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Abstract

We derive PAC-Bayesian generalization bounds for supervised and unsupervised learning models
based on clustering, such as co-clustering, matrix tri-factorization, graphical models, graph cluster-
ing, and pairwise clustering.1 We begin with the analysis of co-clustering, which is a widely used
approach to the analysis of data matrices. We distinguish among two tasks in matrix data analysis:
discriminative prediction of the missing entries in data matrices and estimation of the joint proba-
bility distribution of row and column variables in co-occurrence matrices. We derive PAC-Bayesian
generalization bounds for the expected out-of-sample performance of co-clustering-based solutions
for these two tasks. The analysis yields regularization terms that were absent in the previous for-
mulations of co-clustering. The bounds suggest that the expected performance of co-clustering is
governed by a trade-off between its empirical performance and the mutual information preserved by
the cluster variables on row and column IDs. We derive an iterative projection algorithm for finding
a local optimum of this trade-off for discriminative prediction tasks. This algorithm achieved state-
of-the-art performance in the MovieLens collaborative filtering task. Our co-clustering model can
also be seen as matrix tri-factorization and the results provide generalization bounds, regularization
terms, and new algorithms for this form of matrix factorization.

The analysis of co-clustering is extended to tree-shaped graphical models, which can be used
to analyze high dimensional tensors. According to the bounds, the generalization abilities of tree-
shaped graphical models depend on a trade-off between theirempirical data fit and the mutual
information that is propagated up the tree levels.

We also formulate weighted graph clustering as a predictionproblem: given a subset of edge
weights we analyze the ability of graph clustering to predict the remaining edge weights. The
analysis of co-clustering easily extends to this problem and suggests that graph clustering should
optimize the trade-off between empirical data fit and the mutual information that clusters preserve
on graph nodes.
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1. Introduction

Structure learning and, in particular, clustering is an important and long-standing problem in sci-
ence. In many situations it has to be performed based on a limited data sample andwith no or limited
supervision. A natural question that arises in this context is to what extentthe inferred structure is
a reflection of a “true” structure underlying the data or a mere artifact of the learning model and/or
statistical fluctuation of the finite sample. But is there a “true structure” in the first place? Consider
the following example: assume we have a bag of blocks which we can cluster by multiple parame-
ters, such as shape, color, material they are made of, and so on. All these possibilities are equally
plausible and asking whether a clustering of blocks by shape is better or worse than a clustering of
blocks by color makes no sense. But the absence of an objective comparison criterion for outputs of
two structure learning algorithms poses a serious obstacle for their evaluation and the advancement
of unsupervised learning in general.

We argue that one does not learn structure for its own sake, but ratherto facilitate solving some
higher level task. By evaluating the contribution of structure learning to the solution of the higher
level task it is possible to derive an objective comparison of the utility of different structures in
the context of this specific task. Returning to the bag of blocks example, if weknow that after
clustering the blocks we will have to pack them into a box, then the clustering ofblocks by shape
is much more useful than the clustering of blocks by color, since packing is indifferent to color. We
can further measure the amount of time that different clusterings saved usin the packing task and
thereby obtain an objective numerical evaluation of the utility of clustering of blocks by different
parameters in this context. Moreover, by repeating the experiment several times (or by some more
intelligent analysis) it is possible to provide generalization guarantees on how much time this or
other clustering algorithm is expected to save us in the packing task in the future.

Since in any non-trivial data many structures coexist simultaneously, “blind” unsupervised
learning without specification of its potential application is doomed to failure in thegeneral case.
This is because the potential application (or range of applications) can makeany property or ele-
ment of the structure either decisive or completely irrelevant for the task, and hence render it useful
or useless for identification by unsupervised learning. The need to consider unsupervised learning
within the context of its subsequent application has been pointed out by manyresearchers, especially
those concerned with practical applications of these methods (Guyon et al.,2009). In the present
paper we reformulate traditional unsupervised learning problems as prediction problems and then
adapt well-developed tools from supervised learning to provide generalization bounds on their ex-
pected out-of-sample performance. We start with the problem of co-clustering, but then show that
our approach to problem formulation is applicable to and can be analyzed in amuch broader range
of applications.

Co-clustering is a widely used method for analysis of data in matrix form by simultaneous
clustering of rows and columns of the matrix (Banerjee et al., 2007). Here we focus solely on co-
clustering solutions that result in a grid form partition of the data matrix. This form of co-clustering
is also known as partitional co-clustering (Banerjee et al., 2007), checkerboard bi-clustering (Cheng
and Church, 2000; Kluger et al., 2003), grid clustering (Devroye et al., 1996; Seldin and Tishby,
2008, 2009), and box clustering. Note that some authors use the terms co-clustering and bi-
clustering to refer to a simultaneous grouping of rows and columns that doesnot result in a grid-
form partition of the whole data matrix (Hartigan, 1972; Madeira and Oliveira, 2004), but these
forms of partitions are not discussed in this work. Note as well that this paper considers soft as-
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signments of rows and columns to their clusters, while using two-level generative models such as
those discussed in Dhillon et al. (2003) and Banerjee et al. (2007) for hard assignments. Recently,
Bayesian approaches to co-clustering have been suggested, for example see Shan and Banerjee
(2008), Salakhutdinov and Mnih (2008), Shafiei and Milios (2006), Wang et al. (2009) and Lashkari
and Golland (2009), which consider mixed memberships by introducing an additional level to the
generative process. However, three-level generative models require approximate inference meth-
ods such as variational inference or Markov Chain Monte Carlo, whereas the two-level model for
discriminative prediction discussed here can be learned by iterative projections. The analysis pre-
sented here is not limited to two-dimensional data matrices, but holds for higherdimensional tensors
as well. A three-level Bayesian approach to clustered tensor factorization was recently presented by
Sutskever et al. (2009).

In the past decade co-clustering has successfully been applied in multiple domains, including
clustering of documents and words in text mining (Slonim and Tishby, 2000; El-Yaniv and Sourou-
jon, 2001; Dhillon et al., 2003; Takamura and Matsumoto, 2003), genes and experimental condi-
tions in bioinformatics (Cheng and Church, 2000; Cho et al., 2004; Klugeret al., 2003; Cho and
Dhillon, 2008), tokens and contexts in natural language processing (Freitag, 2004; Rohwer and Fre-
itag, 2004; Li and Abe, 1998), viewers and movies in recommender systems(George and Merugu,
2005; Seldin et al., 2007; Salakhutdinov and Mnih, 2008; Seldin, 2009),etc. In Seldin et al. (2007)
and Seldin and Tishby (2009) it was pointed out that there are actually two different classes of prob-
lems that are solved with co-clustering that correspond to two different high-level tasks and should
be analyzed separately. The first class of problems are discriminative prediction tasks, one typical
representative of which is collaborative filtering (Herlocker et al., 2004). In collaborative filtering,
the analyst is given a matrix of viewers by movies with ratings, for example, ona five-star scale,
attributed by the viewers to the movies. The matrix is usually sparse, as most viewers have not seen
all the movies. In this problem the task is usually to predict the missing entries. Weassume that
there is some unknown probability distributionp(x1,x2,y) over the triplets of viewerx1, movie
x2, and ratingy. The goal is to build a discriminative predictorq(y|x1,x2) that given a pair of
viewerx1 and moviex2 will predict the expected ratingy. A natural form of evaluation of such
predictors, no matter whether they are based on co-clustering or not, is to evaluate the expected loss
Ep(x1,x2,y)Eq(y′|x1,x2)l(Y,Y

′), wherel(y,y′) is an externally provided loss function for predicting
y′ instead ofy. In Section 3 we provide this analysis for co-clustering-based predictors. The anal-
ysis can be used not only to construct co-clustering solutions to this problem, but also to conduct
a theoretical comparison of the co-clustering-based approach to this problem with other possible
approaches.

The second class of problems, which are solved using co-clustering, are problems of estimation
of a joint probability distribution in co-occurrence data analysis. A typical example of this kind
of problem is the analysis of word-document co-occurrence matrices in text mining (Slonim and
Tishby, 2000; El-Yaniv and Souroujon, 2001; Dhillon et al., 2003). Word-document co-occurrence
matrices are matrices of words by documents where the number of times each word occurred in each
document is counted in the corresponding entries. If normalized, such a matrix can be regarded as an
empirical joint probability distribution of words and documents. To illustrate the difference between
co-occurrence data and the data considered in discriminative prediction tasks, we point out that the
ratings in the collaborative filtering example are functions of viewer and movieID pairs and they do
not depend on other viewers or movies. By contrast, in co-occurrencedata the joint probability (or
the number of co-occurrence events) is normalized by the size of the corpus and thus depends on
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the whole subset of words and documents considered (or the size of the corpus if no normalization
is applied).

Although many researchers have analyzed co-occurrence data by clustering similar words and
similar documents (Slonim and Tishby, 2000; El-Yaniv and Souroujon, 2001; Dhillon et al., 2003;
Takamura and Matsumoto, 2003), or by using topic models (Steyvers and Griffiths, 2006; Blei and
Lafferty, 2009) and other approaches, no clear learning task in this problem has been defined and it
remains difficult to compare different approaches or perform model order selection. In Seldin and
Tishby (2009) one possible way of defining a high-level task for this problem was suggested. It
was assumed that the observed co-occurrence matrix was drawn from an unknown joint probability
distributionp(x1,x2) of wordsx1 and documentsx2. The suggested task was an estimation of this
joint probability distribution based on the observed sample. In such a formulation, the quality of an
estimatorq(x1,x2) for p(x1,x2) can be measured by−Ep(x1,x2) lnq(X1,X2), where the choice of
the logarithmic loss is natural in the context of density estimation. In particular, itcorresponds to
the expected code length of an encoder that usesq(x1,x2) to encode samples generated byp(x1,x2)
(Cover and Thomas, 1991). In Section 3 we provide an analysis of this quantity for co-clustering-
based density estimators. Similar to the case with co-clustering-based discriminative predictors, the
analysis serves to perform model order selection in this problem. It further enables a theoretical
comparison of the co-clustering-based approach to this problem with otherpossible approaches.

For the purpose of analysis and derivation of generalization bounds for the above two problems
we found it convenient to apply the PAC-Bayesian framework (McAllester, 1998, 1999), which
is reviewed in Section 2. Similar to the Probably Approximately Correct (PAC) learning model
(Valiant, 1984), PAC-Bayesian bounds pose no assumptions or restrictions on the distribution that
generates the data (apart from the usual assumption that the data are independent and identically
distributed (i.i.d.) and that the train and test distributions are the same). However, unlike the usual
PAC bounds, where the whole hypothesis space is characterized by its Vapnik-Chervonenkis (VC)
dimension (Vapnik and Chervonenkis, 1968, 1971), PAC-Bayesian bounds apply a non-uniform
treatment of the hypotheses by introducing a prior distribution over the hypothesis space. For ex-
ample, within the class of decision trees a preference for shallow trees canbe given by assigning a
higher prior. If a good prior over the hypothesis space can be designed, the tightness of the bounds
can be improved considerably. As shown in the literature, PAC-Bayesian analysis is able to provide
practically useful bounds that in some cases are only 10%-20% away from the test error (Langford,
2005; Seldin and Tishby, 2008; Seldin, 2009; Germain et al., 2009).

Originally, PAC-Bayesian bounds were derived for classification tasks. They have been applied
in the analysis of decision trees (Mansour and McAllester, 2000), Support Vector Machines (SVMs)
(Langford and Shawe-Taylor, 2002; McAllester, 2003; Langford,2005; Ambroladze et al., 2007;
Crammer et al., 2009; Germain et al., 2009), transductive learning (Derbeko et al., 2004), struc-
tured prediction (Bartlett et al., 2005; McAllester, 2007), and other supervised learning models.
In Seldin and Tishby (2009) we introduced PAC-Bayesian analysis to discrete density estimation.
Recently, Higgs and Shawe-Taylor (2010) applied PAC-Bayesian analysis to continuous density
estimation. In Section 3 we present the PAC-Bayesian analysis of discriminative prediction and
density estimation with co-clustering. According to the derived bounds, the generalization perfor-
mance of co-clustering-based models depends on a trade-off between their empirical performance
and the mutual information that the clusters preserve on the observed parameters (row and column
IDs). The mutual information term introduces model regularization that was absent in the previ-
ous formulations of co-clustering (Dhillon et al., 2003; Banerjee et al., 2007). We further suggest
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algorithms for optimization of the trade-off in Section 4. In Section 5, we achieve state-of-the-art
performance in the prediction of missing ratings in the MovieLens collaborative filtering data set by
optimization of the trade-off.

The co-clustering models analyzed here are tightly related to matrix tri-factorization—a 3-factor
decomposition of a matrix of the formA ≈ QT

1 FQ2 (Banerjee et al., 2007; Ding et al., 2006; Yoo
and Choi, 2009a,b) and to Tucker decomposition of higher dimensional tensors (Kim and Choi,
2007). This relation is discussed in Section 6. We point out that similar to co-clustering itself there
are at least two different forms of matrix tri-factorization; one that corresponds to discriminative
prediction tasks, such as collaborative filtering, and the other which is moreappropriate for co-
occurrence data analysis. In the first caseA can be arbitrary, whereas in the second case the input
matrixA is a joint probability distribution matrix (its entries are non-negative and sum upto one).
At the technical level, in discriminative prediction tasksQ1 andQ2 are right stochastic matrices
(their rows sum up to one) andF is arbitrary, whereas in co-occurrence data analysisQ1 andQ2

are left stochastic matrices (their columns sum up to one) andF is a joint probability distribution
matrix (in the cluster product space). Our analysis provides generalization bounds, regularization
terms, and new algorithms for both forms of matrix tri-factorization.

Co-clustering can also be regarded as a simple graphical model. In Section7 we suggest how
to extend our analysis to more general tree-shaped graphical models. Such graphical models can
be useful to treat the curse of dimensionality in the analysis of high dimensional tensors. This also
provides a new perspective on learning graphical models: instead of learning a graphical model that
fits the training data, the approach suggests optimizing the model’s ability to predict new observa-
tions. In Sections 3 and 7 it is demonstrated that PAC-Bayesian bounds areable to take advantage
of the factor form of graphical models and provide bounds that dependon the sizes of the cliques of
graphical models and the amount of mutual information that is propagated up the tree levels.

In Section 8 we extend our approach to the formulation of unsupervised learning problems as
prediction problems to graph clustering and pairwise clustering (the latter is equivalent to clustering
of a weighted graph, where edge weights correspond to pairwise distances). We formulate weighted
graph clustering as a prediction problem: given a sample of edge weights weanalyze the ability
of graph clustering to predict the remaining edge weights. We adapt the PAC-Bayesian analysis
of co-clustering to derive a PAC-Bayesian generalization bound for graph clustering. The bound
shows that graph clustering should optimize a trade-off between empirical data fit and the mutual
information that clusters preserve on the graph nodes. A similar trade-offderived from information-
theoretic considerations has been shown to produce state-of-the-art results in practice (Slonim et al.,
2005; Yom-Tov and Slonim, 2009). This paper supports the empirical evidence by providing a better
theoretical foundation, suggesting formal generalization guarantees, and offering a more accurate
way to deal with finite sample issues.

2. PAC-Bayesian Generalization Bounds

This section is devoted to PAC-Bayesian generalization bounds, which arethe main tool used for
the analysis of our learning models in the subsequent sections. We review the well-known PAC-
Bayesian bound for classification and present a slight variation of a lesswell-known PAC-Bayesian
bound for discrete density estimation. The PAC-Bayesian generalization bounds pioneered by
McAllester (1998, 1999) provide guarantees on generalization abilities ofrandomized predictors
(formally defined below in Section 2.1) within the classical PAC learning model (Valiant, 1984)
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and build upon preceding works on PAC analysis of Bayesian learning models (Shawe-Taylor et al.,
1998; Shawe-Taylor and Williamson, 1997). The classical PAC learning model evaluates learning
algorithms by their ability to predict new events generated by the same probabilitydistribution as
the one that was used to train the algorithm. No restrictions on the data generating probability distri-
bution are imposed except the assumption that the samples are i.i.d. The PAC-Bayesian framework
should be distinguished from Bayesian learning, which assumes that the data were generated by
hypotheses from the hypothesis class and applies Bayes’ rule for inference. Bayesian learning does
not provide guarantees on the expected error of the Bayes’ inference rule and in some situations can
lead to overfitting (Kearns et al., 1997).

The classical PAC bounds are derived by covering the error space of a hypothesis class. For
example, the most familiar PAC bounds are based on the VC-dimension of a hypothesis class, which
is a logarithm of the maximal number of points that can be jointly classified in any possible way by
functions from the hypothesis class (Vapnik and Chervonenkis, 1968,1971; Vapnik, 1998; Devroye
et al., 1996). More recent bounds involve Rademacher and Gaussian complexities (Koltchinskii,
2001; Bartlett et al., 2001; Bartlett and Mendelson, 2001; Boucheron et al., 2005). However, in
all the above approaches the whole hypothesis class is characterized bya single number: its VC-
dimension or Rademacher complexity, which means that all the incorporating hypotheses are treated
identically and there is no way to differentiate them and give preference to “simpler” ones. For
example, if the hypothesis class consists of straight lines and parabolas, itsVC-dimension is equal
to the VC-dimension of a hypothesis class consisting of parabolas only and there is no direct way
to give preference to straight lines within the combined hypothesis class. PAC-Bayesian bounds are
derived by covering the hypothesis space and they enable non-uniform treatment of the hypotheses.
In the PAC-Bayesian approach each hypothesis is characterized by its own complexity defined by
its prior. This refined approach provides several important benefits, which include: (1) the ability
to give explicit preference to certain hypotheses (e.g, in the example above we can assign a higher
prior to straight lines); (2) a gradient within the hypothesis space, which can be used in algorithms
for bound minimization; (3) considerably tighter bounds, which are meaningful in a practical sense:
in some applications the discrepancy between the bound value and the test error is only 10%-20%
(Langford, 2005; Seldin and Tishby, 2008; Seldin, 2009; Germain et al., 2009). There is one more
distinction between the usual PAC analysis and the PAC-Bayesian bounds that extend the scope
of applicability of the latter. Classical PAC analysis aims at bounding the discrepancy between the
expected performance of the hypothesis with the best empirical performance and the best hypothesis
within the hypothesis class. Such types of bounds require a uniform bound on the discrepancies
between empirical and expected performances for all the hypotheses withina hypothesis class. The
uniform bound exists if and only if the hypothesis class has a finite VC-dimension. PAC-Bayesian
bounds bound the expected performance of a given hypothesis, but do not attempt to bound its gap
to the performance of the best hypothesis within the hypothesis class. This fact makes it possible
to apply PAC-Bayesian bounds even in situations where the VC-dimension ofa hypothesis class
is infinite, for example, decision trees of unlimited depth or separating hyperplanes in infinite-
dimensional spaces. This does not disprove the fundamental theorem ofPAC learning theory, which
states that learning is possible if and only if the VC-dimension of a hypothesis class is finite, but
rather extends the notion of learnability. Instead of a regret-based definition of learnability, by
which the ability to learn is the ability to achieve, up to a small epsilon, the best possible solution
within a hypothesis class, the PAC-Bayesian approach defines learnabilityas the ability to bound the
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expected performance of the obtained solution. Then it is a question for theuser to decide whether
the guaranteed expected performance is sufficient for his or her needs.

Since the strength of PAC-Bayesian analysis lies in its ability to provide a non-uniform treatment
of the hypotheses within a hypothesis class, its advantage over traditional PAC analysis is best
seen in the analysis of heterogeneous hypothesis classes (or, in other words, when the hypotheses
constituting a hypothesis class are not symmetric). Some hypothesis classes exhibit a “natural
heterogeneity”; for example, we can partition the class of decision trees intosubclasses according
to tree depth. A higher prior can then be assigned to shallow trees to providethem with preference
over deep trees. For example, a priorP(t) = 2−(d(t)+1)2−2d(t)

, whered(t) is the depth of a treet
would be a legal prior over the space of full binary decision trees of unlimited depth (2−(d(t)+1) is
a prior over tree depth and2−2d(t)

is a prior over trees of a given depth). Note that it is possible
to assign a higher prior toall shallow trees simultaneously because there are fewer shallow trees
than deep trees. Hence, the above prior exploits knowledge about the structure of the hypothesis
space, but makes no assumptions about the data. As we will see below, the bounds depend on
− lnP(t) = ln(2)[(d(t) + 1) + 2d(t)]; thus the value of the logarithm of the first part of the prior
(d(t) + 1), which accounts for the tree depth, is negligible compared to the value of the logarithm
of the second half of the prior(2d(t)), which counts the number of symmetric trees given the depth.
Given a strong prior knowledge on the problem domain, which breaks the symmetry between trees
of a given depth, it is possible to give preference (a higher prior) to certain deep trees; however it
is impossible to give a higher prior to all deep trees simultaneously, because there are too many of
them. Thus, a choice of a different prior over tree depth and even precise prior knowledge of the
tree depth can only negligibly improve the bound.

For some hypothesis spaces which seem homogeneous at a first glance itmay still be possible
to identify non-trivial asymmetries and define a corresponding structuralprior. The best example
comes from the analysis of SVMs, where the class of all possible separating hyperplanes inRd is
partitioned into subclasses according to the size of the margin and a higher prior is given to the
hyperplanes with large margins (Langford and Shawe-Taylor, 2002; McAllester, 2003; Langford,
2005). In structure learning the hypothesis class usually exhibits a natural heterogeneity since the
hypotheses (structures) can be differentiated by their complexity. Hence, PAC-Bayesian analysis
has great potential in the analysis of structure learning which is only partiallyexplored in this work.
PAC-Bayesian bounds are further distinguished by their explicit dependence on model parameters,
which makes their optimization easy.

Following the pioneering work of McAllester (1998, 1999), the PAC-Bayesian bounds were
tightened and simplified by Seeger (2002, 2003). Some further improvementswere suggested in
Maurer (2004), Audibert and Bousquet (2007) and Blanchard andFleuret (2007). This section
draws on the easier-to-read expositions by Maurer (2004) and Banerjee (2006). In order to present
the bounds for classification and density estimation, we need to define the notion of randomized
predictors, which is done next. We then present the PAC-Bayesian theorems and their proofs.

2.1 Randomized Predictors

LetH be a hypothesis class and letQ(h) be a distribution overH (if H is infinite thenQ(h) is a
probability density). Arandomized predictorassociated withQ, and with a small abuse of notation
denoted byQ, is defined in the following way: For each samplex a hypothesish ∈ H is drawn
according toQ(h), and then applied to make a prediction onx. In the classification context,Q
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is termed arandomized classifier(Langford, 2005). However, since this work extends the PAC-
Bayesian framework beyond the classification scenario by using the same randomization technique,
we use the term “randomized predictor”. In this more general contexth(x) is a general function of
x, not necessarily a classifier.

In the context of classification, letS = {(x1,y1), ..,(xN ,yN )} be an i.i.d. sample of sizeN of
instances and their labels drawn according to unknown distributionp(x,y) and letl(y,y′) be a given
loss function for predictingy′ instead ofy. Leth(x) be the label ofx predicted by hypothesish. For
eachh ∈H we denote bŷL(h) = 1

N

∑

i l(yi,h(xi)) the empirical loss of the hypothesish onS and
by L(h) = Ep(x,y)l(Y,h(X)) the expected loss ofh with respect to the true, unknown distribution
that generates the data. We further extend the definitions of the empirical and expected losses for
randomized predictors in the following way:

L̂(Q) = EQ(h)L̂(h) and L(Q) = EQ(h)L(h).

For two distributionsq andp over domainX we define

KL(q‖p) = Eq ln
q(x)

p(x)

to be the Kullback-Leibler (KL) divergence betweenq andp (Cover and Thomas, 1991). As well,
we define

kl(L̂(Q)‖L(Q)) = L̂(Q) ln
L̂(Q)

L(Q)
+(1− L̂(Q)) ln

1− L̂(Q)

1−L(Q)

as the KL-divergence between two Bernoulli distributions with biasesL̂(Q) andL(Q). Now we are
ready to state the PAC-Bayesian theorems.

2.2 PAC-Bayesian Theorems

Theorem 1 (PAC-Bayesian bound for classification)For a hypothesis classH, a prior distribu-
tion P overH and a zero-one loss functionl, with probability greater than1− δ over drawing a
sample of sizeN , for all randomized classifiersQ simultaneously:

kl(L̂(Q)‖L(Q))≤ KL(Q‖P)+ ln(N +1)− lnδ

N
. (1)

Theorem 2 (PAC-Bayesian bound for discrete density estimation)Let X be the sample space
(possibly infinite) and letp(x) be an unknown distribution overx ∈ X . LetH be a hypothesis
class, such that each memberh ∈ H is a function fromX to a finite setZ with cardinality |Z|. Let
ph(z) =PX∼p(x){h(X) = z} be the distribution overZ induced byp(x) andh. LetP be a prior dis-
tribution overH. LetQ be an arbitrary distribution overH andpQ(z) = E

Q(h)
ph(z) a distribution

overZ induced byp(x) andQ. LetS be an i.i.d. sample of sizeN generated according top(x) and
let p̂(x) be the empirical distribution overX corresponding toS. Let p̂h(z) = PX∼p̂(x){h(X) = z}
be the empirical distribution overZ corresponding toh andS. Let p̂Q(z) = E

Q(h)
p̂h(z). Then with

probability greater than1− δ for all possibleQ simultaneously:

KL(p̂Q(z)‖pQ(z))≤ KL(Q‖P)+(|Z|−1) ln(N +1)− lnδ

N
. (2)
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Remarks:

1. This form of Theorem 1 first appeared in Seeger (2002). A slightly different version of
Theorem 2 first appeared in Seeger (2003) and independently in Seldinand Tishby (2009),
where it found the first non-trivial application.

2. The PAC-Bayesian bound for classification (1) is a direct consequence of the PAC-Bayesian
bound for density estimation (2). To see this, letZ be the error variable. Then each hypothesis
h ∈ H is a function from the sample space (in this case the samples are pairs〈X,Y 〉) to the
error variableZ and|Z| = 2. Furthermore,̂L(h) = p̂h(Z = 1) andL(h) = ph(Z = 1), hence
kl(L̂(Q)‖L(Q)) =KL(p̂Q(z)‖pQ(z)). Substituting this into (2) yields (1).

3. Maurer (2004) showed that due to convexity of the KL-divergence, inequality (1) is valid for
all loss functions bounded in the [0,1] interval, and not only for the zero-one loss. He also
proved that due to tighter concentration of empirical means of binary variables, forN ≥ 8
bound (1) can be further tightened:

kl(L̂(Q)‖L(Q))≤ KL(Q‖P)+ 1
2 ln(4N)− lnδ

N
(3)

and that this is the tightest result that can be proved using the techniques which are also used
in this paper.

4. Although there is no analytical expression for the inverse of thekl-divergence,L(Q) can be
bounded numerically:

L(Q)≤ kl−1

(

L̂(Q),
KL(Q‖P)+ 1

2 ln(4N)− lnδ

N

)

= max

{

v : kl(L̂(Q)‖v)≤ KL(Q‖P)+ 1
2 ln(4N)− lnδ

N

}

. (4)

Sincekl(L̂(Q)‖v) is convex inv, (4) is easy to compute.

5. The proof of Theorem 2 presented below reveals a close relation between the PAC-Bayesian
theorems and the method of types in information theory (Cover and Thomas, 1991). The
trade-off between̂L(Q) andKL(Q‖P) in the PAC-Bayesian bounds also has a tight relation
to the maximum entropy principle in learning and statistical mechanics (Jaynes, 1957; Dud́ık
et al., 2007; Catoni, 2007; Shawe-Taylor and Hardoon, 2009). The relations between the
PAC-Bayesian bounds, information theory, and statistical mechanics are further discussed in
Catoni (2007).

The proof of Theorem 2 presented below is based on two auxiliary resultswhich have value
in their own right and therefore are presented in dedicated subsections.The first auxiliary result
applies the method of types to bound the expectation of the exponent of the divergence between
empirical and expected distributions overZ for a single hypothesis:ESe

N ·KL(p̂h(z)‖ph(z)). The
second auxiliary result relates the divergenceEQ(h)KL(p̂h(z)‖ph(z)) for all Q to a single (prior)
reference measureP. This relation is actually the cornerstone of the PAC-Bayesian analysis. Fi-
nally, in Section 2.5 a quantity depending on the prior measureP is treated using the first auxiliary
result to obtain the final bound in Equation (2).
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2.3 The Law of Large Numbers

In this subsection we analyze the rate of convergence of empirical distributions over finite domains
to their true values. The following result is based on the method of types in information theory
(Cover and Thomas, 1991).

Theorem 3 LetS = {X1, ..,XN} be i.i.d. distributed byp(x). Denote bŷp(x) the empirical dis-
tribution overX corresponding toS and by|X | the cardinality ofX . Then:

E
S
eN ·KL(p̂(x)‖p(x)) ≤ (N +1)|X |−1. (5)

Proof Enumerate the possible values ofX by 1, .., |X | and letni count the number of occurrences
of valuei. Let pi denote the probability of valuei and p̂i = ni

N be its empirical counterpart. Let
H(p̂) =−∑i p̂i ln p̂i be the empirical entropy. Then:

E
S
eNKL(p̂‖p) =

∑

n1,..,n|X |:
∑

i
ni=N

(

N

n1, ..,n|X |

)

·
|X |
∏

i=1

pNp̂i

i ·eNKL(p̂‖p)

≤
∑

n1,..,n|X |:
∑

i
ni=N

eNH(p̂) ·eN
∑

i
p̂i lnpi ·eNKL(p̂‖p) (6)

=
∑

n1,..,n|X |:
∑

i
ni=N

1 =

(

N + |X |−1

|X |−1

)

≤ (N +1)|X |−1. (7)

In (6) we used the
( N

n1,..,n|X |

)≤ eNH(p̂) bound on the multinomial coefficient, which counts the num-

ber of sequences with a fixed cardinality profile (unnormalized type)n1, ..,n|X | (Cover and Thomas,
1991). In the second equality in (7) the number of ways to chooseni-s equals the number of ways
we can place|X |− 1 ones in a sequence ofN + |X |− 1 ones and zeros, where ones symbolize a
partition of zeros (“balls”) into|X | bins.

2.4 Change of Measure Inequality

The simultaneous treatment of all possible distributions (measures)Q overH is done by relating
them all to a single reference (prior) measureP. We call this relation achange of measure inequal-
ity. This inequality was formulated as a standalone result in Banerjee (2006),although it originates
much earlier. Banerjee (2006) terms it acompression lemma; however we find the term “change
of measure inequality” more appropriate to its nature and usage. The inequality is a simple conse-
quence of Jensen’s inequality.

Lemma 4 (Change of Measure Inequality)For any measurable functionφ(h) onH and any dis-
tributionsP andQ onH, we have:

EQ(h)φ(h)≤KL(Q‖P)+ lnEP(h)e
φ(h). (8)
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Proof For any measurable functionφ(h), we have:

EQ(h)φ(h) = EQ(h) ln

(Q(h)

P(h)
·eφ(h) · P(h)

Q(h)

)

=KL(Q‖P)+EQ(h) ln

(

eφ(h) · P(h)

Q(h)

)

≤KL(Q‖P)+ lnEQ(h)

(

eφ(h) · P(h)

Q(h)

)

(9)

=KL(Q‖P)+ lnEP(h)e
φ(h),

where (9) is by Jensen’s inequality.

2.5 Proof of the PAC-Bayesian Generalization Bound for Density Estimation

We apply the results of the previous two subsections to prove the PAC-Bayesian generalization
bound for density estimation.
Proof of Theorem 2Let φ(h,S,p) =NKL(p̂h(z)‖ph(z)). Then:

NKL(p̂Q(z)‖pQ(z)) =NKL(EQ(h)p̂h(z)‖EQ(h)ph(z))

≤ EQ(h)NKL(p̂h(z)‖ph(z)) (10)

≤KL(Q‖P)+ lnEP(h)e
NKL(p̂h(z)‖ph(z)), (11)

where (10) is by the convexity of the KL-divergence (Cover and Thomas, 1991) and (11) is by the
change of measure inequality. To obtain (2) it is left to boundEP(h)e

NKL(p̂h(z)‖ph(z)). This is
a random quantity depending on the sampleS sincep̂h(z) for eachh depends on the sample. By
Markov’s inequality we know that with probability at least1 − δ over the sample
EP(h)e

NKL(p̂h(z)‖ph(z)) ≤ 1
δES

[

EP(h)e
NKL(p̂h(z)‖ph(z))

]

. In order to obtain a bound on

ES

[

EP(h)e
NKL(p̂h(z)‖ph(z))

]

we note that it is possible to exchangeES with EP(h) sinceS and
h are independent:

ES

[

EP(h)e
NKL(p̂h(z)‖ph(z))

]

= EP(h)

[

ESe
NKL(p̂h(z)‖ph(z))

]

≤ (N +1)|Z|−1. (12)

The last inequality in (12) is justified by the fact thatESe
NKL(p̂h(z)‖ph(z)) ≤ (N +1)|Z|−1 for each

h individually according to (5). By Markov’s inequality we conclude that withprobability of at least
1− δ overS:

EP(h)e
NKL(p̂h(z)‖ph(z)) ≤ (N +1)|Z|−1

δ
.

Substituting this into (11) and normalizing byN yields (2).

2.6 Addendum to the Law of Large Numbers

Note in passing that it is straightforward to recover theorem 12.2.1 in Coverand Thomas (1991)
from Theorem 3 (even with a slight improvement). This theorem is used later inthe estimation of
marginal distributions.
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Theorem 5 (12.2.1 in Cover and Thomas, 1991)Under the notations of Theorem 3 with proba-
bility greater than1− δ:

KL(p̂(x)‖p(x))≤ (|X |−1) ln(N +1)− lnδ

N
.

Proof Immediate from application of Markov’s inequality to (5).

2.7 Construction of a Density Estimator

Although we have boundedKL(p̂Q(z)‖pQ(z)) in Theorem 2,̂pQ(z) still cannot be used as a den-
sity estimator forpQ(z), because it is not bounded from zero. In order to bound the logarithmic
loss−EpQ(z) ln p̂Q(z), which corresponds, for example, to the expected code length of encoder p̂Q

when samples are generated bypQ, we have to smootĥpQ. We denote a smoothed version ofp̂Q by
p̃Q and define it as:

p̃h(z) =
p̂h(z)+γ

1+γ|Z| , (13)

p̃Q(z) = E
Q(h)

p̃h(z) =
p̂Q(z)+γ

1+γ|Z| .

In the following theorem we show that ifKL(p̂Q(z)‖pQ(z)) ≤ ε(Q) andγ(Q) =

√
ε(Q)/2

|Z| , then

−EpQ(z) ln p̃Q(z) is roughly within±
√

ε(Q)/2ln |Z| range aroundH(p̂Q(z)). The bound on
KL(p̂Q(z)‖pQ(z)) is naturally obtained by Theorem 2. Thus, the performance of the density
estimatorp̃Q is optimized by distributionQ that minimizes the trade-off betweenH(p̂Q(z)) and
1
NKL(Q‖P).

Note that for a uniform distributionu(z) = 1
|Z| the value of−Ep(z) lnu(z) = ln |Z|. Thus,

the theorem below is interesting when
√

ε(Q)/2 is significantly smaller than 1. For technical
reasons in the proofs of the following section, the upper bound in the nexttheorem is stated for
−EpQ(z) ln p̃Q(z) and for−EQ(h)Eph(z) ln p̃h(z). We also denoteε= ε(Q) for brevity.

Theorem 6 Let Z be a random variable distributed according topQ(z) and assume that

KL(p̂Q(z)‖pQ(z)) ≤ ε. Then−EpQ(z) ln p̃Q(z) is minimized byγ =

√
ε/2

|Z| . For this value ofγ
the following inequalities hold:

−EQ(h)Eph(z) ln p̃h(z)≤H(p̂Q(z))+
√

ε/2ln |Z|+φ(ε), (14)

−EpQ(z) ln p̃Q(z)≤H(p̂Q(z))+
√

ε/2ln |Z|+φ(ε), (15)

−EpQ(z) ln p̃Q(z)≥H(p̂Q(z))−
√

ε/2ln |Z|−ψ(ε), (16)

where:

ψ(ε) =
√

ε/2ln
1+

√

ε/2
√

ε/2
and φ(ε) = ψ(ε)+ ln(1+

√

ε/2).
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The proof is provided in appendix A. Note that bothφ(ε) andψ(ε) converge to zero approximately
as−

√

ε/2ln
√

ε/2 and for
√

ε/2< 1
|Z| they are in fact dominant over the

√

ε/2ln |Z| term. Never-
theless, the main message is still that in order to minimize−EpQ(z) ln p̃Q(z) the trade-off between
H(p̂Q(z)) andKL(p̂Q(z)‖pQ(z)) should be minimized. This message is explored in more details
in Section 3.4.

Remark:As an aside we consider the case of direct density estimation. Assume we aregiven a
set ofN i.i.d. observationsx1, ..,xN generated according to an unknown distributionp(x) over a
finite domainX . We want to construct an estimatep̃(x) for p(x) based on the empirical frequencies
p̂(x), such that the expectation−Ep(x) ln p̃(x) is minimized. This problem, known as “histogram
smoothing”, has received significant attention in statistics and information theory (Gilbert, 1971;
Cover, 1972; Krichevskiy, 1998; Paninski, 2004). Uniform smoothingof the form

p̃(x) =
p̂(x)+γ

1+γ|X | ,

such as the one applied in (13) is known as the Dirichlet-Bayes or “add-constant” estimator. Theo-
rem 6 provides the optimal value ofγ

γ =
1

|X |
√

ε/2 =
1

|X |

√

(|X |−1) ln(N +1)− lnδ

2N

for which with probability greater than1− δ over the sample

H(p̂(x))−
√

ε/2ln |X |−ψ(ε)≤−Ep(x) ln p̃(x)≤H(p̂(x))+
√

ε/2ln |X |+φ(ε),

whereε= (|X |−1) ln(N+1)−lnδ
N is obtained from Theorem 5. By Theorem 6 the optimal smoothingγ

decreases as the sample sizeN increases. A more detailed comparison of this result with preceding
work is beyond the scope of this paper and will be presented elsewhere.Note that in the more
general case considered in Theorem 6, where the distributionpQ(z) depends onQ the smoothing
parameterγ also depends onQ.

3. PAC-Bayesian Analysis of Co-clustering

In the introduction we defined two high-level goals, which can be solved viaco-clustering. The
first is discriminative prediction of the matrix entries, as in the collaborative filtering example. The
second is estimation of the joint probability distribution in co-occurrence data analysis. We further
defined the notion of generalization for each of the two problems. In this section we derive PAC-
Bayesian generalization bounds for the two settings. We begin with the co-clustering approach to
discriminative prediction, which is slightly easier in terms of presentation. Thenwe consider the
discrete density estimation problem.

3.1 PAC-Bayesian Analysis of Discriminative Prediction with Grid Clustering

LetX1× ..×Xd×Y be a(d+1)-dimensional product space. We assume that eachXi is categorical
and its cardinality, denoted by|Xi| = ni, is fixed and known. We also assume thatY is finite with
cardinality|Y| and that a bounded loss functionl(y,y′) for predictingy′ instead ofy is given. As
an example, consider collaborative filtering. In collaborative filteringd = 2, X1 is the space of the
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(a) Graphical Model for Dis-
criminative Prediction

(b) Graphical Model for Den-
sity Estimation

Figure 1: Illustration of graphical models corresponding to discriminative prediction (17) and den-
sity estimation (26). The illustrations are ford= 2.

viewers,n1 is the number of viewers,X2 is the space of the movies,n2 is the number of movies,
andY is the space of the ratings (e.g., on a five-star scale). The lossl(y,y′) can be, for example, the
absolute lossl(y,y′) = |y−y′| or the quadratic lossl(y,y′) = (y−y′)2. There is no natural metric
either on the space of viewers or on the space of movies; thus bothX1 andX2 are categorical.

We assume an existence of an unknown probability distributionp(x1, ..,xd,y) over theX1× ..×
Xd×Y product space. We further assume that we are given an i.i.d. sample of sizeN generated
according top(x1, ..,xd,y). We usep̂(x1, ..,xd,y) to denote the empirical frequencies of(d+ 1)-
tuples〈x1, ..,xd,y〉 in the sample. We consider the following form of discriminative predictors:

q(y|x1, ..,xd) =
∑

c1,..,cd

q(y|c1, .., cd)
d
∏

i=1

q(ci|xi). (17)

The hidden variablesC1, ..,Cd represent a clustering of the observed variablesX1, ..,Xd. The
hidden variableCi accepts values in{1, ..,mi}, wheremi = |Ci| denotes the number of clusters
used along dimensioni. The conditional probability distributionq(ci|xi) represents the probability
of mapping (assigning)xi to clusterci. The conditional probabilityq(y|c1, .., cd) represents the
probability of assigning labely to cell 〈c1, .., cd〉 in the cluster product space. The prediction model
(17) corresponds to the graphical model in Figure 1.a. Note that this is a two-level randomized
prediction model. The free parameters of the model are the conditional distributions{q(ci|xi)}di=1

andq(y|c1, .., cd). We denote these collectively byQ=
{

{q(ci|xi)}di=1, q(y|c1, .., cd)
}

. In the next
subsection we show that (17) corresponds to a randomized prediction strategy. We further denote:

L(Q) = Ep(x1,..,xd,y)Eq(y′|x1,..,xd)l(Y,Y
′)

and
L̂(Q) = Ep̂(x1,..,xd,y)Eq(y′|x1,..,xd)l(Y,Y

′),

whereq(y|x1, ..,xd) is defined by (17). We define

Ī(Xi;Ci) =
1

ni

∑

xi,ci

q(ci|xi) ln
q(ci|xi)

q̄(ci)
,

3608



PAC-BAYESIAN ANALYSIS OF CO-CLUSTERING AND BEYOND

wherexi ∈ Xi are the possible values ofXi, ci ∈ {1, ..,mi} are the possible values ofCi, and

q̄(ci) =
1

ni

∑

xi

q(ci|xi)

is the marginal distribution overCi corresponding toq(ci|xi) and auniformdistributionu(xi) = 1
ni

overXi. Thus,Ī(Xi;Ci) is the mutual information corresponding to the joint distributionq̄(xi, ci) =
1
ni
q(ci|xi) defined byq(ci|xi) and the uniform distribution overXi.

With the above definitions we can state the following generalization bound for discriminative
prediction with co-clustering.

Theorem 7 For any probability measurep(x1, ..,xd,y) over X1× ..×Xd×Y and for any loss
functionl bounded by 1, with probability of at least1− δ over a selection of an i.i.d. sampleS of
sizeN according top, for all randomized classifiersQ=

{

{q(ci|xi)}di=1, q(y|c1, .., cd)
}

:

kl(L̂(Q)‖L(Q))≤
∑d

i=1

(

niĪ(Xi;Ci)+mi lnni

)

+M ln |Y|+ 1
2 ln(4N)− lnδ

N
, (18)

whereM is the number of partition cells:

M =
d
∏

i=1

mi.

Remarks:Of course, any bounded loss can be normalized to the [0,1] interval. Note that given a
prediction strategyQ =

{

{q(ci|xi)}di=1, q(y|c1, .., cd)
}

both L̂(Q) and Ī(Xi;Ci) are computable

exactly.L(Q) can be bounded by numerical inversion ofkl, as shown in Equation (4). To minimize
L(Q) bothL̂(Q) andĪ(Xi;Ci) should be minimized.

Discussion:There are two extreme solutions to the collaborative filtering task that providegood
intuitions on the co-clustering approach to this problem. If we assign all of thedata to a single large
cluster, we can evaluate the empirical mean/median/most frequent rating of that cluster fairly well.
In this situation the empirical losŝL(Q) is expected to be large, because we approximate all the
entries with the global average, but its distance to the true lossL(Q) is expected to be small. If
we take the other extreme and assign each row and each column to a separatecluster,L̂(Q) can be
zero given that we can approximate every entry with its own value, but its distance to the true loss
L(Q) is expected to be large because each cluster has too little data to make a statisticallyreliable
estimation. Thus, the goal is to optimize the trade-off between the locality of the predictions and
their statistical reliability.

This trade-off is explicitly exhibited in bound (18): if we assign allxi-es to a single cluster, then
Ī(Xi;Ci) = 0 and thereforeL(Q) is close toL̂(Q). And if we assign eachxi to a separate cluster,
thenĪ(Xi;Ci) is large, specifically in this casēI(Xi;Ci) = lnni, andL(Q) is far fromL̂(Q). But
there are even finer observations we can draw from the bound. Bear inmind thatniĪ(Xi;Ci) is
linear inni, whereasmi lnni is logarithmic inni. Thus, at least whenmi is small compared to
ni (which is a reasonable assumption when we cluster the values ofXi) the leading term in (18) is
niĪ(Xi;Ci). This term penalizes theeffectivecomplexity of a partition, rather than the raw number
of clusters used. For example, the unbalanced partition of a4×4 matrix into2×2 clusters in Figure
2.a is simpler than the balanced partition into the same number of clusters in Figure 2.b. The reason,
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(a) Unbalanced Partition (b) Balanced Partition

Figure 2: Illustration of (a) an unbalanced and (b) a balanced partition ofa 4×4 matrix into 2×2
clusters. Note that there are 4 possible ways to group 4 objects into 2 unbalanced clusters
and

(4
2

)

= 6 possible ways to group 4 objects into 2 balanced clusters. Thus, the subspace
of the unbalanced partitions is smaller than the subspace of the balanced partitions and
the unbalanced partitions are simpler (it is easier to describe an unbalancedpartition than
a balanced one).

which will become clearer after we have defined the prior over the space of partitions in Section
3.3, is that there are fewer unbalanced partitions than balanced ones. Therefore, the subspace of
unbalanced partitions is smaller than the subspace of balanced partitions andit is easier to describe
an unbalanced partition than a balanced one. Intuitively, the partition in Figure 2.a does not fully
use the2×2 clusters that it could use, and should therefore be penalized less. On a practical level,
the bound makes it possible to operate at the optimization step with more clusters than are actually
required and to penalize the final solution according to a de facto measure of cluster use. This
claim is supported by our experiments. To summarize this point, the bound (18)suggests a trade-off
between the empirical performance and the effective complexity of a partition.

Finally, consider theM ln |Y| term in the bound.M is the number of partition cells (in a
hard partition) andM ln |Y| corresponds to the size of the〈C1, ..,Cd,Y 〉 clique in the moral graph
corresponding to the graph in Figure 1.a. The number of sample pointsN should be comparable to
the number of partition cells, so it is natural for this term to appear in the bound. This term grows
exponentially with the number of dimensionsd; thus we can apply the bound for low-dimensional
problems like collaborative filtering, but when the number of dimensions grows a different approach
is required. We suggest one possible way to handle high dimensional problems in Section 7.

Proof of Theorem 7The proof is a direct application of the PAC-Bayesian bound for classification
in Theorem 1 (or, more precisely, its refinement in (3)). In order to applythe theorem, we have to
define a hypothesis spaceH, a prior over hypothesis spaceP, a posterior over hypothesis spaceQ,
and calculate the KL-divergenceKL(Q‖P). We define the hypothesis space in the next subsection
and design a prior over it in Section 3.3. Substitution of the calculation ofKL(Q‖P) in Lemma 9
into Theorem 1 completes the proof.
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3.2 Grid Clustering Hypothesis Space

We define the hypothesis spaceH to be the space of hard grid partitions of the product space
X1× ..×Xd (as illustrated in Figure 2) augmented with label assignments to the partition cells. (In
Section 3.4 we use grid partitions without labels on the partition cells; thus the discussion in this
and the following subsection is kept general enough to hold in both cases.)In a hard grid partition
each valuexi ∈ Xi is mapped deterministically to a single clusterci ∈ {1, ..,mi}. To operate onH
we use the following notations:

• Let m̄= (m1, ..,md) be a vector counting the number of clusters along each dimension.

• We useH|i to denote the space of partitions ofXi. In other words,H|i is a projection ofH
onto dimensioni.

• Let Hm̄ denote the subspace of partitions ofX1× ..×Xd in which the number of clusters
used along each dimension matchesm̄. Obviously, for distinctm̄-s,Hm̄-s are disjoint.

• We useH|(y|m̄) or simplyH|y|m̄ to denote the space of possible assignments of labels toHm̄.

Then we can writeH=
⋃

m̄

(

Hm̄×H|y|m̄

)

.

• For eachh∈H we writeh= h|1× ..×h|d×h|y|m̄, whereh|i denotes the partition induced by
h along dimensioni andh|y|m̄ denotes the assignment of labels to partition cells ofh. In the
discussion of density estimation with grid clustering in Section 3.4,h is justh= h|1× ..×h|d,
without the labels assignment.

We show thatQ=
{

{q(ci|xi)}di=1, q(y|c1, .., cd)
}

is a distribution overH and (17) corresponds

to a randomized prediction strategy. More precisely,Q is a distribution overHm̄×H|y|m̄, where

m̄ matches the cardinalities ofCi-s in the definitions of
{

{q(ci|xi)}di=1, q(y|c1, .., cd)
}

. In order
to draw a hypothesish ∈ H according toQ we draw a clusterci for eachxi ∈ Xi according to
q(ci|xi) and then draw a label for each partition cell according toq(y|c1, .., cd). For example, we
map each viewer to a cluster of viewers, map each movie to a cluster of movies, and assign ratings to
the product space of viewer clusters by movie clusters. Then, in order toassign a label to a sample
〈x1, ..,xd〉 we simply check which partition cell it has fallen into and return the corresponding label.
Recall that in order to assign a label to another sample point, we have to drawa new hypothesis from
H.

Note that in (17) we actually skip the step of assigning a cluster for eachxi ∈ Xi and a label for
each partition cell (in fact, the whole step of drawing a hypothesis) and assign a label to a given point
〈x1, ..,xd〉 directly. Nevertheless, (17) corresponds to the randomized prediction process described
above. This makes it possible to apply the PAC-Bayesian analysis.

3.3 Combinatorial Priors in PAC-Bayesian Bounds

In this section we design a combinatorial prior over the grid clustering hypothesis space and calcu-
late the KL-divergenceKL(Q‖P) between the posterior defined earlier and the prior. An interesting
point about this result is that combinatorial priors result in mutual informationterms in the calcula-
tions of the KL-divergence. This can be contrasted with theL2-norm andL1-norm terms resulting
from Gaussian and Laplacian priors respectively in the analysis of SVMs(Langford, 2005). Another
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important point to mention is that the posteriorQ returns a named partition ofXi-s (the conditional
distributionq(ci|xi) specifies the “name”ci of the cluster thatxi is mapped to). However, the hy-
pothesis spaceH and the priorP defined below operate with unnamed partitions: they only depend
on the structure of a partition (the sizes of the clusters), but do not depend on the names assigned
to the clusters. In this manner we account for all possible permutations of cluster names, which are
irrelevant for the solution.

The statements in the next two lemmas are given in two versions, one forH augmented with
labels, which is used in the proofs of Theorem 7, and the other forHm̄ without the labels, which is
used later for the proofs on density estimation with grid clustering.

Lemma 8 It is possible to define a priorP overHm̄ that satisfies:

P(h)≥ 1

exp
[

∑d
i=1 (niH(hist(h|i))+(mi−1) lnni)

] , (19)

wherehist(h|i) = {|ci1|, .., |cimi
|} denotes the cardinality profile (histogram) of cluster sizes along

dimensioni of a partition corresponding toh andH(hist(h|i)) =−∑mi

j=1
|cij |
ni

ln
|cij |
ni

is the entropy
of the (normalized) cardinality profile(note that

∑mi
j=1 |cij |= ni).

It is further possible to define a priorP overH=
⋃

m̄

(

Hm̄×H|y|m̄

)

that satisfies:

P(h)≥ 1

exp
[

∑d
i=1 (niH(hist(h|i))+mi lnni)+M ln |Y|

] . (20)

Remark:The priorP overH that is defined explicitly in the proof of the lemma exploits struc-
tural asymmetries between more and less balanced grid partitions, as shown inFigure 2, without
making assumptions on the data generating process. Note that the leading termsin the prior are
niH(hist(h|i)) that count the number of possible ways to assignxi-s to ci-s, which are invariant
under permutation ofxi-s within eachXi (see the proof for details). Thus, it is impossible to design
a significantly better prior without “strong” prior knowledge on the data generating process that can
break the permutation symmetry ofxi-s. “Weak” prior knowledge on the number of clustersmi

along each dimension and even on their sizes can only introduce an improvement that is logarith-
mic in ni-s to the bounds. The PAC-Bayesian analysis enables us to operate with allpossible grid
partitions, while paying a very low (logarithmic) price for this generality.

We note that recently Lever et al. (2010) suggested an elegant technique for defining priors
based on the true data distribution, which is, of course, a “strong” prior knowledge. For example,
using the true marginal distributionsp(xi) overXi-s in the definition of the prior would break the
permutation symmetry ofxi-s. Since the true data distribution is independent of the sample, such
priors are perfectly valid, although uncomputable. Lever et. al. show that,at least in some situations,
the KL-divergenceKL(Q‖P) can nevertheless be bounded, which is sufficient for application of
the PAC-Bayesian bounds. The possibility of application of distribution-dependent priors in co-
clustering will be explored in future work.

Lemma 9 For the prior defined in(19)and posteriorQ= {q(ci|xi)}di=1:

KL(Q‖P)≤
d
∑

i=1

(

niĪ(Xi;Ci)+(mi−1) lnni

)

. (21)
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For the prior defined in(20)and posteriorQ=
{

{q(ci|xi)}di=1, q(y|c1, .., cd)
}

:

KL(Q‖P)≤
d
∑

i=1

(

niĪ(Xi;Ci)+mi lnni

)

+M ln |Y|. (22)

3.3.1 PROOFS

Proof of Lemma 8 To define the priorP overHm̄ we count the hypotheses inHm̄. There are
(ni−1

mi−1

) ≤ nmi−1
i possibilities to choose a cluster cardinality profile along a dimensioni. (This is

because each of themi clusters has a size of at least one. To define a cardinality profile we are free to
distribute the “excess mass” ofni−mi among themi clusters. The number of possible distributions
equals the number of possibilities to placemi−1 ones in a sequence of(ni−mi)+(mi−1) = ni−
1 ones and zeros.) For a fixed cardinality profilehist(h|i) there are

( ni

|ci1|,..,|cimi
|

) ≤ eniH(hist(h|i))

possibilities to assignxi-s to the clusters. Putting the combinatorial calculations together we can
define a distributionP overHm̄ that satisfies (19).

To prove (20) we further define a uniform prior overH|y|m̄. Note that there are|Y|M possibili-
ties to assign labels to the partition cells inHm̄. Finally, we define a uniform prior over the choice
of m̄. There areni possibilities to chose the value ofmi (we can assign allxi-s to a single cluster,
assign eachxi to a separate cluster, and all the possibilities in between). Combining this with the
combinatorial calculations performed for (19) yields (20).

Proof of Lemma 9 We first handle bound (21). We use the decompositionKL(Q‖P) =
−EQ lnP(h)−H(Q) and bound−EQ lnP(h) and H(Q) separately. We further decompose
P(h) = P(h|1) · .. ·P(h|d) andQ(h) in a similar manner. Then−EQ lnP(h) =−∑iEQ lnP(h|i)
andH(Q) =

∑

iH(Q(h|i)). Therefore, we can treat each dimension separately.
By Lemma 8:

−EQ lnP(h|i)≤ (mi−1) lnni +niEQH(hist(h|i)). (23)

Hence, in order to bound−EQ lnP(h|i) we have to bound the expected entropy of cluster cardi-
nality profiles of the hypotheses generated byQ. Recall thatQ draws a clusterCi for eachxi ∈ Xi

according toq(ci|xi) and that this process results in marginal distributionq̄(ci) = 1
ni

∑

xi
q(ci|xi)

over the normalized cluster sizes (this is where the uniform distribution overXi comes in). To bound
EQH(hist(h|i)) we use the result on negative bias of empirical entropy estimates cited below,see
Paninski (2003) for a proof.

Theorem 10 (Paninski, 2003)Let X1, ..,XN be i.i.d. distributed byp(x) and let p̂(x) be their
empirical distribution. Then:

EpH(p̂) =H(p)−EpKL(p̂‖p)≤H(p). (24)

By (24)EQH(hist(h|i))≤H(q̄(ci)). Substituting this into (23) yields:

−EQ lnP(h|i)≤ niH(q̄(ci))+(mi−1) lnni. (25)

Now we turn to bound−H(Q(h|i)) = EQ lnQ(h|i). To do so we boundlnQ(h|i) from above.
The bound follows from the fact that if we drawni values ofCi according toq(ci|xi) the probability
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of the resulting type is bounded from above bye−niH̄(Ci|Xi), where H̄(Ci|Xi) =
− 1

ni

∑

xi,ci
q(ci|xi) lnq(ci|xi) (see Cover and Thomas, 1991, Theorem 12.1.2). Thus,

EQ lnQ(h|i) ≤ −niH̄(Ci|Xi), which together with (25) and the identitȳI(Xi;Ci) = H(q̄(ci))−
H̄(Ci|Xi) completes the proof of (21).

To prove (22) we recall thatQ is defined for a fixed̄m. Hence,−EQ lnP(h|y|m̄) = M ln |Y|
and−H(Q(h|y|m̄)) ≤ 0. Finally, since the priorP(m̄) over the selection of̄m is uniform we

have−EQ lnP(m̄) =
∑d

i=1 lnni andH(Q(m̄)) = 0, which is added to (21) by the additivity of
KL(Q‖P) completing the proof.

3.4 PAC-Bayesian Analysis of Density Estimation with Grid Clustering

In this subsection we derive a generalization bound for density estimation withgrid clustering. This
time we have no labels and the goal is to find a good estimator for an unknown joint probability
distributionp(x1, ..,xd) over ad-dimensional product spaceX1× ..×Xd based on a sample of size
N from p. As an illustrative example, think of estimating a joint probability distribution of words
and documents (X1 andX2) from their co-occurrence matrix. The goodness of an estimatorq for p
is measured by−Ep(x1,..,xd) lnq(X1, ..,Xd).

By Theorem 5, to obtain a meaningful bound for a direct estimation ofp(x1, ..,xd) from
p̂(x1, ..,xd) we needN to be exponential inni-s, since the cardinality of the random variable
〈X1, ..,Xd〉 is

∏

ini. To reduce this dependency to be linear in
∑

ini we restrict the estimator
q(X1, ..,Xd) to be of the factor form:

q(x1, ..,xd) =
∑

c1,..,cd

q(c1, .., cd)
d
∏

i=1

q(xi|ci) (26)

=
∑

c1,..,cd

q(c1, .., cd)
d
∏

i=1

q(xi)

q(ci)
q(ci|xi). (27)

We emphasize that the above decomposition assumption is only on the estimatorq and not on the
generating distributionp. A graphical model corresponding to Equation (26) is given in Figure 1.b.
Similar to the model for discriminative prediction, this is also a two-level randomized prediction
model.

We select the hypothesis spaceH to be the space of hard partitions of the product spaceX1× ..×
Xd, as before; however, this time there are no labels to the partition cells. The general message of the
following two theorems is that the empirical distribution over the coarse partition spaceC1× ..×Cd

converges to the true one faster than the empirical distribution overX1× ..×Xd converges to its true
counterpart. We also show that (27) can be used to extrapolate the distribution over cluster space
back toX1× ..×Xd space and obtain better generalization guarantees. Next we state this more
formally.

As seen in the previous subsection, a distributionQ= {q(ci|xi)}di=1 is a distribution overHm̄.
To obtain a hypothesish ∈ Hm̄ we draw a cluster for eachxi ∈ Xi according toq(ci|xi). The way
we have written (27) enables us to view it as a randomized prediction process: we draw a hypothesis
h according toQ and then predict the probability of〈x1, ..,xd〉 asq(ch

1(x1), .., ch
d(xd))

∏

i
q(xi)

q(ch
i

(xi))
,

wherech
i (xi) = h(xi) is the partition cell thatxi fell within h. Although (27) skips the process of
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drawing the complete partitionh and returns the probability of〈x1, ..,xd〉 directly, the described
randomized prediction process matches the predictions by (27) and thus enables its analysis with
PAC-Bayesian bounds.

Let h ∈ H be a hard partition ofX1× ..×Xd and leth(xi) denote the cluster to whichxi is
mapped inh. We define the distribution over the partition cells〈c1, .., cd〉 induced byp andh:

ph(c1, .., cd) =
∑

x1,..,xd:
∀i h(xi)=ci

p(x1, ..,xd),

ph(ci) =
∑

xi:h(xi)=ci

p(xi).

We further define the distribution over partition cells induced by the empirical distributionp̂(x1, ..,xd)
corresponding to the sample andh by substitution of̂p instead ofp in the above definitions:

p̂h(c1, .., cd) =
∑

x1,..,xd:
∀i h(xi)=ci

p̂(x1, ..,xd),

p̂h(ci) =
∑

xi:h(xi)=ci

p̂(xi).

We also define the distribution over partition cells induced byQ andp and its empirical counterpart:

pQ(c1, .., cd) =
∑

h

Q(h)ph(c1, .., cd) =
∑

x1,..,xd

p(x1, ..,xd)
d
∏

i=1

q(ci|xi),

pQ(ci) =
∑

h

Q(h)ph(ci) =
∑

xi

p(xi)q(ci|xi),

p̂Q(c1, .., cd) =
∑

h

Q(h)p̂h(c1, .., cd) =
∑

x1,..,xd

p̂(x1, ..,xd)
d
∏

i=1

q(ci|xi),

p̂Q(ci) =
∑

h

Q(h)p̂h(ci) =
∑

xi

p̂(xi)q(ci|xi).

We extrapolateph, pQ, p̂h andp̂Q to the whole spaceX1× ..×Xd using (27):

ph(x1, ..,xd) = ph(ch
1(x1), .., ch

d(xd))
d
∏

i=1

p(xi)

ph(ch
i (xi))

,

pQ(x1, ..,xd) =
∑

c1,..,cd

pQ(c1, .., cd)
d
∏

i=1

p(xi)

pQ(ci)
q(ci|xi),

p̂h(x1, ..,xd) = p̂h(ch
1(x1), .., ch

d(xd))
d
∏

i=1

p̂(xi)

p̂h(ch
i (xi))

,

p̂Q(x1, ..,xd) =
∑

c1,..,cd

p̂Q(c1, .., cd)
d
∏

i=1

p̂(xi)

p̂Q(ci)
q(ci|xi).

Note thatpQ(x1, ..,xd) is a distribution overX1× ..×Xd, which has the form (27) and is the closest
to the true distributionp(x1, ..,xd) under the constraint that{q(ci|xi)}di=1 are fixed. Further, note
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that since we have no access top(x1, ..,xd) we do not knowpQ(x1, ..,xd). In the next theorem we
provide rates of convergence of the distributionsp̂Q(x1, ..,xd), p̂Q(c1, .., cd), andp̂Q(xi) based on
the sample to their counterparts corresponding to the true distributionp(x1, ..,xd).

Theorem 11 For any probability measurep overX1× ..×Xd and an i.i.d. sampleS of sizeN
according top, with probability of at least1− δ for all grid clusteringsQ = {q(ci|xi)}di=1 the
following holds simultaneously:

KL(p̂Q(c1, .., cd)‖pQ(c1, .., cd))≤
∑d

i=1niĪ(Xi;Ci)+K1

N
(28)

and for all i

KL(p̂(xi)‖p(xi))≤
(ni−1) ln(N +1)+ ln d+1

δ

N
, (29)

where

K1 =
d
∑

i=1

mi lnni +(M −1) ln(N +1)+ ln
d+1

δ
. (30)

As well, with probability greater than1− δ:

KL(p̂Q(x1, ..,xd)‖pQ(x1, ..,xd))≤
∑d

i=1niĪ(Xi;Ci)+K2

N
, (31)

where

K2 =
d
∑

i=1

mi lnni +

[

M +
d
∑

i=1

ni−d−1

]

ln(N +1)− lnδ.

Before we discuss and prove the theorem we point out that althoughp̂Q(x1, ..,xd) converges
to pQ(x1, ..,xd) it still cannot be used to minimize−Ep(x1,..,xd) ln p̂Q(X1, ..,Xd), because it is not
bounded from zero. Also, we cannot construct a density estimator by smoothing p̂Q(x1, ..,xd)
directly using Theorem 6, because the cardinality of the random variable〈X1, ..,Xd〉 is

∏

ini and
this term will enter into the bounds. To circumvent this we take advantage of thefactor form ofpQ

and use the bounds (28) and (29). We define an estimatorp̃Q, which is a smoothed version ofp̂Q in
the following way:

p̃h(c1, .., cd) =
p̂h(c1, .., cd)+γ

1+γM
,

p̃(xi) =
p̂(xi)+γi

1+γini
, (32)

p̃h(ci) =
∑

xi:h(xi)=ci

p̃(xi),

p̃h(x1, ..,xd) = p̃h(ch
1(x1), .., ch

d(xd))
d
∏

i=1

p̃(xi)

p̃h(ch
i (xi))

.
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And for a distributionQ overH:

p̃Q(c1, .., cd) =
p̂Q(c1, .., cd)+γ

1+γM
, (33)

p̃Q(ci) =
∑

xi

p̃(xi)q(ci|xi) =
p̂Q(ci)+γiq̄(ci)ni

1+γini
, (34)

p̃Q(x1, ..,xd) =
∑

h

Q(h)p̃h(x1, ..,xd)

=
∑

c1,..,cd

p̃Q(c1, .., cd)
d
∏

i=1

p̃(xi)

p̃Q(ci)
q(ci|xi). (35)

In the following theorem we provide a bound on−Ep(x1,..,xd) ln p̃Q(X1, ..,Xd). Note that we take
the expectation with respect to the true, unknown distributionp that may have an arbitrary form
(i.e.,p is not restricted to be of the factor form (26)).

Theorem 12 For the density estimator̃pQ(x1, ..,xd) defined by equations(32), (33), (34), and

(35), −Ep(x1,..,xd)p̃Q(X1, ..,Xd) attains its minimum atγ(Q) =

√
ε(Q)/2

M and γi =

√
εi/2

ni
, where

ε(Q) is defined by the right-hand side of(28) andεi-s are defined by the right-hand side of(29).
At this optimal level of smoothing, with probability greater than1− δ for all Q = {q(ci|xi)}di=1

simultaneously:

−Ep(x1,..,xd) ln p̃Q(X1, ..,Xd)≤−I(p̂Q(c1, .., cd))+ln(M)

√

∑d
i=1niĪ(Xi;Ci)+K1

2N
+K3, (36)

whereI(p̂Q(c1, .., cd)) =
[

∑d
i=1H(p̂Q(ci))

]

−H(p̂Q(c1, .., cd)) is the multi-information between

C1, ..,Cd with respect tôpQ(c1, .., cd),K1 is defined by(30),

K3 = φ(ε(Q))+

[

d
∑

i=1

H(p̂(xi))+2
√

εi/2lnni +φ(εi)+ψ(εi)

]

,

and the functionsφ andψ are defined in Theorem 6.

Discussion: We discuss Theorem 12 first. We point out thatp̃Q(x1, ..,xd) is directly related to
p̂Q(x1, ..,xd) and thatp̂Q(x1, ..,xd) is determined by the empirical frequenciesp̂(x1, ..,xd) of the
sample and our choice ofQ = {q(ci|xi)}di=1. There are only two quantities in the bound (36) that
depend on the choice ofQ: −I(p̂Q(c1, .., cd)) and

∑

i
ni

N Ī(Xi;Ci) [note that the latter also appears
in φ(ε(Q) in K3]. Thus, Theorem 12 suggests that a good estimatorp̃Q(x1, ..,xd) of p(x1, ..,xd)
should optimize the trade-off between−I(p̂Q(c1, .., cd)) and

∑

i
ni

N Ī(Xi;Ci). Similar to Theo-
rem 7, the latter term corresponds to the mutual information that the hidden cluster variables pre-
serve on the observed variables. Larger values ofĪ(Xi;Ci) correspond to partitions ofX1, ..,Xd,
which are more complex. The first term,−I(p̂Q(c1, .., cd)), corresponds to the amount of structural
information onCi-s extracted by the partition. More precisely, we need to look at the value of
∑

iH(p̂(xi))−I(p̂Q(c1, .., cd)), where
∑

iH(p̂(xi)) is a part ofK3 and roughly corresponds to the
performance we can achieve by approximatingp(x1, ..,xd) with a product of empirical marginals
∏

i p̂(xi). Thus,−I(p̂Q(c1, .., cd)) is the added value of the partition in estimatingp(x1, ..,xd) and
since

∑

iH(p̂(xi))≥ I(p̂Q(c1, .., cd)) the bound (36) is always positive.
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The value ofI(p̂Q(c1, .., cd)) increases monotonically with the increase of the partition com-
plexity Q (we can see this by the information processing inequality, Cover and Thomas, 1991).
Thus, the trade-off in (36) is analogous to the trade-off in (18): the partition Q should balance its
utility function−I(p̂Q(c1, .., cd)) and the statistical reliability of the estimate of the utility function,
which is related to

∑

i
ni

N Ī(Xi;Ci). This trade-off suggests a modification to the original objective
of co-clustering in Dhillon et al. (2003), which is maximization ofI(C1;C2) alone (Dhillon et al.,
2003 discuss the case of two-dimensional matrices). The trade-off in (36) can be applied to model
order selection.

Now we make a few comments concerning Theorem 11. An interesting point about this theorem
is that the cardinality of the random variable〈X1, ..,Xd〉 is

∏

ini. Thus, a direct application of
Theorem 2 to boundKL(p̂Q(x1, ..,xd)‖pQ(x1, ..,xd)) would introduce this term into the bound.
However, by using the factor form (27) of̂pQ(x1, ..,xd) andpQ(x1, ..,xd) we are able to reduce
this dependency to(M +

∑

ini− d− 1). This result reveals the great potential of applying PAC-
Bayesian analysis to more complex graphical models, which we explore further in Section 7.

3.4.1 PROOFS

We conclude this section by presenting the proofs of Theorems 11 and 12.

Proof of Theorem 11The proof is based on PAC-Bayesian theorem on density estimation (The-
orem 2). To apply the theorem we need to define a priorP overH and then calculateKL(Q‖P).
We note that for a fixedQ the cardinalities of the clusters̄m are fixed. There are

∏

ini disjoint
subspacesHm̄ in H. We handle eachHm̄ independently and then combine the results to obtain
Theorem 11.

By Theorem 2 and Lemma 9, for the priorP overHm̄ defined in Lemma 8, with probability
greater than1− δ

(d+1)
∏

i
ni

we obtain (28) for eachHm̄. In addition, by Theorem 5 with probability

greater than1− δ
d+1 inequality (29) holds for eachXi. By a union bound over the

∏

ini subspaces
ofH and thed variablesXi we obtain that (28) and (29) hold simultaneously for allQ andXi with
probability greater than1− δ.

To prove (31), fix some hard partitionh and letch
i = h(xi). Then:

KL(p̂h(x1, ..,xd)‖ph(x1, ..,xd))

=KL(p̂h(x1, ..,xd, c
h
1(x1), .., ch

d(xd))‖ph(x1, ..,xd, c
h
1(x1), .., ch

d(xd)))

=KL(p̂h(c1, .., cd)‖ph(c1, .., cd))

+KL(p̂h(x1, ..,xd|ch
1(x1), .., ch

d(xd))‖ph(x1, ..,xd|ch
1(x1), .., ch

d(xd)))

=KL(p̂h(c1, .., cd)‖ph(c1, .., cd))+
d
∑

i=1

KL(p̂h(xi|ch
i (xi))‖ph(xi|ch

i (xi)))

=KL(p̂h(c1, .., cd)‖ph(c1, .., cd))+
d
∑

i=1

KL(p̂(xi)‖p(xi))−
d
∑

i=1

KL(p̂h(ci)‖ph(ci))

≤KL(p̂h(c1, .., cd)‖ph(c1, .., cd))+
d
∑

i=1

KL(p̂(xi)‖p(xi)).
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And:

ESe
NKL(p̂h(x1,..,xd)‖ph(x1,..,xd)) ≤

(

ESe
NKL(p̂h(c1,..,cd)‖ph(c1,..,cd))

)

d
∏

i=1

ESe
NKL(p̂(xi)‖p(xi))

≤ (N +1)M+
∑d

i=1
ni−(d+1),

where the last inequality is by Theorem 3. From here we follow the lines of theproof of Theorem
2. Namely:

ES

[

EP(h)e
NKL(p̂h(x1,..,xd)‖ph(x1,..,xd))

]

= EP(h)

[

ESe
NKL(p̂h(x1,..,xd)‖ph(x1,..,xd))

]

≤ (N +1)M+
∑d

i=1
ni−(d+1).

Thus, by Markov’s inequalityEP(h)e
NKL(p̂h(x1,..,xd)‖ph(x1,..,xd)) ≤ 1

δ (N + 1)M+
∑

i
ni−(d+1) with

probability of at least1− δ and (31) follows by the change of measure inequality (8) and convex-
ity of the KL-divergence, when the priorP overH defined in Lemma 8 is selected (this time we
give a weight of(

∏

ini)
−1 to eachHm̄ and obtain a prior over the wholeH). The calculation of

KL(Q‖P) for this prior is provided in Lemma 9.

Proof of Theorem 12

−Ep(x1,..,xd) ln p̃Q(X1, ..,Xd) =−Ep(x1,..,xd) lnEQ(h)p̃h(X1, ..,Xd)

≤−EQ(h)Ep(x1,..,xd) ln p̃h(X1, ..,Xd)

=−EQ(h)Ep(x1,..,xd) ln p̃h(Ch
1 (X1), ..,Ch

d (Xd))
∏

i

p̃(Xi)

p̃h(Ch
i (Xi))

=−EQ(h)

[

Eph(c1,..,cd) ln p̃h(C1, ..,Cd)
]

−
∑

i

Ep(xi) ln p̃(Xi)+
∑

i

EQ(h)Eph(ci) ln p̃h(Ci)

≤−EQ(h)

[

Eph(c1,..,cd) ln p̃h(C1, ..,Cd)
]

−
∑

i

Ep(xi) ln p̃(Xi)+
∑

i

EpQ(ci) ln p̃Q(Ci)

At this point we use (14) to bound the first and the second term and the lower bound (16) to bound
the last term and obtain (36).

4. Algorithms

In the previous section we presented generalization bounds for discriminative prediction and density
estimation with co-clustering. The bounds presented in Theorems 7 and 12 hold for any prediction
ruleQ based on grid clustering of the parameter spaceX1× ..×Xd. In Seldin (2009) it is shown
that ford= 1 the global minimum of bound (18) can be found efficiently. However, ford≥ 2 it can
be exponentially hard to find the global minimum of both (18) and (36). Further, although we show
in the applications section that bound (18) is remarkably tight, its tightness can still be insufficient
for practical purposes. In this section we suggest how to replace the bounds with parameterized
trade-offs that can be further fine-tuned, for example, via cross-validation, to improve the usability
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in practice. The substitution of the bounds with parametrized trade-offs does not compromise on
the rigor of the analysis: first, the bounds hold simultaneously for all the solutions found by min-
imization of the parameterized trade-offs and, second, the parameter of thetrade-offs can also be
tuned by substituting the result of trade-off minimization back into the corresponding bound, thus
providing an estimate on a local minima of the bound.

4.1 Minimization of the PAC-Bayesian Bound for Discriminative Prediction with Grid
Clustering

We start with minimization of the PAC-Bayesian bound for discriminative prediction based on grid
clustering (18) suggested in Theorem 7. We rewrite the bound in a slightly different way in order to
separate terms which are independent of the conditional distributions inQ:

kl(L̂(Q)‖L(Q))≤
∑d

i=1niĪ(Xi;Ci)+K

N
, (37)

where

K =
d
∑

i=1

mi lnni +M ln |Y|+ 1

2
ln(4N)− lnδ. (38)

Note thatK depends on the number of clustersmi used along each dimension, but not on a
specific form of a grid partition. Once the number of clusters used along each dimension has been
selected,K is constant.

The minimization problem corresponding to (37) can be stated as follows:

min
Q

L s.t. kl(L̂(Q)‖L) =

∑d
i=1niĪ(Xi;Ci)+K

N
. (39)

It is generally possible to find a local minimum of the minimization problem (39) directly using
alternating projection methods - see, for example, Germain et al. (2009) forsuch an approach to
solving a similar minimization problem for linear classifiers. We take a slightly different approach
that further enables us to compensate for the imperfection of the bounds. SinceK is constant,L(Q)
depends on a parameterized trade-off betweenL̂(Q) and

∑d
i=1niĪ(Xi;Ci), which can be written

as follows:

F(Q,β) = βNL̂(Q)+
d
∑

i=1

niĪ(Xi;Ci), (40)

whereβ is the trade-off parameter. The corresponding minimization problem is:

Fmin(β) = min
Q
βNL̂(Q)+

d
∑

i=1

niĪ(Xi;Ci). (41)

In general, every value ofβ yields a different solution to the minimization problem (41). The
optimum of (39) (which is computationally hard to find) corresponds to some specific value ofβ.
Hence, by scanning the possible values ofβ, minimizing (41), and substituting the resultinĝL(Q)
and Ī(Xi;Ci) back into (18) it is virtually possible to find the optimum of (39) (only virtually,
because finding the global optimum of (41) is computationally hard as well). However, the trade-off
(40) provides an additional degree of freedom. In cases where the bound (18) is not sufficiently
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tight for practical applications it is possible to tune the trade-off by determining the desired value of
β via cross-validation instead of back-substitution into the bound.

The minimization problem (41) is closely related to the rate distortion trade-off in information
theory (Cover and Thomas, 1991). To find a local minimum ofF(Q,β) we adopt an EM-like
alternating projection procedure, very similar to the Blahut-Arimoto algorithm for minimization
of the rate distortion function (Arimoto, 1972; Blahut, 1972; Cover and Thomas, 1991). We note
that ford≥ 2 the alternating projections involve more than two convex sets and hence only alocal
minimum can be achieved. (Ford = 1 the procedure achieves the global minimum.) For the sake
of simplicity of the notations we restrict ourselves to the case ofd = 2, but it is straightforward to
extend the algorithm to higher dimensions.

The Lagrangian corresponding to the minimization problem (41) is:

L(Q,β) = βNL̂(Q)+
2
∑

i=1

niĪ(Xi;Ci)+
2
∑

i=1

∑

xi∈Xi

ν(xi)
∑

ci

q(ci|xi)+
∑

c1,c2

ν(c1, c2)
∑

y

q(y|c1, c2),

whereν-s are Lagrange multipliers corresponding to normalization constraints on{q(ci|xi)}2i=1 and
q(y|c1, c2). In order to minimizeL(Q,β) we writeL̂(Q) explicitly:

L̂(Q) =
∑

x1,x2,y

p̂(x1,x2,y)
∑

y′

q(y′|x1,x2)l(y,y′)

=
∑

x1,x2,y

p̂(x1,x2,y)
∑

y′,c1,c2

q(y′|c1, c2)q(c1|x1)q(c2|x2)l(y,y′)

=
∑

y,y′

l(y,y′)
∑

c1,c2

q(y′|c1, c2)
∑

x1,x2

q(c1|x1)p̂(x1,x2,y)q(c2|x2).

We further derivêL(Q) with respect toq(c1|x1). The derivative with respect toq(c2|x2) is similar.

∂L̂(Q)

∂q(c1|x1)
=
∑

y,y′

l(y,y′)
∑

x2,c2

q(y′|c1, c2)p̂(x1,x2,y)q(c2|x2). (42)

Recall thatĪ(Xi;Ci) = 1
ni

∑

xi,ci
q(ci|xi) ln q(ci|xi)

q̄(ci)
andq̄(ci) = 1

ni

∑

xi
q(ci|xi). Hence the deriva-

tive of niĪ(Xi;Ci) is:

∂niĪ(Xi;Ci)

∂q(ci|xi)
= ln

q(ci|xi)

q̄(ci)
.

Derivatives of the remaining terms inL(Q,β) provide normalization for the corresponding vari-
ables. Thus, by taking the derivative ofL(Q,β) with respect toq(ci|xi), equating it to zero and
reorganizing the terms we obtain a set of self-consistent equations that can be iterated until conver-
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gence:

q̄t(ci) =
1

ni

∑

xi

qt(ci|xi),

qt+1(ci|xi) =
q̄t(ci)

Zt+1(xi)
e

−βN
∂L̂(Qt)

∂q(ci|xi) ,

Zt+1(xi) =
∑

ci

qt+1(ci|xi),

y∗
t+1(c1, c2) = argmin

y′

∑

y

l(y,y′)
∑

x1,x2

qt+1(c1|x1)p̂(x1,x2,y)qt+1(c2|x2), (43)

qt+1(y|c1, c2) = δ[y,y∗
t+1(c1, c2)], (44)

whereδ[·, ·] is the Kronecker delta function,∂L̂(Q)
∂q(ci|xi)

is given by (42), and the subindext denotes

the iteration number. Equations (43) and (44) correspond to minimization ofL̂(Q) with respect to
q(y|c1, c2) and generally depend on the loss function. For the zero-one loss,y∗(c1, c2) is the most
frequent value ofy appearing in the〈c1, c2〉 partition cell; for the absolute loss it is the median
value; for the quadratic loss it is the average value. We summarize the algorithm in the Algorithm
1 box.2 We note that for the quadratic loss the loss minimizery∗(c1, c2), which is the average value
in this case, can fall out of the finite space of labelsY. However, the algorithm can still be applied
and a bound can be obtained by post-process quantization, see appendix B for details.

Algorithm 1 Algorithm for minimization ofF(Q,β) = βNL̂(Q) +
∑2

i=1niĪ(Xi;Ci) by alternat-
ing projections.

Input: p̂(x1,x2,y),N , n1, n2,m1,m2, l(y,y′), |Y|, β.
Initialize: q0(ci|xi) andq0(y|c1, c2) randomly.
t← 0
q̄t(ci)← 1

ni

∑

xi
qt(ci|xi)

repeat
for i= 1,2 do

qt+1(ci|xi)← q̄t(ci)e
−βN

∂L̂(Qt)
∂q(ci|xi)

Zt+1(xi)←
∑

ci
qt+1(ci|xi)

qt+1(ci|xi)← qt+1(ci|xi)
Zt+1(xi)

q̄t+1(ci)← 1
ni

∑

xi
qt+1(ci|xi)

y∗
t+1(c1, c2)← argminy′

∑

y l(y,y
′)
∑

x1,x2
qt+1(c1|x1)p̂(x1,x2,y)qt+1(c2|x2)

qt+1(y|c1, c2)← δ[y,y∗
t+1(c1, c2)]

t← t+1
end for

until convergence
return {qt(ci|xi)}2i=1, qt(y|c1, c2) from the last iteration.

2. Matlab implementation of the algorithm is available athttp://www.kyb.mpg.de/ ˜ seldin .
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4.2 Minimization of the PAC-Bayesian Bound for Density Estimation

Similar to the PAC-Bayesian bound for discriminative prediction, the PAC-Bayesian bound for den-
sity estimation (36) depends on the trade-off:

G(Q,β) =−βNI(p̂Q(c1, c2))+
2
∑

i=1

niĪ(Xi;Ci).

All other terms in (36) do not depend on the specific form of grid partitionQ. (As in the previous
subsection we restrict ourselves tod = 2.) Unfortunately,−I(p̂Q(c1, c2)) is concave inq(ci|xi)-s,
whereas̄I(Xi;Ci) is convex inq(ci|xi). Therefore, alternating projection methods are hard to apply.
Instead,G(Q,β) can be minimized (with respect toQ) using sequential minimization (Slonim et al.,
2002; Dhillon et al., 2003). The essence of the sequential minimization method isthat we start with
some random assignmentq(ci|xi) and then iteratively takexi-s out of their clusters and reassign
them to new clusters, so thatG(Q,β) is minimized. This approach leads to a hard partition of the
data (i.e., eachxi is deterministically assigned to a singleci). The algorithm is given in Algorithm
2 box.

Algorithm 2 Algorithm for sequential minimization ofG(Q,β) = −βNI(p̂Q(c1, c2)) +
∑2

i=1niĪ(Xi;Ci).

Input: p̂(x1,x2),N , n1, n2,m1,m2, β.
Initialize: q0(ci|xi) randomly.
repeat

for all x1 ∈ X1 and allx2 ∈ X2 according to some random order overX1 andX2 do
for i= 1,2 do

Selectxi ∈ Xi according to the order selected above.
ComputeG(Q,β) for each possible assignment ofxi to ci ∈ {1, ..,mi}
Reassignxi to ci such thatG(Q,β) is minimized.
Updatep̂Q(c1, c2)←∑

x1,x2
q(c1|x1)p̂(x1,x2)q(c2|x2).

end for
end for

until no reassignments further minimizeG(Q,β).
return {q(ci|xi)}2i=1 from the last iteration.

5. Applications

In this section we illustrate an application of the PAC-Bayesian bound for discriminative prediction
based on co-clustering (18) and Algorithm 1 for minimization of the corresponding trade-off (40)
on the problem of collaborative filtering. The problem of collaborative filtering was discussed in
the previous sections. The goal of collaborative filtering is to complete the missing entries in a
viewers-by-movies ratings matrix. This problem attracted a great deal of attention recently thanks
to the Netflix challenge.3 Since our goal here is mainly to illustrate our approach to co-clustering
via the PAC-Bayesian bounds rather than to solve the large-scale challenge we concentrate on a

3. Seehttp://www.netflixprize.com/rules .
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much smaller MovieLens 100K data set.4 The data set consists of 100,000 ratings on a five-star
scale for 1,682 movies by 943 users. We take the five non-overlapping splits of the data set into
80% training and 20% test subsets provided at the MovieLens website. We stress that the training
data are extremely sparse - only 5% of the training matrix entries are populated, whereas 95% of
the values are missing.

To measure the accuracy of our algorithm we use the mean absolute error (MAE) measure,
which is commonly used for evaluation on this data set (Herlocker et al., 2004). Let p̌(x1,x2,y) be
the distribution over〈X1,X2,Y 〉 in the test set. The mean absolute error is defined as:

MAE =
∑

x1,x2,y

p̌(x1,x2,y)
∑

y′

q(y′|x1,x2)|y−y′|.

In previous work the best MAE reported for this data set was 0.73 (Herlocker et al., 2004).
It is worth recalling that the ratings are on a five-star scale, thus a MAE of 0.73 means that, on
average, the predicted rating is 0.73 stars (less than one star) far from the observed rating. The
maximal possible error is 4 (which occurs if we predict one star instead of five or vice versa), which
determines the scale on which all the results should be judged.

In Seldin et al. (2007) we improved the MAE on this data set to 0.72 by using a Minimum
Description Length (MDL, Gr̈unwald, 2007) formulation of co-clustering. In the MDL formula-
tion the co-clustering solutions are evaluated by the total description length, which includes the
length of the description of assignments ofxi-s to ci-s together with the length of the description
of the ratings given the assignments. For fixed numbers of clusters (mi-s) used along each di-
mension, the MDL solution corresponds to optimization of the trade-off (40) with logarithmic loss
L̂(Q) = Î(Y ;C1,C2) andβ = 1 (whereÎ(Y ;C1,C2) is the empirical mutual information between
the clusters and the label). In the MDL formulation of co-clustering developed in Seldin et al. (2007)
only hard (deterministic) assignments ofxi-s toci-s were considered. The best performance of 0.72
was achieved atm1 = 13 andm2 = 6 with below 1% sensitivity to small changes inm1 andm2

both in the description length and in the prediction accuracy. The deviation in prediction accuracy
between the five splits of the MovieLens data set was below 0.01.

In the present work we implemented Algorithm 1 for minimization ofF(Q,β) as a function of
Q and applied it to the MovieLens data set. There are four major differencesbetween Algorithm 1
and the MDL algorithm suggested in Seldin et al. (2007) that should be highlighted:

• Algorithm 1 directly optimizes a given loss function (MAE in the case of MovieLens) rather
than the description length, which is only indirectly related to the loss function.

• Algorithm 1 considers soft assignments ofxi-s toci-s.

• Algorithm 1 is an iterative projection algorithm rather than the sequential optimization algo-
rithm suggested in Seldin et al. (2007). Note that this point is neither positivenor negative,
since sequential optimization algorithms are very powerful and especially in hard cases can
outperform iterative projection methods. The advantage of iterative projection methods is in
their mathematical elegance, faster convergence (although in the hard cases it may be fast
convergence to trivial, but strong attractors), and the ability to handle soft assignments.

4. Available athttp://www.grouplens.org .
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(a) Bound (18).
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(b) Test Loss (zoom into subfigure a.).

Figure 3: Co-clustering of the MovieLens data set into 13x6 clusters. Figure (a) shows the value of
bound (18) together with the MAE on the test set as a function ofβ. Figure (b) zooms
into MAE on the test set. The values ofβ are on a log scale. See text for further details.

• Algorithm 1 considers arbitrary values ofβ. (However, the algorithm in Seldin et al. (2007)
can be easily extended to handle arbitrary values ofβ.) As we will show below, the value
of β = 1 dictated by the MDL formulation is not always optimal and MDL solutions can
overfit the data. This observation was already made previously in a context of other learning
problems by Kearns et al. (1997).

We conducted three experiments with Algorithm 1. In all three experiments we fixed the num-
bers of clustersm1 andm2 used along both dimensions and analyzed the MAE on the test set and
the value of bound (18) as a function ofβ. In each experiment, for each of the five splits of the
data set into training and test sets mentioned earlier, and for each value ofβ we applied 10 random
initializations of the algorithm. The solutionQ corresponding to the best value ofF(Q,β) per each
data split and per each value ofβ was then selected. We further calculated the average of the results
over the data set splits to produce the graphs of the bound values and testMAE as functions ofβ.

In the first experiment we verified that we are able to reproduce the results achieved previously
in Seldin et al. (2007). We setm1 = 13 andm2 = 6, as the best values obtained in Seldin et al.
(2007) and applied Algorithm 1. The results are presented in Figure 3. Wemake the following
conclusions from this experiment:

• The performance of Algorithm 1 is comparable to the performance achievedin Seldin et al.
(2007) with sequential optimization.

• The optimal performance is achieved atβ close to one, which corresponds to the MDL func-
tional optimized in Seldin et al. (2007).

• The values of the bound are meaningful (recall that the maximal possible loss is 4; thus the
bound value of∼ 1.25 is informative).

• The bound is 25%-75% far from the test error.

3625



SELDIN AND TISHBY

0.0625 0.125 0.25 0.5 1 2 4 8 16
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

β

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

 

 

Test MAE
Bound
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Figure 4: Co-clustering of the MovieLens data set into 50x50 clusters. Figure (a) shows the value
of bound (18) together with the MAE on the test set as a function ofβ. Figure (b) zooms
into MAE on the test set. The values ofβ are on a log scale. See text for further details.

• The bound does not follow the shape of the test loss. According to the bound in this task
it is best to assign all the data to one big cluster. This is explained by the fact that this is a
hard problem and the improvement in the empirical lossL̂(Q) achieved by co-clustering is
relatively small. For the best co-clustering solution foundL̂(Q)≈ 0.67, whereas if we assign
all the data to one big cluster̂L(Q)≈ 0.89. Thus, the improvement in̂L(Q) achieved by the
clustering is only about 30% while the tightness of the bound is 25%-75%. Thisis clearly
insufficient to apply the bound as the main guideline for model order selection. However,
it is possible to set the value ofβ in the trade-offF(Q,β) via cross-validation and obtain
remarkably good results. It should be pointed out that the trade-offF(Q,β) was derived from
the bound, thus even though the analysis is not perfectly tight it produceda useful practical
result.

• Note that in the setting of this experiment the small values ofm1 andm2 provide “natural
regularization”; thus there is no significant decrease in performance when we increaseβ
beyond 1. This will change in the following experiments.

The power of bound (18) and the trade-offF(Q,β) derived from the bound is that it penalizes
the effective complexity of the solution rather than the gross number of clusters used. The practical
implication of this property is that we can initialize the optimization algorithm with more clusters
than are actually required to solve a problem, and the algorithm will automatically adjust the extent
to which it uses said available clusters. This property is verified in the following two experiments. In
the first experiment we initialized Algorithm 1 withm1 =m2 = 50 clusters along each dimension.
The result of optimization ofF(Q,β) as a function ofβ is presented in Figure 4. We make the
following observations based on this experiment:

• The best performance (the 0.72 test MAE) achieved in the previous settingwith m1 = 13 and
m2 = 6 is achieved in the new setting withm1 = m2 = 50 as well. This supports the ability
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Figure 5: Co-clustering of the MovieLens data set into 283x283 clusters.Figure (a) shows the value
of bound (18) together with the MAE on the test set as a function ofβ. Figure (b) zooms
into MAE on the test set. The values ofβ are on a log scale. See text for further details.

of the algorithm to operate with more clusters than are actually required by the problem and
to adjust the complexity of the solution automatically.

• Note that the optimal value ofβ in this setting is below 1. In particular, this implies that the
MDL formulation, which corresponds toβ = 1 would overfit in this case. The role of the
regularization parameterβ is also more evidently expressed here compared to the preceding
experiment.

• The values of the bound, although less tight than in the previous case, arestill meaningful.
The shape of the bound becomes closer to the shape of the test loss, although in light of the
preceding experiment we would not attribute importance to it, and would still prefer to set the
value ofβ via cross-validation.

In our last experiment we went to the extreme case of takingm1 = m2 = 283 =
√
N . Note

that the size of the cluster spaceM = m1m2 in this case is80,089 and is equal to the size of the
training set,N = 80,000. The implication is that extensive use of all available clusters can result
in a situation where each partition cell contains an order of a single observation, which is clearly
insufficient for statistically reliable predictions. Thus, in this experiment the number of clusters
provides no regularization at all and the only parameter responsible for regularization of the model
is the trade-off parameterβ. The result of the experiment is presented in Figure 5. We highlight the
following points regarding this experiment:

• The best performance (the 0.72 test MAE) is achieved in this experiment aswell. This further
stresses the ability to have full control over regularization of the model via parameterβ of the
trade-offF(Q,β).
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(a) 13x6 clusters (b) 50x50 clusters (c) 283x283 clusters

Figure 6: The values of̄I(Xi;Ci) in the minimizedF(Q,β) corresponding to Figures 3, 4, 5. We
show the values of̄I(Xi;Ci) that were obtained after minimization ofF(Q,β) by Q
when clustering the MovieLens data set into 13x6, 50x50, and 283x283 clusters.

• The role of the regularization parameterβ is further increased in this experiment compared
to the previous two. The optimal value ofβ here is clearly below 1 (the optimalβ ≈ 0.5),
suggesting that the MDL solution would be overfitting.

• The value of the bound still remains meaningful, although it is already quite farfrom the test
error. The shape of the bound does not seem to provide useful information and the value ofβ
should be set via cross-validation.

In Figure 6 we show how the mutual informationĪ(X1;C1) andĪ(X2;C2) changed in the three
experiments as we optimizedF(Q,β) byQ for increasing values ofβ. An important observation to
be made from these graphs (by relating them to Figures 3, 4, and 5) is that inall three experiments
the best prediction performance was achieved at roughly the same valuesof the mutual information
Ī(X1;C1) andĪ(X2;C2). For clustering into 13x6 clusters prediction performance of MAE equal
to 0.72 and slightly lower was achieved atβ values starting from 0.7 and larger, whenĪ(X1;C1)
was in the range between 1.1 and 2.1 andĪ(X2;C2) was in the range between 0.8 and 1.5; for
clustering into 50x50 clusters prediction performance of 0.72 and slightly lower was achieved for
β values in the range between 0.5 and 1.0, whenĪ(X1;C1) was in the range between 1.1 and 2.2
and Ī(X2;C2) was in the range between 0.8 and 1.7; and for clustering into 283x283 clusters the
optimal prediction performance of slightly below 0.72 was achieved forβ = 0.5 and at this value of
β we hadĪ(X1;C1) = 1.1 andĪ(X2;C2) = 0.8. We see that although the three experiments were
initialized with different numbers of clustersm1 andm2, the optimal prediction performance was
achieved at roughly the sameeffective complexityof the solution (measured bȳI(Xi;Ci)-s) and that
the trade-off parameterβ took care of regularization of the model.

6. Probabilistic Matrix Tri-Factorization

Ford= 2 the discriminative prediction and density estimation models considered in this paper can
be seen as two forms of matrix tri-factorization and for higher dimensionsd > 2 as Tucker decom-
positions. In this section we discuss this relation in more detail, starting from the discriminative
prediction problem.
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6.1 Probabilistic Matrix Tri-Factorization for Discriminative Predictio n

Ford= 2 Equation (17) accepts the form:

q(y|x1,x2) =
∑

c1,c2

q(c1|x1)q(y|c1, c2)q(c2|x2).

If q(y|c1, c2) is restricted to be a delta distribution then it can be replaced by a functionf(c1, c2).
This means that instead of drawingy in the cluster product space according to a distribution
q(y|c1, c2) it is predicted deterministically byf(c1, c2). Note that the assignment ofxi-s toci-s re-
mains stochastic. The restriction of deterministicq(y|c1, c2) does not limit the model significantly,
since for many loss functions, such as zero-one, absolute, or quadratic losses the optimal prediction
rule is deterministic in the cluster product space in any case. At the same time the bounds derived
previously are still valid, since they are valid for any distributionq(y|c1, c2) and in particular for the
delta distribution. The restricted model accepts the form:

f(x1,x2) =
∑

c1,c2

q(c1|x1)f(c1, c2)q(c2|x2),

which can be written as a matrix product:

A=QT
1 FQ2, (45)

where
Qi = [q(ci|xi)] (i= 1,2)

aremi×ni left stochastic matrices5 mappingxi-s to their clustersci-s, and

F = [f(c1, c2)]

is anm1×m2 matrix describing what happens in the cluster product space.
Given a data matrixA (probably sparse) and a trade-off parameterβ Algorithm 1 provides

a locally optimal approximation ofA in the form of (45) regularized by the mutual information
preserved inQ1 andQ2. Note that Algorithm 1 naturally handles the missing entries inA. The
productQT

1 FQ2 can then be used to complete the missing entries.
Matrix factorization of the form (45) was already considered in Banerjeeet al. (2007) without

regularization. However, in Banerjee et al. (2007) the matricesQ1 andQ2 are restricted to determin-
istic assignments ofxi-s toci-s (the entries ofQ1 andQ2 are in{0,1}), whereas in the factorization
proposed hereQ1 andQ2 are stochastic matrices andF is arbitrary. Matrix tri-factorization consid-
ered in Ding et al. (2006); Yoo and Choi (2009a) is more closely related tomatrix tri-factorization
for density estimation discussed in the next subsection. We note that the recent Bayesian approaches
to matrix factorization (Shan and Banerjee, 2008; Salakhutdinov and Mnih,2008) are three-level
stochastic models and unlike the two-level stochastic model in (45) cannot bewritten as a simple
product of matrices. The following list of positive properties of probabilistic matrix tri-factorization
suggested here further distinguishes it from other forms of matrix factorization, including singular
value decomposition (SVD) (Strang, 2009; Golub and Loan, 1996), non-negative matrix factoriza-
tion (Lee and Seung, 1999, 2001), low-rank matrix factorization (Srebro et al., 2005a), and maxi-
mum margin matrix factorization (Srebro et al., 2005b; Srebro, 2004), thatsatisfy only parts of the
list:

5. A left stochastic matrix is a matrix of non-negative real numbers with each column summing up to 1. In aright
stochastic matrix each row sums up to 1.
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Figure 7: A graphical model for simultaneous tri-factorization of multiple matrices (equations (46)-
(48)). The mapping ofXi to Ci is modeled by a corresponding matrixQi and labelsYi

correspond to prediction tasks in the respective matricesAi.

• It has a clear probabilistic interpretation.

• It naturally handles missing values.

• The factorized matrixA can be arbitrary (not necessarily positive or positive definite).

• Overfitting can be controlled via the regularization parameterβ.

• The generalization bound derived for co-clustering applies to this form of matrix factorization.

• It is a two-level stochastic model of the data.

• The model can be optimized by iterative projections.

• The model achieves state-of-the-art results in prediction of missing matrix entries.

We leave a wider practical comparison of the different matrix factorization methods as a subject for
future work.

A promising direction for future research suggested in Seldin (2009) andindependently in Yoo
and Choi (2009b) is to apply matrix tri-factorization in tasks, where multiple related data sets are
considered. For example, letA1 be a matrix of viewers-by-viewers properties,A2 be a collaborative
filtering matrix, andA3 be a matrix of movies-by-movies properties. We can look for simultaneous
tri-factorizations, such that:

A1 ≈QT
1 F1Q2 (46)

A2 ≈QT
2 F2Q3 (47)

A3 ≈QT
3 F3Q4. (48)

In other words, the clustering of viewers into clusters of viewers is shared between factorizations of
A1 andA2 and the clustering of movies into clusters of movies is shared between factorizations of
A2 andA3. An unregularized form of simultaneous tri-factorization for collaborative filtering was
already explored in Yoo and Choi (2009b). Problems of a similar form arealso frequent in bioinfor-
matics, when multiple experiments with partial relations are considered. For example, Alter et al.
(2003) applied generalized SVD (GSVD) to compare yeast and human cell-cycle gene expression
data sets. In their experiment it is natural to create separate systems of clusters for yeast and human
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genes, but a common system of clusters for the cell-cycle time points. As already pointed out, prob-
abilistic matrix tri-factorization suggested here has several advantages over SVD (and consequently
over GSVD). Hence, it would be interesting to apply it to this type of problem.

6.2 Probabilistic Matrix Tri-Factorization for Density Estimation

The model for discrete density estimation based on co-clustering in Equation (26) can also be written
as matrix tri-factorization (ford= 2):

A=RT
1 GR2, (49)

where

Ri = [q(xi|ci)] =

[

q(xi)

q(ci)
q(ci|xi)

]

(i= 1,2)

aremi×ni right stochastic matrices of probabilities of generatingxi-s givenci-s and

G= [q(c1, c2)]

is anm1×m2 matrix of joint probability distribution ofc1 andc2. As already mentioned, this model
is appropriate for co-occurrence data analysis, such as word-document co-occurrence matrices. An
unregularized form of such decomposition was already considered in Ding et al. (2006) and Yoo
and Choi (2009a). Here,A is assumed to be a joint probability matrix (i.e., the entries ofA are
non-negative and sum up to 1). In practiceA is an empirical joint probability distribution matrix
and factorization (49) regularized by the mutual informationsĪ(Xi;Ci) can be used to regularize
the estimation of the joint probability distribution. Algorithm 2 can be used to find a local optimum
of such factorization given the regularization parameterβ. The generalization bound developed in
Theorem 12 holds for this factorization. We remind the reader that Algorithm2 operates with deter-
ministic assignments ofxi-s to clustersci-s. Although the resulting reverse conditional distribution
q(xi|ci) is not deterministic, the algorithm does not explore all possible solutions to this problem.
Developing an algorithm for finding a local optimum of the regularized decomposition with mixed
memberships ofxi-s is a challenging direction for future research.

7. PAC-Bayesian Analysis of Graphical Models

The analysis of co-clustering presented in Section 3 holds for any dimension d. However, the
dependence of the bounds (18), (31), and (36) ond is exponential because of theM =

∏

imi

term that they involve. This term is reasonably small when the number of dimensions is small
(two or three), as in the example of co-clustering. However, as the numberof dimensions grows,
this term grows exponentially. Thus, high dimensional tasks require a different treatment. Some
improvements are also possible if we consider discriminative prediction basedon a single parameter
X (i.e., in the case ofd = 1), but the one-dimensional case is beyond the scope of this paper and
we refer the interested reader to (Seldin and Tishby, 2008; Seldin, 2009) for further details. In this
section we suggest a hierarchical approach to handle high-dimensionalproblems. We then show
that this approach can also be applied to generalization analysis of graphical models.

7.1 Hierarchical Approach to High Dimensional Problems (d > 2)

One possible way to handle high dimensional problems is to use hierarchical partitions, as shown
in Figures 8 and 9. For example, the discriminative prediction rule corresponding to the model in
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X1 X2

C1 C2

D1

X3 X4

C3 C4

D2

Y

(a) Discriminative Prediction Model

X1 X2

C1 C2

D1

X3 X4

C3 C4

D2

Y

(b) Moralization of (a)

Figure 8: Illustration of (a) a graphical model for discriminative predictionand (b) its moralized
counterpart. The illustration is ford= 4.

Figure 8.a is:

q(y|x1, ..,x4) =
∑

d1,d2

q(y|d1,d2)
∑

c1,..,c4

2
∏

i=1

q(di|c2i−1, c2i)
4
∏

j=1

q(cj |xj). (50)

And the corresponding randomized prediction strategy is
Q =

{{q(ci|xi)}4i=1,{q(di|c2i−1, c2i)}2i=1, q(y|d1,d2)
}

. In this case the hypothesis space is the
space of all hard partitions ofxi-s to ci-s and of the pairs〈c2i−1, c2i〉 to di-s. By repeating the
analysis in Theorem 7 we obtain that with probability greater than1− δ:

kl(L̂(Q‖L(Q))≤ B1 +B2 + |D1||D2| ln |Y|+ 1
2 ln(4N)− lnδ

N
, (51)

where

B1 =
4
∑

i=1

(

niĪ(Xi;Ci)+mi lnni

)

,

B2 =
2
∑

i=1

(

(m2i−1m2i)Ī(Di;C2i−1,C2i)+ |Di| ln(m2i−1m2i)
)

.

Observe that theM ln |Y| term in (18), which corresponds to the clique〈C1,C2,C3,C4,Y 〉, is
replaced in (51) with terms which correspond to much smaller cliques〈C1,C2,D1〉, 〈C3,C4,D2〉,
and〈D1,D2,Y 〉. This factorization makes it possible to control the complexity of the partition and
the tightness of the bound. In a similar way it is possible to derive factorized analogs to bounds (31)
and (36) that apply to density estimation hierarchies as in Figure 9.

We provide an illustration of a possible application of the models in Figure 9. Imagine that
we intend to analyze protein sequences. Protein sequences are sequences over the alphabet of 20
amino acids. Subsequences of length 8 can reach208 = 256 · 108 instances. Instead of studying
this space directly, which would require an order of256 · 108 samples, we can associate eachXi
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(a) Density Estimation Model

X1 X2

C1 C2

D1

X3 X4

C3 C4

D2

A R L A F T E G

(b) Moralization and Application of (a)

Figure 9: Illustration of (a) a directed model for density estimation and (b) its moralization and
application to sequence modeling. The sequence in subfigure (b) is an imaginary subse-
quence of length 8 of a protein sequence. EachXi corresponds to a pair of amino acids
in the subsequence.

with a pair of amino acids - see Figure 9. The subspace of pairs of amino acids is only202 = 400
instances and local interactions between adjacent pairs of amino acids caneasily be studied. We can
cluster the pairs of amino acids into, say, 20 clustersC. Interactions between adjacent pairs ofC-s
in such a construction correspond to interactions between quadruples ofamino acids. The subspace
of quadruples is204 = 16 · 104 instances. However, the reduced subspace of pairs ofCi-s is only
202 = 400 instances. Thus, we have doubled the range of interactions, but remained at the same
level of complexity. We can further cluster pairs ofCi-s (which correspond to quadruples of amino
acids) intoDi-s and study the space of 8-tuples of amino acids while remaining at the same level of
complexity.

The above approach shares the same basic principle already discussedin the collaborative fil-
tering task: by clustering together similar pairs (and then quadruples) of amino acids we increase
the statistical reliability of the observations, but reduce the resolution at which we process the data.
Bound (51) suggests how the trade-off between model resolution and statistical reliability can be
optimized.

7.2 PAC-Bayesian Analysis of Graphical Models

The result in the previous subsection suggests a new approach to learning graphical models by
providing a way to evaluate the expected performance of a graphical model on new data. Thus,
instead of constructing a graphical model that fits the observed data it serves to construct a model
with good generalization properties. The analysis used to derive bound (51) can be applied to any
directed graphical model in the form of a tree (as in Figures 8.a, 9.a) or its moralized counterpart
(as in Figures 8.b, 9.b). The analysis shows that the generalization powerof these graphical models
is determined by a trade-off between empirical performance and the amountof mutual information
that is propagated up the tree. It is important to note that the PAC-Bayesian bound is able to take
advantage of the factor form of distribution (50) and that bound (51) depends on the sizes of the tree
cliques, but not on the size of the parameter spaceX1× ..×Xd. Further, a prior can be added over all
possible directed graphs under consideration to obtain a PAC-Bayesian bound that will hold for all
of them simultaneously. Development of efficient algorithms for optimization of the tree structure
and extension of the results to more general graphical models are key directions for future research.
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8. PAC-Bayesian Analysis of Graph Clustering and Pairwise Clustering

In this section we show that our approach to predictive formulation of unsupervised learning prob-
lems and their subsequent PAC-Bayesian analysis can also be applied to weighted graph clustering
(and, consequently, to pairwise clustering, which can be regarded as clustering of a graph with edge
weights corresponding to pairwise distances). Graph clustering is an important tool in data analysis
with a wide variety of applications including social networks analysis, bioinformatics, image pro-
cessing, and many more. As a result, a multitude of different approaches tograph clustering were
developed. Examples include graph cut methods (Shi and Malik, 2000), spectral clustering (Ng
et al., 2001), information-theoretic approaches (Slonim et al., 2005), to name just a few. Comparing
the different approaches is usually a painful task, mainly because the goal of each of these cluster-
ing methods is formulated in terms of the solution: most clustering methods start by defining some
objective functional and then minimize it. But, for a given problem, how can wechoose whether to
apply a graph cut method, spectral clustering, or an information-theoreticapproach?

Here we formulate weighted graph clustering as a prediction problem.6 Given a subset of edge
weights we analyze the ability of graph clustering to predict the remaining edgeweights. The
rationale behind this formulation is that if a model (not necessarily cluster-based) is able to predict
with high precision all edge weights of a graph given a small subset of edge weights then it is a good
model of the graph. The advantage of this formulation of graph modeling is that it is independent
of the specific way chosen to model the graph and can be used to compare any two solutions,
either by comparison of generalization bounds or by cross-validation. The generalization bounds or
cross-validation also address the finite-sample nature of the graph clustering problem and provide a
clear criterion for model order selection. For very large data sets, where computational constraints
can prevent considering all edges of a graph, as for example in Yom-Tov and Slonim (2009), the
generalization bounds can be used to resolve the trade-off between computational workload and
precision of graph modeling.

Below we provide a PAC-Bayesian analysis of graph clustering in the case, where independent
sampling of edge weights is possible. For example, in the analysis of flow graphs, such as loads
on links in traffic or communication networks, we can repeatedly sample one ormore non-adjacent
edge weights at a time (non-adjacent edges have no common vertices). In the analysis of snapshot
graphs, for example image segmentation, the dependencies between adjacent edge weight samples
should be taken into account, but this is again beyond the scope of this paper.

8.1 PAC-Bayesian Analysis of Graph Clustering

Assume thatX is a space of|X | nodes and denote bywx1x2 the weight of an edge connecting
nodesx1 andx2.7 We assume that the weightswx1x2 are generated according to an unknown
probability distributionp(w|x1,x2). We further assume that the space of nodesX is known and we
are given a sample of sizeN of edge weights, generated according top(x1,x2,w). The goal is to
build a regression functionq(w|x1,x2) that will minimize the expected prediction error of the edge
weightsEp(x1,x2,w)Eq(w′|x1,x2)l(W,W

′) for some externally given loss functionl(w,w′). Note that
this formulation does not assume any specific form ofq(w|x1,x2) and enables comparison of all
possible approaches to this problem.

6. Unweighted graphs can be modeled by setting the weight of present edges as 1 and absent edges as 0.
7. All the results can be straightforwardly extended to hyper-graphs.
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Here we analyze generalization abilities ofq(w|x1,x2) based on clustering:

q(w|x1,x2) =
∑

c1,c2

q(w|c1, c2)q(c1|x1)q(c2|x2). (52)

One can immediately see the relation between (52) and the co-clustering model for discriminative
prediction (17). The only difference is that in (52) the nodesx1,x2 belong to the same space of
nodesX and the conditional distributionq(c|x) is shared for the mapping of endpoints of an edge.
Let p̂(x1,x2,w) be the empirical distribution over edge weights. The empirical loss of prediction
strategyQ= {q(c|x), q(w|c1, c2)} corresponding to (52) can then be written as:

L̂(Q) = Ep̂(x1,x2,w)Eq(w′|x1,x2)l(W,W
′).

The following generalization bound for graph clustering can be proved by a minor adaptation of
the proof of Theorem 7.

Theorem 13 For any probability measurep(x1,x2,w) over the space of nodes and edge weights
X ×X ×W and for any loss functionl bounded by 1, with probability of at least1− δ over a
selection of an i.i.d. sampleS of sizeN according top, for all graph clustering models defined by
Q= {q(c|x), q(w|c1, c2)}:

kl(L̂(Q)‖L(Q))≤ nĪ(X;C)+m lnn+m2 ln |W|+ 1
2 ln(4N)− lnδ

N
, (53)

wherem= |C|, n= |X |, and|W| is the number of distinct edge weights.

Continuous edge weights can be handled by post-process quantization, as shown in appendix B.
As in the case of co-clustering, in practice we can replace (53) with a trade-off:

J (Q,β) = βNL̂(Q)+nĪ(X;C) (54)

and tuneβ either by substitutinĝL(Q) and Ī(X;C) resulting from the solution of (54) back into
the bound or via cross-validation.

If the distributionq(w|c1, c2) is restricted to be a delta distribution Equation (52) can be rewritten
as:

f(x1,x2) =
∑

c1,c2

q(c1|x1)f(c1, c2)q(c2|x2)

and the corresponding matrix form is:
A≈QTFQ,

whereQ= [q(c|x)], F = [f(c1, c2)], andA is an input matrix (probably sparse) providing a sample
of graph edge weights. This form of symmetric matrix tri-factorization is brieflymentioned in
Ding et al. (2006). LetI be an indicator matrix for the entries present inA. For quadratic loss the
empirical approximation error̂L(Q) can be written as:

L̂(Q) =
1

N
‖I◦ (A−QTFQ)‖22, (55)

where◦ denotes entrywise product of two matrices. From (55) it is easy to see thatL̂(Q) is not
convex inQ (unlike in the case of co-clustering, where the dependence onQi-s was quadratic,
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here the power ofQ is 4). Hence, although alternating projections similar to those in Algorithm 1
can be applied toJ (Q,β) they are not guaranteed to converge to a local minimum. Nevertheless,
according to some preliminary experiments they can achieve reasonably good solutions and bound
(53) provides reasonably tight guarantees on the expected approximation quality (Seldin, 2010).
Alternatively, trade-offJ (Q,β) can be optimized by sequential minimization. Unlike alternating
projections, sequential minimization (similar to the one in Algorithm 2) is guaranteedto converge to
a local minimum, but can operate with deterministic assignments of graph nodesxi-s to the clusters
ci-s only. A convergent algorithm that will be able to explore stochastic assignments still awaits to
be developed.

8.2 Related Work on Pairwise Clustering

The regularization of pairwise clustering by mutual informationĪ(X;C) was already applied in
practice by Slonim et al. (2005). They maximized a parameterized trade-offβ〈s〉− Ī(X;C), where
〈s〉=∑

c q̄(c)
∑

x1,x2
q(x1|c)q(x2|c)wx1x2 measured average pairwise similarities within a cluster.8

Their algorithm demonstrated superior results in cluster coherence compared to 18 other clustering
methods. The regularization by mutual information was motivated by information-theoretic consid-
erations inspired by the rate distortion theory (Cover and Thomas, 1991).Namely, the authors drew
a parallel between〈s〉 and distortion and̄I(X;C) and compression rate of a clustering algorithm.
Further, Yom-Tov and Slonim (2009) showed that the algorithm can be runin parallel mode, where
each parallel worker operates with a subset of pairwise relations at each iteration rather than all of
them. Such a mode of operation was motivated by inability to consider all pairwiserelations in very
large data sets due to computational constraints. Yom-Tov and Slonim (2009)reported only minor
empirical degradation in clustering quality, but no formal analysis or guarantees were suggested.
The results presented here can help to analyze such problems and help to address the trade-off
between computational workload and approximation quality in analysis of verylarge graphs.

9. Related Work on Clustering

The idea of considering clustering in the context of a higher level task wasinspired by the Infor-
mation Bottleneck (IB) principle (Tishby et al., 1999; Slonim, 2002; Slonim et al., 2006). The IB
principle considers the problem of extracting information from a random variableX that is relevant
for prediction of a random variableY . The relevance variableY defines the high-level task. For
example,X might be a speech signal and the task might be identification of the speaker ortranscrip-
tion of the signal. The extraction of relevant information fromX is done by means of clustering
of X into clustersX̃ that preserve the information onY (Tishby et al., 1999). Clearly, each rele-
vance variableY corresponds to a different partition (clustering) ofX . The IB principle was further
extended to graphical models in Slonim et al. (2006).

The idea to consider clustering as a proxy to solution of a prediction task wasfurther developed
in Krupka and Tishby (2005, 2008) and Krupka (2008). Krupka andTishby analyze a scenario
wherein each object has multiple properties, but only a fraction of the properties is observed. Con-
sider the following illustration: assume we are presented with multiple fruits and weobserve their
parameters, such as size, color, and weight. We can cluster the fruits by their observed parameters

8. The lossL(Q) is slightly more general than〈s〉 since it also considers edges between the clusters. Although, this
generality breaks the convexity of̂L(Q) in (55).
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in order to facilitate prediction of unobserved parameters, such as taste and toxicity. This approach
enables one to conduct a formal analysis and derive generalization bounds for prediction rules based
on clustering.

In recent years extensive attempts have been made to address the question of model order selec-
tion in clustering through evaluation of its stability (Lange et al., 2004; von Luxburg and Ben-David,
2005; Ben-David et al., 2006; Shamir and Tishby, 2009; Ben-David andvon Luxburg, 2008). This
perspective suggests that for two random samples generated by the samesource, clustering of the
samples should be similar (and hence stable). Otherwise the obtained clustering is unreliable. Al-
though it has been proven that in a large sample regime stability can be used for model order selec-
tion (Shamir and Tishby, 2009), no upper bounds on the minimal sample size required for stability
estimates to hold can be proved. Moreover, in certain cases stability indices based on arbitrarily
large samples can be misleading (Ben-David and von Luxburg, 2008). Since in any practical appli-
cation the amount of data available is limited, currently existing stability indices cannot be used for
reliable model order selection and it is not clear whether the stability indices can be used to compare
solutions based on different optimization objectives.

Gaussian ring example.We use the following example from Seldin (2009) to illustrate that
generalization and stability criteria for evaluation of clustering are not equivalent. Assume points
in R

2 are generated according to the following process. First, we select a center µ of a Gaussian
according to a uniform distribution on a unit circle inR2. Then we generate a pointx∼N (µ,σ2I)
according to a Gaussian distribution centered atµ with a covariance matrixσ2I for a fixedσ (I is
a 2 by 2 identity matrix). Given a sample generated according to the above process we can apply a
mixture of Gaussians clustering in order to learn the generating distribution. Note that:

1. Due to the circular symmetry in the generating process and model redundancy, the solution
will always be unstable (the centers of Gaussians in the mixture of Gaussians model can move
arbitrarily along the unit circle and their variance in the direction tangential to the circle is
loosely constrained).

2. By increasing the sample size and the number of Gaussians in the mixture of Gaussians model
the true density of the points can be approximated arbitrarily well.

Hence, models with good generalization properties are not necessarily stable. This point should be
kept in mind when using generalization as an evaluation criterion in clustering.

10. Discussion and Future Work

This paper underlines the importance of external evaluation of unsupervised learning, such as clus-
tering or more general structure learning, based on the context of its potential application. Such a
form of evaluation is important for delivery of better structure learning algorithms as well as for
better understanding of their outcome. We argue that structure learning does not occur for its own
sake, but rather in order to facilitate a solution of some higher level goal. Inany non-trivial data
many structures co-exist simultaneously and it is a matter of the subsequent usage of the outcome
of the learning algorithm to determine which of the structure elements are valuable and which are
not. Therefore, unsupervised learning cannot be analyzed in isolationfrom its potential applica-
tion. In our opinion, one of the main obstacles in theoretical advancement ofunsupervised learning
is an absence of a good mathematical definition of the context of its application.The analysis of
co-clustering presented here is a first step toward context-based analysis of more complex models.
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The work presented here started with an attempt to improve our understanding of clustering. We
note that clustering is tightly related to the object naming process in human language. In a sense,
a cluster is an entity that can be assigned a name. By clustering objects we ignore their irrelevant
properties and concentrate on the relevant ones. And of course, this division can change according
to our needs. For example, we can divide animals into birds and mammals or into flying and
notatorial or into domestic and wild. Whereas the classification into birds and mammals or flying
and notatorial may be considered intrinsic, the classification into domestic and wild is definitely
application-oriented. In order to design successful clustering and categorization algorithms it is
important to understand the basic principles behind this process. It is not a-priori clear that, if we
restrict ourselves to pure prediction tasks, clustering the underlying sample space helps. As shown
in Seldin and Tishby (2008); Seldin (2009), in classification by a single parameter there is no need
to cluster the parameter space, but rather simple smoothing performs better. In classification in
higher dimensional spaces, kernel-based methods can be superior to clustering-based approaches.
However, we know that as humans we communicate by using a clustered representation of the world
rather than by kernel matrices. Thus, there should be advantages for such form of communication.
Identification, understanding, and analysis of these advantages is an important future direction for
the design of better clustering and higher structure learning algorithms.
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Appendix A. Proof of Theorem 6

Proof of Theorem 6First we prove inequality (14):

−EQ(h)Eph(z) ln p̃h(Z) = EQ(h)E[p̂h(z)−ph(z)] ln p̃h(Z)−EQ(h)Ep̂h(z) ln p̃h(Z)

= EQ(h)E[p̂h(z)−ph(z)] ln
p̂h(Z)+γ

1+γ|Z| −EQ(h)Ep̂h(z) ln
p̂h(Z)+γ

1+γ|Z|
≤ −1

2
‖p̂Q(z)−pQ(z)‖1 ln

γ

1+γ|Z| +EQ(h)H(p̂h(z))+ ln(1+γ|Z|)

≤H(p̂Q(z))−
√

ε/2ln
γ

1+γ|Z| +ln(1+γ|Z|). (56)

The last inequality is justified by the concavity of the entropy functionH and the KL-divergence
bound on theL1 norm (Cover and Thomas, 1991):

‖p̂Q(z)−pQ(z)‖1 ≤
√

2KL(p̂Q(z)‖pQ(z))≤
√

2ε.

By differentiation (56) is minimized byγ =

√
ε/2

|Z| . By substitution of this value ofγ into (56) we
obtain (14). Inequality (15) is justified by (14) and the concavity of theln function. Finally, we
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prove the lower bound (16):

−EpQ(z) ln p̃Q(Z) = E[p̂Q(z)−pQ(z)] ln p̃Q(Z)−Ep̂Q(z) ln p̃Q(Z)

≥−1

2
‖p̂Q(z)−pQ(z)‖1 ln

1+γ|Z|
γ

+H(p̂Q(z))

≥H(p̂Q(z))−
√

ε/2ln
|Z|(1+

√

ε/2)
√

ε/2
.

Appendix B. Treatment of Continuous Label SpacesY via Quantization

In Theorems 7 and 13 it was assumed that the label spaceY (or the edge weight spaceW) is finite.
However, for quadratic loss the minimization ofF(Q,β) by Algorithm 1 can return a solution that
falls out of this finite space. Furthermore, the input spaceY itself does not have to be finite (e.g.,
gene expression levels in bioinformatics can be given on a continuous scale). Here we show that the
bound can be easily generalized to handle this case via quantization ofY. The analysis can be seen
as post-processing and does not require modifications of the trade-offF(Q,β) and of Algorithm 1,
since the algorithm does not assume finiteness ofY.

Assume thatY is limited in [0,1] interval and apply uniform quantization ofY at intervals∆,
then |Y∆| = 1

∆ (Y∆ is the quantized copy ofY and we assume that the quantization starts at1
2∆

and ends at1− 1
2∆). By rounding the continuous values ofy obtained by Algorithm 1 toward the

closest quantization both the empirical and the expected loss are increasedby at most2∆ + ∆2

(in the case of quadratic loss). This is because quantization can shift the truey and the prediction
y′ by at most12∆ and thenl(y− 1

2∆,y′ + 1
2∆) = (y− y′−∆)2 = (y− y′)2− 2(y− y′)∆ + ∆2 ≤

l(y,y′)+2∆+∆2, where the last inequality follows from the assumption thatY is limited in [0,1].
Hence, we have

L(Q)≤ kl−1

(

L̂(Q)+2∆+∆2,

∑d
i=1niĪ(Xi;Ci)+K

N

)

+2∆+∆2,

whereK, defined previously in (38), becomes:

K =
d
∑

i=1

mi lnni−M ln∆+
1

2
ln(4N)− lnδ.

As a rule of thumb one can choose∆ = kM/N for k ≈ 5, so that the contribution of∆ to the two
operands of the inverse KL-divergence is approximately equivalent. In general this correction for
quantization has no significant influence on the bound (Seldin, 2010).
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