.

BecauseB+1≤ Awj andB−1≥ Awj cannot hold at the same time, andg1(−w j) = g2(−w j), we
can easily conclude that the solution of (84) is







−B+1
A if B+1≤ Awj ,

−B−1
A if B−1≥ Awj ,

−w j otherwise.

Appendix C. Proof of Theorem 1

From the assumption thatwk → w∗ and the way thatw is cyclically updated, we havewk, j →
w∗ as well. The first result−1 < ∇ jL(wk, j) < 1 immediately follows from the assumption−1 <
∇ jL(w∗)< 1 and the continuity of∇L(w).

We then focus on the second result to show thatwk, j
j = 0 afterk is large enough. The optimality

condition (6) and the assumption−1 < ∇ jL(w∗) < 1 imply thatw∗j = 0. From the continuity of
∇2L(w) and the compactness of the level setSproved in Appendix A, we can define

M ≡max{∇2
j j L(w) | w ∈ S} ≥ 0. (85)

With the assumption−1< ∇ jL(w∗) < 1 and the propertywk, j
j → w∗j = 0, for anyσ ∈ (0,1), there

exists an iteration indexK j such that for allk≥ K j ,

−1+
M

1−σ
|wk, j

j | ≤ L′j(0;wk, j) = ∇ jL(wk, j)≤ 1−
M

1−σ
|wk, j

j | (86)

and {

w
∣
∣ ‖w−wk, j‖ ≤ ‖wk, j −w∗‖ for somek≥ K j

}

⊂ S.7 (87)

We prove thatwk, j
j = 0, ∀k≥ K j . Recall that in the decomposition method we use (27) to obtain a

directiond. From (86), we see that atk= K j , the third case in (27) is taken. That is,d =−wk, j
j . If

σ in (86) is chosen to be the constant used in the sufficient decrease condition (28), we claim that

7. We needf (w∗)< f (0). This property generally holds. If not, we can slightly enlargeSso that (87) and all subsequent
derivations still follow.
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d =−wk, j
j satisfies (28) withλ = 1: If wk, j

j ≥ 0,

g j(−wk, j
j )−g j(0)−σ

(

−wk, j
j −L′j(0;wk, j)wk, j

j

)

=(1−σ)
(

−wk, j
j −L′j(0;wk, j)wk, j

j

)

+
1
2

L′′j (z̃;w
k, j)(wk, j

j )2 (88)

≤(1−σ)
(

−wk, j
j −L′j(0;wk, j)wk, j

j

)

+
1
2

M(wk, j
j )2 (89)

≤
−1
2

M(wk, j
j )2≤ 0, (90)

wherez̃ is between 0 and−wk, j
j , Equation (88) follows from (20)–(21), Equation (89) is from (87)

and (85),8 and Equation (90) is from the first inequality of (86). The above result isprecisely the
sufficient decrease condition (28) withλ = 1. The situation forwk, j

j < 0 is similar. By taking the

stepd = −wk, j
j , we havewk+1, j

j = 0. At the(k+1)st iteration,wk+1, j
j = 0 and (86) imply that the

optimality condition (18) for the sub-problem has been satisfied. Thus, thejth element ofw remains
zero in all subsequent iterations.

Appendix D. Convergence ofCDN: Logistic Regression

If each time one variable is used, the sub-problem considered in Tseng and Yun (2007) is

min
z

|w j +z|− |w j |+L′j(0)z+
1
2

Hz2. (91)

Clearly, (26) is a special case of (91) by takingH = L′′j (0). Therefore, we can apply results proved
in Tseng and Yun (2007).

To have the finite termination of the line search procedure, Tseng and Yun (2007, Lemma 3.4)
require that there existsA> 0 such that

‖∇L(w1)−∇L(w2)‖ ≤ A‖w1−w2‖, ∀w1,w2 ∈ Rn (92)

and
L′′j (0;w)> 0, (93)

wherew is the current solution used to generate the directiond in (27). Equation (92) means that
L(·) is globally Lipschitz continuous. For logistic regression, we have

‖∇L(w1)−∇L(w2)‖ ≤ ‖∇2L(w̃)‖‖w1−w2‖,

wherew̃ is betweenw1 andw2. Moreover,

‖∇2L(w̃)‖=C‖XTD(w̃)X‖ ≤C‖XT‖‖X‖, (94)

whereD(w̃) ∈ Rl×l is a diagonal matrix similar to (70). Because any diagonal element ofD(w̃) is
less than one, we have the inequality in (94). Thus, we can useC‖XT‖‖X‖ as the constantA in (92).

8. More precisely,
‖wk, j + z̃ej −wk, j‖ ≤ |wk, j

j |= |w
k, j
j −w∗j | ≤ ‖w

k, j −w∗‖.
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For (93), from (29),L′′j (0;w) in the level setS is lower bounded by a positive value. The only
exception is thatL′′j (0;w) = 0 whenxi j = 0, ∀i = 1, . . . , l . In this situation,L′j(0;w) = 0 and the
optimalw∗j = 0. The one-variable functiong j(z) is reduced to

g j(z) = |w j +z|− |w j |,

sod =−w j from (27) andd satisfies the sufficient decrease condition (28). Therefore,w j becomes
zero after the first iteration and is not changed after. It is like that thejth feature has been removed
in the beginning.

Next, we discuss the asymptotic convergence of function values. Tseng and Yun (2007) impose
certain conditions on choosing the working set; see Equation (12) in their paper. If one variable
is updated at a time, their condition is reduced to that betweenwk andwk+1, one must go through
n sub-problems covering allw1, . . . ,wn. This setting is exactly what we do, regardless of using a
sequential order of 1, . . . ,n or a permutationπ(1), . . . ,π(n).

Tseng and Yun (2007) need an additional assumption for the asymptotic convergence (see As-
sumption 1 in their paper):

0< λmin≤ ∇2
j j L(w

k, j)≤ λmax,∀ j = 1, . . . ,n,k= 1, . . . , (95)

whereλmin andλmax are positive constants. From (29) and the boundedness of the level setS (see
Appendix A), this assumption holds except that for somej, xi j = 0,∀i. For suchj, ∇ jL(w) = 0,∀w.
Hence,w j becomes zero by (27) at the first iteration and is not changed subsequently. Because
w j = 0 is optimal in this situation, it is like that thejth variable has been removed for optimization.
Therefore, we have (95) without problems.

Following Tseng and Yun (2007, Theorem 4.1(e)), any limit point of{wk} is an optimum of (1)
with logistic loss.

Appendix E. Convergence ofTRON: Logistic Regression

Consider any limit point̄w generated by{wk}. Lin and Moŕe (1999) proved that if

∇2 f̄ (w̄)J,J is positive definite, (96)

where
J≡ { j | ∇ j f̄ (w̄) = 0},

then the following two results hold:
1. {wk} globally converges tōw.
2. {wk} quadratically converges. That is, there existµ∈ (0,1) and a positive integerK such that

‖wk+1− w̄‖ ≤ (1−µ)‖wk− w̄‖2, ∀k> K.

The remaining question is whether (96) holds. From (58), we have

∇2 f̄ (w̄) =C

[
XT

−XT

]

D
[
X −X

]
, (97)

whereD is defined in (57).∇2 f̄ (w̄) cannot be positive definite if there exists 1≤ j ≤ n such that
{ j, j +n} ⊂ J. The reason is that one can easily find a vectorv ∈R2n such thatvT∇2 f̄ (w̄)v = 0. For
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example, letv j = v j+n 6= 0 and other elements be zero. However, we claim that{ j, j +n} ⊂ J does
not happen. Otherwise,

∇ j f̄ (w̄) = 1+∇ jL(w̄1:n− w̄n+1:2n) and

∇ j+n f̄ (w̄) = 1−∇ jL(w̄1:n− w̄n+1:2n)

are both zero, but this situation is not possible.
From the optimality condition (6),J is the same as the following set:

{ j | w̄ j > 0 or w̄ j = ∇ j f̄ (w̄) = 0}.

Therefore, if the solution is sparse and those ¯w j = 0 or w̄ j+n = 0, 1≤ j ≤ n satisfy
{

∇ j f̄ (w̄)> 0 if w̄ j = 0,

∇ j+n f̄ (w̄)> 0 if w̄ j+n = 0,

(i.e., the optimization problem is non-degenerate), then|J| is small. From (97),∇2 f̄ (w̄)J,J tends to
be positive definite if|J| is small. Then, we can have the quadratic convergence.

Appendix F. Convergence ofCDN: L2-loss SVM

To have the finite termination of the line search procedure, we need conditions similar to (92) and
(93). The condition (92) means that∇L(w) is globally Lipschitz continuous. L2-loss SVM satisfies
this property (Mangasarian, 2002, Section 3). For (93), the setting in (81) ensures thatH in (91) is
always positive. Therefore, the line search procedure stops in a finitenumber of steps.

For the asymptotic convergence, we need again the condition (95). Our setting in (81) meets
this assumption, so any limit point of{wk} is an optimal solution of (77).
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