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Abstract

We propose a class of Bayesian networks appropriate for structured prediction problems where the
Bayesian network’s model structure is a function of the predicted output structure. These incremen-
tal sigmoid belief networks (ISBNs) make decoding possiblebecause inference with partial output
structures does not require summing over the unboundedly many compatible model structures, due
to their directed edges and incrementally specified model structure. ISBNs are specifically targeted
at challenging structured prediction problems such as natural language parsing, where learning the
domain’s complex statistical dependencies benefits from large numbers of latent variables. While
exact inference in ISBNs with large numbers of latent variables is not tractable, we propose two ef-
ficient approximations. First, we demonstrate that a previous neural network parsing model can be
viewed as a coarse mean-field approximation to inference with ISBNs. We then derive a more ac-
curate but still tractable variational approximation, which proves effective in artificial experiments.
We compare the effectiveness of these models on a benchmark natural language parsing task, where
they achieve accuracy competitive with the state-of-the-art. The model which is a closer approxi-
mation to an ISBN has better parsing accuracy, suggesting that ISBNs are an appropriate abstract
model of natural language grammar learning.

Keywords: Bayesian networks, dynamic Bayesian networks, grammar learning, natural language
parsing, neural networks

1. Introduction

In recent years, there has been increasing interest in structured prediction problems, that is, clas-
sification problems with a large (or infinite) structured set of output categories. The set of output
categories are structured in the sense that useful generalisations existacross categories, as usually
reflected in a structured representation of the individual categories. For example, the output cate-
gories might be represented as arbitrarily long sequences of labels, reflecting generalisations across
categories which share similar sets of sub-sequences. Often, given aninput, the structure of the
possible output categories can be uniquely determined by the structure of the input. For example
in sequence labelling tasks, all possible output categories are label sequences of the same length as
the input sequence to be labelled. In this article, we investigate structured classification problems
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where this is not true; the structure of the possible output categories is notuniquely determined by
the input to be classified. The most common type of such problems is when the input is a sequence
and the output is a more complex structure, such as a tree. In reference tothis case, we will refer
to problems where the output structure is not uniquely determined by the inputas “parsing prob-
lems”. Such problems frequently arise in natural language processing (e.g., prediction of a phrase
structure tree given a sentence), biology (e.g., protein structure prediction), chemistry, or image
processing. We will focus on the first of these examples, natural language parsing. The literature
on such problems clearly indicates that good accuracy cannot be achieved without models which
capture the generalisations which are only reflected in the output structure. For example, in English
sentences, if a noun is parsed as the subject of a verb, then these words must be compatible in their
singular/plural markings, independent of whether they are near each other in the input sentence.

In addition to limiting the scope of this article to parsing problems, we focus on tasks where the
training data specifies the output structure, but the labelling of this structureis not fully annotated.
While the unannotated labelling may not be evaluated in the task, by assuming incomplete labelling
we allow our models to capture generalisation which are not directly reflectedin the labelled output
structure given for training. For example, the training data for natural language parsing problems
is generally assumed to be a tree, but assuming that all generalisations can be expressed in terms
of one-level fragments of the tree leads to poor empirical performance. However, much better
performance can be achieved with such a model by extending the labelling to include features of the
structural context (Charniak, 2000). Because we want to learn the necessary additional labelling,
we need to solve a limited form of grammar induction.

Graphical models provide the formal mechanisms needed to learn and reason about incomplete
labelling, using latent variables. They also provide the formal mechanisms needed to specify the
statistical dependencies implied by the structure of a single output category.However, these mech-
anisms are not sufficient to specify a complete probability model for a parsing problem, because
we need to specify the statistical dependencies for the complete space of possible output categories.
As we will discuss in Section 3, even graphical models for unbounded sequence labelling, such as
dynamic Bayesian networks, are in general not adequate for this task, because they are limited to
finite-state models.

There are well established methods for specifying probabilistic models of parsing problems,
based on grammar formalisms, such as probabilistic context-free grammars (PCFGs). The grammar
formalism defines how the complete space of possible pairs of an input sequence with an output
structure can be specified as a set of sequences of decisions about the input-output pair. Each
possible sequence of decisions, called a derivation, specifies a single input-output pair (e.g., phrase
structure tree or protein structure). The probability model is then defined interms of probabilities
for each decision. In its most general form, these decision probabilities are conditioned on anything
from the unbounded history of previous decisions:

P(T) = P(D1, ...,Dm) = ∏
t

P(Dt |D1, . . . ,Dt−1), (1)

whereT is the input-output structure andD1, . . . ,Dm is its equivalent sequence of decisions.
In PCFGs, the context-free assumption means that only a bounded amount of the history

D1, . . . ,Dt−1 is relevant to the probability for decisionDt . The context-free assumption only al-
lows statistical dependencies within each bounded one-level subtree of the output tree, so two such
subtrees can only interact through the bounded choice of label for the node they share, if any. Be-
cause the context-free assumption is defined in terms of the output structure, not in terms of the
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input sequence, which decisions in the history are relevant depends onthe output structure specified
by the derivation. In graphical models, such a specification of which decisions are statistically de-
pendent on which other decisions is called the “model structure”. Thus PCFGs, like other grammar
formalisms, are examples of models where the model structure is a function of the output structure,
not just of the input sequence. This is the fundamental distinction between models of parsing prob-
lems and models of sequence labelling problems, and it will be central to our discussions in this
article.

The most common approach to building probability models for parsing problems isto use
PCFGs without any latent variables (e.g., Charniak, 2000; Collins, 1999;Durbin et al., 1998), but
this approach relies on hand-built sets of features to represent the unbounded decision histories
in (1). Latent probabilistic context-free grammars (LPCFGs) (Matsuzakiet al., 2005) extend the
node labels of PCFGs with latent annotations, but previous proposals have successfully induced
only a small number of latent annotations.

An alternative proposal to extending the labelling of parse trees is to use thehidden units of a
neural network (Henderson, 2003). In the model of Henderson (2003), vectors of hidden unit values
decorate the positionst in the derivation sequence, and are used to encode features of the unbounded
derivation historyD1, . . . ,Dt−1. As with LPCFGs, the pattern of interdependencies between layers
of hidden units is a function of the output structure, making it appropriate for parsing problems. But
unlike LPCFGs, the pattern of interdependencies is not required to respect the context-free assump-
tion. This model achieved state-of-the-art results, but there is no clear probabilistic semantics for
the induced hidden representations.

In this article, we propose a class of graphical models which we call incremental sigmoid belief
networks (ISBNs), which are closely related to the neural network of Henderson (2003), but which
have a clear probabilistic semantics for all their variables. ISBNs are a kindof sigmoid belief
network (Neal, 1992), but are dynamic models and have an incrementally specified set of statistical
dependencies. Each position in the decision sequence has a vector of latent state variables, which
are statistically dependent on variables from previous positions via a pattern of edges determined
by the previous decisions. This incrementally specified model structure allows ISBNs to capture
the generalisations which are only reflected in the output structure, such as the tendency towards
correlations which are local in the output structure, which motivates the context-free assumption of
PCFGs.

Allowing the model structure to depend on the output structure means that the complete model
structure is not known until the complete output derivation is known. In general, this can complicate
decoding (i.e., parsing) because computing probabilities for sub-derivations requires marginalising
out the unknown portion of the model structure, which in the worst case could require summing over
an unbounded number of possible model structures. The properties of ISBNs avoid this problem
because the probability of a derivation prefix is always independent ofthe unknown portion of the
model structure, as discussed in Section 3.

Despite this simplification, exact inference (i.e., computing probabilities) is not ingeneral
tractable in ISBNs, because they allow large vectors of latent variables in aheavily intercon-
nected directed model. We demonstrate the practical applicability of ISBN modelsby providing
efficient approximate inference methods. We consider two forms of approximation for ISBNs, a
feed-forward neural network approximation (NN) and a form of mean field approximation (Saul
and Jordan, 1999). In Section 5, we first show that the neural network model in Henderson (2003)
can be viewed as a coarse approximation to inference with ISBNs. We then propose an incremental
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mean field method (IMF), which provides an improved approximation but remains tractable. Both
these approximations give us valid probability models.

In Section 7, we present two empirical evaluations. In the first experiment,we trained both of
the approximation models on artificial data generated from random ISBNs. The NN model achieves
a 60% average relative error reduction over a baseline model and the IMF model achieves a further
27% average relative error reduction over the NN model. These results demonstrate that the distri-
bution of output structures specified by an ISBN can be approximated, that these approximations
can be learnt from data, and that the IMF approximation is indeed better thanthe NN approxi-
mation. In the second experiment, we apply both of the approximation models to phrase structure
parsing with data from the Wall Street Journal Penn Treebank (Marcuset al., 1993). The IMF model
achieves statistically significant error reduction of about 8% over the NN model. Results of the IMF
model are non-significantly worse (less than 1% relative error increase) than the results of one of
the best known history-based models of parsing (Charniak, 2000). Weargue that this correlation
between better approximation and better accuracy suggests that ISBNs are a good abstract model
for structured prediction.

Section 8 discusses related work not covered in the rest of this article. Itfocuses particularly on
previous work on LPCFGs.

2. Inference with Sigmoid Belief Networks

Before defining ISBNs, we provide background on sigmoid belief networks. A sigmoid belief net-
work (SBN) (Neal, 1992) is a type of Bayesian network. Bayesian networks are directed acyclic
graphs where the nodes are variables and the edges specify statistical dependencies between vari-
ables. SBNs have binary variables which have conditional probability distributions (CPDs) of the
form:

P(Si = 1|Par(Si)) = σ( ∑
Sj∈Par(Si)

Ji j Sj), (2)

wherePar(Si) is the set of variables with edges directed toSi , σ denotes the logistic sigmoid func-
tion σ(x) = 1/(1+e−x), andJi j is the weight for the edge from variableSj to variableSi .1 SBNs
are similar to feed-forward neural networks, but unlike neural networks, SBNs have a precise prob-
abilistic semantics of their hidden variables. In ISBNs we consider a generalised version of SBNs
where we allow variables with any range of discrete values. The normalisedexponential function is
used to define the CPDs at these nodes:

P(Si = k|Par(Si)) =
exp(∑Sj∈Par(Si)W

i
k jSj)

∑k′ exp(∑Sj∈Par(Si)W
i
k′ jSj)

, (3)

whereWi is the weight matrix for the variableSi .
Exact inference with all but very small SBNs is not tractable. Initially samplingmethods were

used (Neal, 1992), but they are also not feasible for large networks,especially for the dynamic mod-
els of the type described in Section 4. Variational methods have also been proposed for approximat-
ing SBNs (Saul et al., 1996; Saul and Jordan, 1999). The main idea of variational methods (Jordan

1. For convenience, where possible, we will not explicitly include bias terms in expressions, assuming that every latent
variable in the model has an auxiliary parent variable set to 1.
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et al., 1999) is, roughly, to construct a tractable approximate model with a number of free parame-
ters. The free parameters are set so that the resulting approximate model isas close as possible to
the original model for a given inference problem.

The simplest example of a variational method is the mean field method, originally introduced in
statistical mechanics and later applied to neural networks in Hinton et al. (1995). Let us denote the
set of visible variables in the model byV and latent (hidden) variables byH = h1, . . . ,hl . The mean
field method uses a fully factorised distributionQ(H|V)=∏i Qi(hi |V) as the approximate model,
where eachQi is the distribution of an individual latent variable. The independence between the
variableshi in this approximate distributionQ does not imply independence of the free parameters
which define theQi . These parameters are set to minimise the Kullback-Leibler divergence between
the approximate distributionQ(H|V) and the true distributionP(H|V) or, equivalently, to maximise:

LV = ∑
H

Q(H|V) ln
P(H,V)

Q(H|V)
. (4)

The expressionLV is a lower bound on the log-likelihood lnP(V). It is used in the mean field
theory (Saul and Jordan, 1999) as an approximation of the log-likelihood. However, in our case of
dynamic graphical models, as explained later, we have to use a different approach which allows us
to construct an incremental structured prediction method without needing to introduce the additional
parameters proposed in Saul and Jordan (1999), as we will discuss in Section 5.3.

3. Incrementally Specifying Model Structure

We want to extend SBNs to make them appropriate for modelling parsing problems. As discussed
in the introduction, this requires being able to model arbitrarily long decision sequencesD1, ...,Dm,
and being able to specify the pattern of edges (the model structure) as a function of the chosen
output structure. In this section, we define how incremental sigmoid belief networks specify such
model structures.

To extend SBNs for processing arbitrarily long sequences, such as thederivation decision se-
quenceD1, ...,Dm, we use dynamic models. This gives us a form of dynamic Bayesian network
(DBN). To handle unboundedly long sequences, DBNs specify a Bayesian network template which
gets instantiated for each position in the sequence, thereby constructing a Bayesian network which
is as large as the sequence is long. This constructed Bayesian network is illustrated in the rightmost
graph of Figure 1, where the repeated two-box pattern is the template, and the left-to-right order
is the derivation order. This template instantiation defines a new set of variables for each position
in the sequence, but the set of edges and parameters for these variables are the same as in other
positions. The edges which connect variables instantiated for differentpositions must be directed
forward in the sequence, thereby allowing a temporal interpretation of the sequence. DBNs based on
sigmoid belief networks were considered in Sallans (2002) in the context ofreinforcement learning.
Normally, DBNs only allow edges between adjacent (or a bounded window of) positions, which
imposes a Markov assumption on statistical dependencies in the Bayesian network.

The problem with only allowing edges between variables instantiated at positions which are ad-
jacent (or local) in the decision sequence is that this does not allow the model structure to adequately
reflect the correlations found in parsing problems. In particular, in many domains, correlations tend
to be local in the output structure, even when they are not local in the derivation sequence for that
structure. To capture these correlations in the statistical dependencies learnt by the model, we want
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Figure 1: Illustration of the predictive LR derivation of an output structure and its associated incre-
mental specification of an ISBN model structure (ordered top-to-bottom, left-to-right).
Dotted lines indicate the top of the parser’s stack at each derivation decision in the model
structure.

the edges of the model to reflect locality in the output structure. This requires specifying edges
based on the actual outputs in the decision sequenceD1, ...,Dm, not just based on adjacency in this
sequence.

We constrain this edge specification so that a decisionDt ′ can only effect the placement of
edges whose destination variable is at a positiont > t ′ after the decisionDt ′ . This gives us a form
of switching model (Murphy, 2002), where each decision switches the model structure used for the
remaining decisions. We allow the incoming edges for a given position to be anydiscrete func-
tion of the sequence of decisions which precede that position. For this reason, we call our model
an “incremental” model, not just a dynamic model; the structure of the Bayesiannetwork is deter-
mined incrementally as the decision sequence proceeds. This incremental specification of the model
structure is illustrated in Figure 1 (the directed graphs), along with the partialoutput structures in-
crementally specified by the derivation (the trees). In Figure 1, dotted linesassociate a position’s
instantiated template with the node in the output structure which is on top of the parser’s stack when
making that position’s decision. Note that the incoming edges for a position’s instantiated template
reflect edges between the associated nodes in the partial output structure.

Any discrete function can be used to map the preceding sequence of decisions to a set of incom-
ing edges for a given decision. In general, we can characterise this function in terms of an automaton
which reads derivations and deterministically outputs model structures. Forevery derivation prefix
D1, ...,Dt−1, the automaton outputs a set of labelled positions in the derivation prefix. Foreach
labelled position(t −c, r) in this set, labelr determines which variables instantiated at that position
are linked to which variables instantiated at the current positiont, and with which parameters.2 For

2. In all our models to date, we have respected the additional constraint that there is at most one labelled position in the
set for each labelr, so the size of the set is bounded. We do not impose this constraint here because the model is still
well defined without it, but we do not have empirical evidence about the effect of removing it.
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example, the ISBN illustrated in Figure 1 uses a push-down automaton to computewhich output
structure nodes are currently important (e.g., the top and next-to-top nodes on the automaton’s stack)
and specifies conditional dependencies between the current decision and previous decisions where
these nodes were on the top of the stack. By using a push-down automaton,this model is able to
express non-Markovian (e.g., context-free) regularities in the derivation sequences.

Previous applications of switching models to DBNs (e.g., Murphy, 2002) have allowed statistical
dependencies to be a function of the output, but only of the output from theimmediately preceding
position in the sequence, and therefore have only allowed switching between a bounded number of
alternatives. Because the number of switched alternatives is bounded, the whole set of alternatives
can be expressed as a single bounded model, whose CPDs incorporate the discrete switching. Thus,
switching does not allow us to specify any models which could not be specified with a complicated
DBN, so switching DBNs also impose some form of Markov assumption. In termsof the automata
discussed above, this means that switching DBNs can be expressed usingfinite-state automata, so
would only be appropriate for problems with a regular-language structureto their output categories.
This limitation does not give us sufficient power to express the kinds of output-conditioned statis-
tical dependencies we need for parsing problems in general. Therefore, it is crucial to distinguish
between standard dynamic models and our incremental models.

Incremental sigmoid belief networks allow the model structure to depend on theoutput structure
without overly complicating the inference of the desired conditional probabilities P(Dt |D1, . . . ,Dt−1).
Computing this probability requires marginalising out the unknown model structure for the portion
of the Bayesian network which follows positiont. In general, this could require explicitly summing
over multiple possible model structures, or in the worst case summing over the unbounded number
of possible model structures. ISBNs avoid summing over any of these possible model structures be-
cause in ISBNsP(Dt |D1, . . . ,Dt−1) is independent of all model structure which follows positiont.
This can be proved by considering two properties of ISBNs. At positiont in the sequence, the only
edges whose placement are not uniquely determined byD1, . . . ,Dt−1 have their destinations after
t. Also, none of the variables aftert are visible (i.e., have their values specified inD1, . . . ,Dt−1).
Therefore none of the edges whose placement is not yet known can have any impact on the infer-
ence ofP(Dt |D1, . . . ,Dt−1), as follows directly from well known properties of Bayesian networks.
This property implies that each individual Bayesian network depicted in Figure 1 can be used to
compute the conditional probability of its next derivation decision, and it will give the same answer
as if the same conditional probability were computed in the final Bayesian network at the end of the
derivation, or indeed in any such valid continuation.

The use of directed edges to avoid the need to sum over unknown model structures can also
be seen in Hidden Markov Models (HMMs). Given a sequence prefix, we can use an HMM to
infer the probability of the following element of the sequence. This distributionis not dependent
on the total length of the sequence, which would be needed to draw the complete HMM model
for the sequence. Note that this property does not hold for undirected graphical models, such as
Conditional Random Fields (Lafferty et al., 2001). Rohanimanesh et al. (2009) investigate inference
in undirected models with edges that are a function of the output structure, but the solutions are
approximate and computationally expensive.

The incremental specification of model structure can also be seen in LPCFGs. Given a top-
down left-to-right derivation of a phrase structure tree, the dependencies between LPCFG derivation
decisions have the same structure as the phrase structure tree, but with LPCFG rules (one-level
subtrees) labelling each node of this derivation tree. The number of branches at a node in the
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derivation tree is determined by the rule which is chosen to label that node, thereby incrementally
specifying the complete derivation tree. If we expressed an LPCFG as a graphical model, the model
structures would have the same general form as the derivation trees, sothe model structure would
also be incrementally specified. Also, the edges in this graphical model wouldneed to be directed,
because LPCFG rule probabilities are locally normalised. Therefore LPCFG can also be thought of
as Bayesian networks with incrementally specified model structure. The differences between ISBNs
and LPCFG will be discussed in the next section and Section 8.

As illustrated by the above examples, the argument for the incremental specification of model
structure can be applied to any Bayesian network architecture, not just sigmoid belief networks. We
focus on ISBNs because, as shown in Section 5, they are closely relatedto the empirically successful
neural network models of Henderson (2003). This previous work hasshown that the combination
of logistic sigmoid hidden units and having a model structure which reflect locality in the output
structure results in a powerful form of feature induction. The edges from hidden units to hidden
units allow information to propagate beyond the notion of immediate structural locality defined in
the model, but the logistic sigmoid ensures a bias against propagating information through long
chains of hidden units, thereby providing a soft but domain-appropriatebias to feature induction.

4. The Probabilistic Model of Structured Prediction

In this section we complete the definition of incremental sigmoid belief networks for grammar
learning. We only consider joint probability models, since they are generallysimpler and, unlike
history-based conditional models, do not suffer from the label bias problem (Bottou, 1991). Also,
in many complex predication tasks, such as phrase structure parsing, manyof the most accurate
models make use of a joint model, either in reranking or model combinations (e.g.,Charniak and
Johnson, 2005; Henderson, 2004).

We use a history-based probability model, as in Equation (1), but instead oftreating eachDt

as an atomic decision, it will be convenient below to further split it into a sequence of elementary
decisionsDt = dt

1, . . . ,d
t
n:

P(Dt |D1, . . . ,Dt−1) = ∏
k

P(dt
k|h(t,k)),

whereh(t,k) denotes the decision historyD1, . . . ,Dt−1,dt
1, . . . ,d

t
k−1. For example, a decision to

create a new node in a labelled output structure can be divided into two elementary decisions:
deciding to create a node and deciding which label to assign to it.

An example of the kind of graphical model we propose is illustrated in Figure 2. It is organised
into vectors of variables: latent state variable vectorsSt ′ = st ′

1, . . . ,s
t ′
n, representing an intermediate

state at positiont ′, and decision variable vectorsDt ′ , representing a decision at positiont ′, where
t ′ ≤ t. Variables whose value are given at the current decision(t,k) are shaded in Figure 2; latent
and current decision variables are left unshaded.

As illustrated by the edges in Figure 2, the probability of each state variablest
i depends on all

the variables in a finite set of relevant previous state and decision vectors, but there are no direct
dependencies between the different variables in a single state vector. Asdiscussed in Section 3,
this set of previous state and decision vectors is determined by an automaton which runs over the
derivation historyD1, . . . ,Dt−1 and outputs a set of labelled positions in the history which are con-
nected to the current positiont. For each pair(t − c, r) in this set,r represents a relation between
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Figure 2: ISBN for estimatingP(dt
k|h(t,k)).

positiont and the positiont−c in the history. We denote byr(t−c, t) the predicate which returns
true if the positiont−c with the relation labelr is included in the set fort, and false otherwise.
In general this automaton is allowed to perform arbitrary computations, as specified by the model
designer. For example, it could select the most recent state where the sameoutput structure node
was on the top of the automaton’s stack, and a decision variable representing that node’s label. Each
such selected relationr has its own distinct weight matrix for the resulting edges in the graph, but
the same weight matrix is used at each position where the relation is relevant (see Section 7.2 for
examples of relation types we use in our experiments).

We can write the dependency of a latent variablest
i on previous latent variable vectors and a

decision history as:

P(st
i = 1|S1, . . . ,St−1,h(t,1))=σ

(

∑
r,t ′:r(t ′,t)

∑
j

Jr
i j s

t ′
j+∑

k

Brk
idt′

k

)

, (5)

whereJr is the latent-to-latent weight matrix for relationr andBrk is the decision-to-latent weight
matrix for relationr and elementary decisionk. If there is no previous stept ′ < t which is in relation
r to the time stept, that is,r(t ′, t) is false for allt ′, then the corresponding relationr is skipped in
the summation. For each relationr, the weightJr

i j determines the influence of thejth variable in the

related previous latent vectorSt ′ on the distribution of theith variable of the considered latent vector
St . Similarly,Brk

idt′
k

defines the influence of the past decisiondt ′
k on the distribution of the considered

latent vector variablest
i .

In the previous paragraph we defined the conditional distribution of the latent vector variables.
Now we describe the distribution of the decision vectorDt = dt

1, . . .d
t
n. As indicated in Figure 2, the

probability of each elementary decisiondt
k depends both on the current latent vectorSt and on the

previously chosen elementary actiondt
k−1 from Dt . This probability distribution has the normalised

exponential form:

P(dt
k= d|St ,dt

k−1) =
Φh(t,k)(d)exp(∑ j Wd jst

j)

∑d′Φh(t,k)(d′)exp(∑ j Wd′ jst
j)
, (6)
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whereΦh(t,k) is the indicator function of the set of elementary decisions that can possibly follow the
last decision in the historyh(t,k), and theWd j are the weights of the edges from the state variables.
Φ is essentially switching the output space of the elementary inference problemsP(dt

k = d|St ,dt
k−1)

on the basis of the previous decisiondt
k−1. For example, in a generative history-based model of

natural language parsing, if decisiondt
1 was to create a new node in the tree, then the next possible

set of decisions defined byΦh(t,2) will correspond to choosing a node label, whereas if decisiondt
1

was to generate a new word thenΦh(t,2) will select decisions corresponding to choosing this word.
Given this design for using ISBNs to model derivations, we can compare such ISBN models to

LPCFG models. As we showed in the previous section, LPCFGs can also be thought of as Bayesian
networks with incrementally specified model structure. One difference between LPCFGs and IS-
BNs is that LPCFGs add latent annotations to the symbols of a grammar, while ISBNs add latent
annotations to the states of an automaton. However, this distinction is blurred bythe use of gram-
mar transforms in LPCFG models, and the many equivalences between grammars and automata.
But certainly, the automata of ISBNs are much less constrained than the context-free grammars of
LPCFGs. Another distinction between LPCFGs and ISBNs is that LPCFGs use latent annotations
to split symbols into multiple atomic symbols, while ISBNs add vectors of latent variables to the
existing symbol variables. The structure of the similarities between vectors is much richer than the
structure of similarities between split atomic symbols, which gives ISBNs a more structured latent
variable space than LPCFGs. This makes learning easier for ISBNs, allowing the induction of more
informative latent annotations. Both these distinctions will be discussed further in Section 8.

5. Approximating Inference in ISBNs

Exact inference with ISBNs is straightforward, but not tractable. It involves a summation over all
possible variable values for all the latent variable vectors. The presence of fully connected latent
variable vectors does not allow us to use efficient belief propagation methods. Even in the case of
dynamic SBNs (i.e., Markovian models), the large size of each individual latent vector would not
allow us to perform the marginalisation exactly. This makes it clear that we needto develop meth-
ods for approximating the inference problems required for structured prediction. Standard Gibbs
sampling (Geman and Geman, 1984) is also expensive because of the hugespace of variables and
the need to resample after making each new decision in the sequence. It mightbe possible to de-
velop efficient approximations to Gibbs sampling or apply more complex versions of Markov Chain
Monte-Carlo techniques, but sampling methods are generally not as fast as variational methods. In
order to develop sufficiently fast approximations, we have investigated variational methods.

This section is structured as follows. We start by describing the application of the standard
mean field approximation to ISBNs and discuss its limitations. Then we propose anapproach to
overcome these limitations, and two approximation methods. First we show that theneural network
computation used in Henderson (2003) can be viewed as a mean field approximation with the added
constraint that computations be strictly incremental. Then we relax this constraint to build more
accurate but still tractable mean field approximation.

5.1 Applicability of Mean Field Approximations

In this section we derive the most straightforward way to apply mean field methods to ISBN. Then
we explain why this approach is not feasible for structured prediction problems of the scale of
natural language parsing.
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The standard use of the mean field theory for SBNs (Saul et al., 1996; Saul and Jordan, 1999)
is to approximate probabilities using the value of the lower boundLV from expression (4) in Sec-
tion 2. To obtain a tighter bound, as we explained above,LV is maximised by choosing the optimal
distributionQ. To approximateP(dt

k|h(t,k)) using the value ofLV , we have to include the current
decisiondt

k in the set of visible variables, along with the visible variables specified inh(t,k). Then
to estimate the conditional probabilityP(dt

k|h(t,k)), we need to normalise over the set of all possible

value ofdt
k. Thus we need to compute a separate estimate maxQLt,k

V (d) for each possible value of
dt

k = d:

max
Q

Lt,k
V (d) = max

Q
∑
H

Q(Ht |h(t,k),dt
k = d) ln

P(Ht ,h(t,k),dt
k = d)

Q(Ht |h(t,k),dt
k = d)

,

whereHt = {S1, . . . ,St}. ThenP(dt
k = d|h(t,k)) can be approximated as the normalised exponential

of Lt,k
V (d) values:

P̂(dt
k = d|h(t,k)) =

exp(maxQLt,k
V (d))

∑d′ exp(maxQLt,k
V (d′))

. (7)

It is not feasible to find the optimal distributionQ for SBNs, and mean field methods (Saul et al.,
1996; Saul and Jordan, 1999) use an additional approximation to estimate maxQLt,k

V (d). Even with
this approximation, the maximum can be found only by using an iterative searchprocedure. This
means that decoding estimator (7) requires performing this numerical procedure for every possible
value of the next decision. Unfortunately, in general this is not feasible,in particular with labelled
output structures where the number of possible alternative decisionsdt

k can be large. For our gener-
ative model of natural language parsing, decisions include word predictions, and there can be a very
large number of possible next words. Even if we choose not to recomputemean field parameters for
all the preceding statesSt ′ , t ′< t, but only for the current stateSt (as proposed below), tractability
still remains a problem.3

In our modifications of the mean field method, we propose to consider the nextdecisiondt
k as

a hidden variable. Then the assumption of full factorisability ofQ(Ht ,dt
k|h(t,k)) is stronger than in

the standard mean field theory because the approximate distributionQ is no longer conditioned on
the next decisiondt

k. The approximate fully factorisable distributionQ(H|V) can be written as:

Q(H|V) = qt
k(d

t
k)∏

t ′i

(

µt ′
i

)st′
i
(

1−µt ′
i

)1−st′
i
.

whereµt ′
i is the free parameter which determines the distribution of state variablei at positiont ′,

namely its mean, andqt
k(d

t
k) is the free parameter which determines the distribution over decisions

dt
k. Importantly, we useqt

k(d) to estimate the conditional probability of the next decision:

P(dt
k = d|h(t,k)) ≈ qt

k(d),

3. We conducted preliminary experiments with natural language parsing on very small data sets and even in this setup
the method appeared to be very slow and, surprisingly, not as accurateas the modification considered further in this
section.
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Figure 3: A graphical model fragment where variableA is a sink.

and the total structure probability is therefore computed as the product of decision probabilities
corresponding to its derivation:

P(T) = P(D1, . . . ,Dm) ≈ ∏
t,k

qt
k(d

t
k). (8)

5.2 A Feed-Forward Approximation

In this section we will describe the sense in which neural network computationcan be regarded as a
mean field approximation under an additional constraint of strictly feed-forward computation. We
will call this approximation the feed-forward approximation. As in the mean fieldapproximation,
each of the latent variables in the feed-forward approximation is independently distributed. But
unlike the general case of mean field approximation, in the feed-forward approximation we only
allow the parameters of every distributionQ(st ′

i |h(t,k)) andQ(dt
k|h(t,k)) to depend on the approx-

imate distributions of their parents, thus requiring that any information about the distribution of its
descendants is not taken into account. This additional constraint increases the potential for a large
KL divergence with the true model, but it significantly simplifies the computations.

We start with a simple proposition for general graphical models. Under the feed-forward as-
sumption, computation of the mean field distribution of a node in an ISBN is equivalent to compu-
tation of a distribution of a variable corresponding to a sink in the graph of themodel, that is, a node
which does not have any outgoing edges. For example, nodeA is a sink in Figure 3. The following
proposition characterises the mean field distribution of a sink.

Proposition 1 The optimal mean field distribution of a sink A depends on the mean field distribution
Q(B) of its hidden parents B= (B1, . . . ,Bm) as

Q(A= a) ∝ exp(EQ logP(A= a|B,C)),

where Q is the mean field distribution of hidden variables, P is the model distribution, C are visible
parents of the node A and EQ denotes the expectation under the mean field distribution Q(B).

This proposition is straightforward to prove by maximising the variational bound LV (4) with
respect to the distributionQ(A). Now we can use the fact that SBNs have log-linear CPD. By
substituting their CPD given in expression (2) forP in the lemma statement, we obtain:

Q(Si = 1) = σ( ∑
Sj∈Par(Si)

Ji j µj),
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which exactly replicates computation of a feed-forward neural network with the logistic sigmoid
activation function. Similarly, we can show that for variables with soft-max CPD, as defined in (3),
their mean field distribution will be the log-linear function of their parents’ means. Therefore min-
imising KL divergence under the constraint of feed-forward computationis equivalent to using
log-linear functions to compute distributions of random variables given means of their parents.

Now let us return to the derivation of the feed-forward approximation of ISBNs. As we just
derived, under the feed-forward assumption, means of the latent vector St ′ are given by

µt ′
i = σ(ηt ′

i ),

whereηt ′
i is the weighted sum of the parent variables’ means:

ηt ′
i = ∑

r,t ′′:r(t ′′,t ′)
∑

j

Jr
i j µ

t ′′
j +∑

k

Brk
idt′′

k
, (9)

as follows from the definition of the corresponding CPD (5).
The same argument applies to decision variables; the approximate distribution of the next deci-

sionqt
k(d) is given by

qt
k(d) =

Φh(t,k)(d)exp(∑ j Wd jµt
j)

∑d′ Φh(t,k)(d′)exp(∑ j Wd′ jµt
j)
. (10)

The resulting estimate of the probability of the entire structure is given by (8).
This approximation method replicates exactly the computation of the feed-forward neural net-

work model of Henderson (2003), where the above meansµt ′
i are equivalent to the neural network

hidden unit activations. Thus, that neural network probability model canbe regarded as a simple
approximation to the ISBN graphical model.

In addition to the drawbacks shared by any mean field approximation method, this feed-forward
approximation cannot capture bottom-up reasoning. By bottom-up reasoning, we mean the effect of
descendants in a graphical model on distributions of their ancestors. Formean field approximations
to ISBNs, it implies the need to update the latent vector meansµt ′

i after observing a decisiondt
k, for

t ′ ≤ t. The use of edges directly from decision variables to subsequent latentvectors is designed to
mitigate this limitation, but such edges cannot in general accurately approximatebottom-up reason-
ing. The next section discusses how bottom-up reasoning can be incorporated in the approximate
model.

5.3 Incremental Mean Field Approximation

In this section we relax the feed-forward assumption to incorporate bottom-up reasoning into the
approximate model. Again as in the feed-forward approximation, we are interested in finding the
distributionQ which maximises the quantityLV in expression (4). The decision distributionqt

k(d
t
k)

maximisesLV when it has the same dependence on the latent vector meansµt
j as in the feed-forward

approximation, namely expression (10). However, as we mentioned above, the feed-forward com-
putation does not allow us to compute the optimal values of state meansµt ′

i .
Optimally, after each new decisiondt

k, we should recompute all the meansµt ′
i for all the latent

vectorsSt ′ , t ′ ≤ t. However, this would make the method intractable for tasks with long decision
sequences. Instead, after making each decisiondt

k and adding it to the set of visible variables
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V, we recompute only the means of the current latent vectorSt . This approach also speeds up
computation because, unlike in the standard mean field theory, there is no need to introduce an
additional variational parameter for each hidden layer variablest

i .

The denominator of the normalised exponential function in (6) does not allowus to compute
LV exactly. Instead, we approximate the expectation of its logarithm by substitutingSt

j with their
means:4

EQln∑
d

Φh(t,k)(d)exp(∑
j

Wd jS
t
j)≈ ln∑

d

Φh(t,k)(d)exp(∑
j

Wd jµ
t
j),

where the expectation is taken over the latent vectorSt distributed according to the approximate
distributionQ. Unfortunately, even with this assumption there is no analytic way to maximise the
approximation ofLV with respect to the meansµt

i , so we need to use numerical methods. We can
rewrite the expression (4) as follows, substituting the trueP(H,V) defined by the graphical model
and the approximate distributionQ(H|V), omitting parts independent of the meansµt

i :

Lt,k
V = ∑

i

−µt
i lnµt

i − (1−µt
i ) ln

(

1−µt
i

)

+µt
i η

t
i

+∑
k′<k

∑
j

Wdt
k′

jµ
t
j − ln

(

∑
d

Φh(t,k′)(d)exp(∑
j

Wd jµ
t
j)

)

, (11)

here,ηt
i is computed from the previous relevant state means and decisions as in (9).This expression

is concave with respect to the parametersµt
i , so the global maximum can be found. In the appendix,

where we derive the learning algorithm, we show that the Hessian of this expression can be viewed
as the negated sum of a positive diagonal matrix and some covariance matrices, thus implying the
concavity of expression (11). We use coordinatewise ascent, where eachµt

i is selected by a line
search (Press et al., 1996) while keeping otherµt

i′ fixed.

Though we avoided re-computation of means of the previous states, estimationof the complex
decision probabilityP(Dt |h(t,k)) will be expensive if the decisionDt is decomposed in a large
number of elementary decisions. As an example, consider a situation in dependency parsing, where
after deciding to create a link, the parser might need to decide on the type of the link and, then,
predict the part of speech type of the word and, finally, predict the word itself. The main reason
for this complexity is the presence of the summation overk′ in expression (11), which results in
expensive computations during the search for an optimal value ofµt

i . This computation can be
simplified by using the means ofSt computed during the estimation ofP(dt

k−1|h(t,k−1)) as priors
for the computation of the same means during the estimation ofP(dt

k|h(t,k)). If we denote the

means computed at an elementary step(t,k) asµt,k
i , then fork = 1, minimisation ofLt,k

V can be
performed analytically, by setting

µt,1
i = σ(ηt

i ). (12)

4. In initial research, we considered the introduction of additional variational parameters associated with every possible
value of the decision variable in a way similar to Saul and Jordan (1999), but this did not improve the prediction
accuracy of the model, and considerably increased the computational time.
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Fork> 1, expression (11) can be rewritten as:

Lt,k
V =∑

i

−µt,k
i lnµt,k

i − (1−µt,k
i ) ln

(

1−µt,k
i

)

+µt,k
i

(

lnµt,k−1
i − ln(1−µt,k−1

i )
)

+Wdt
k−1iµ

t,k
i

− ln

(

∑
d

Φh(t,k−1)(d)exp(∑
j

Wd jµ
t,k
j )

)

. (13)

Note that maximisation of this expression is done also after computing the last decision Kt for the
statet. The resulting meansµt,Kt+1 are then used in the computation ofηt ′

i for the relevant future
statest ′, that is, sucht ′ thatr(t, t ′) holds for somer:

ηt ′
i = ∑

r,t:r(t,t ′)
∑

j

Jr
i j µ

t,Kt+1
j +∑

k

Brk
idt

k
, (14)

Concavity of expression (13) follows from concavity of (11), as their functional forms are dif-
ferent by only a linear term and the presence of summation over the elementary decisions. See
the appendix where we will show that the Hessian ofLt,k

v is negative semidefinite, confirming this
statement.

6. Learning and Decoding

We train the models described in Sections 5.2 and 5.3 to maximise the fit of the approximate models
to the data. We use gradient descent, and a maximum likelihood objective function. In order to
compute the derivatives with respect to the model parameters, the error should be propagated back
through the structure of the graphical model. For the feed-forward approximation, computation of
the derivatives is straightforward, as in neural networks (Rumelhart et al., 1986). But for the mean
field approximation, this requires computation of the derivatives of the meansµt

i with respect to the
other parameters in expression (13). The use of a numerical search in the mean field approximation
makes the analytical computation of these derivatives impossible, so a different method needs to
be used to compute their values. The appendix considers the challenges arising when using maxi-
mum likelihood estimation with the incremental mean field algorithm and introduces a modification
of the error backpropagation algorithm for this model. For both approximations, their respective
backpropagation algorithms have computational complexity linear in the length ofa derivation.

The standard mean field approach considered in Saul and Jordan (1999) maximisedLV (4)
during learning, becauseLV was used as an approximation of the log-likelihood of the training
data. LV is actually the sum of the log-likelihood and the negated KL divergence between the
approximate distributionQ(H|V) and the SBN distributionP(H|V). Thus, maximisingLV will at
the same time direct the SBN distribution toward configurations which have a lower approximation
error. It is important to distinguish this regularisation of the approximate distribution from the
Gaussian priors on the SBN parameters, which can be achieved by simple weight decay. We believe
that these two regularisations should be complementary. However, in our version of the mean field
method the approximate distributions of hidden decision variablesqt

k are used to compute the data
likelihood (8) and, thus, maximising this target function will not automatically imply KLdivergence
minimisation. Application of an additional regularisation term corresponding to minimisation of the
KL divergence might be beneficial for our approach, and it could be asubject of further research.
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Figure 4: Dynamic SBN used in artificial experiments.

In our current experiments, we used standard weight decay, which regularises the SBN distribution
with a Gaussian prior over weights.

ISBNs define a probability model which does not make any a-priori assumptions of indepen-
dence between any decision variables. As we discussed in Section 3, the use of relations based on
the partial output structure makes it possible to take into account statistical interdependencies be-
tween decisions closely related in the output structure, but separated by arbitrarily many positions
in the input structure. In general, this property leads to the complexity of complete search being
exponential in the number of derivation decisions. Fortunately, for many problems, such as natural
language parsing, efficient heuristic search methods are possible.

7. Experiments

The goal of the evaluation is to demonstrate that ISBNs are an appropriate model for grammar learn-
ing. Also, we would like to show that learning the mean field approximation derived in Section 5.3
(IMF method) results in a sufficiently accurate model, and that this model is moreaccurate than the
feed-forward neural network approximation (NN method) of Henderson (2003) considered in Sec-
tion 5.2. First, we start with an artificial experiment where the training and testing data is known to
have been generated by a SBN, and compare models based on each of theapproximation methods.
Second, we apply the models to a real problem, parsing of natural language, where we compare our
approximations with state-of-the-art models.

7.1 Artificial Experiment

In order to have an upper bound for our artificial experiments, we do not consider incremental
models, but instead use a dynamic sigmoid belief network, a first order Markovian model, and
consider a sequence labelling task. This simplification allowed us to use Gibbs sampling from
a true model as an upper bound of accuracy. The following generative storycorresponds to the
random dynamic SBNs:
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Figure 5: An example phrase structure tree.

Draw initial state vectorS1 from a distribution of initial statesP(S1).
t = 0.
Do

t = t + 1,
draw a labelYt from the distributionP(Yt |St) as in (6),
draw an input elementXt from the distributionP(Xt |Yt ,St),
draw the next latent state vectorSt+1 from P(St+1|St ,Xt ,Yt),

while Yt 6= 0 andt < tmax.

A graphical representation of this dynamic model is shown in Figure 4. Different weight ma-
trices were used in the computation ofP(Xt |Yt ,St) for each value of the labelYt . It is easy to see
that this model is a special case of the ISBN graphical model, namely Figure 2with non-Markovian
dependencies removed. The state vector length was set to 5, the number ofpossible labels to 6, the
number of distinct input elements to 8, the maximal length of each sequencetmax to 100. We per-
formed 10 experiments.5 For each of the experiments, we trained both IMF and NN approximations
on a training set of 20,000 elements, and tested them on another 10,000 elements. Weight-decay
and learning rate were reduced through the course of the experiments whenever accuracy on the
development set went down. Beam search with a beam of 10 was used during testing. The IMF
methods achieved average error reduction of 27% with respect to the NN method, where accuracy
of the Gibbs sampler was used as an upper bound (average accuraciesof 80.5%, 81.0%, and 82.3%
for the NN, IMF, and sampler, respectively).

The IMF approximation performed better than the NN approximation on 9 experiments out of
10 (statistically significant in 8 cases).6 These results suggest that the IMF method leads to a much
more accurate model than the NN method when the true distribution is defined by adynamic SBN.
In addition, the average relative error reduction of even the NN approximation over the unigram
model exceeded 60% (the unigram model accuracy was 77.4% on average), which suggests that
both approximations are sufficiently accurate and learnable.

7.2 Natural Language Parsing

We compare our two approximations on the natural language phrase structure parsing task. The
output structure is defined as a labelled tree, which specifies the hierarchical decomposition of a

5. We preselected these 10 models to avoid random dynamic SBNs with trivial distributions. We excluded SBNs for
which unigram model accuracy was within 3% of the Gibbs sampler accuracy, and where accuracy of the Gibbs
sampler did not exceed 70%. All these constants were selected before conducting the experiments.

6. In all our experiments we used the permutation test (Diaconis and Efron, 1983) to measure significance and consid-
ered a result significant if p-value is below 5%.
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Figure 6: Derivation for a constituent parse tree.

sentence into phrases. An example of such a tree is presented on Figure 5, where the tree specifies
that the adjective (J)freshand the noun (N)orangesform a noun phrase (NP)“fresh oranges”,
which, when combined with the verb (V)sells, forms the verb phrase (VP)“sells fresh oranges”.
The hypothesis we wish to test here is that the more accurate approximation ofISBNs will result
in a more accurate model of parsing. If this is true, then it suggests that ISBNs are a good abstract
model for problems similar to natural language parsing, namely parsing problems which benefit
from latent variable induction.

We replicated the same definition of derivation and the same pattern of interconnection between
states as described in Henderson (2003). For the sake of completenesswe will provide a brief
description of the structure of the model here, though more details can be found in Henderson
(2003).

The model uses a modification of the predictive LR order (Soisalon-Soininenand Ukkonen,
1979), illustrated in Figure 6. In this ordering, a parser decides to introduce a node into the parse
tree after the entire subtree rooted at the node’s first child has been fullyconstructed. Then the
subtrees rooted at the remaining children of the node are constructed in their left-to-right order. The
state of the parser is defined by the current stack of nodes, the queue of remaining input words and
the partial structure specified so far. The parser starts with an artificialroot element in the stack and
terminates when it reaches a configuration with an empty queue and with the artificial root element
on the top of the stack. The algorithm uses 3 main types of decisions:

1. The decisionShiftw shifts the wordw from the queue to the stack.

2. The decisionProjectY replaces the current top of the stackX with a new nodeY, and specifies
thatY is the parent ofX in the output structure.

3. The decisionAttach removes the current top of the stackX and specifies that elementY under
the top of the stack is the parent ofX.

Though these three types of decisions are sufficient to parse any constituent tree, Henderson
(2003) extends the parsing strategy to include a specific treatment of a particular configuration in
the parse tree,Chomsky adjunction, using a version of the Attach decision calledModify .

As was defined in expression (5), the probability of each state variablest
j in the ISBN depends on

all the latent variables and previous relevant decisions in a subset of previous relevant positionst ′ :
r(t ′, t). In this ISBN model for phrase structure parsing, we use the same patternof interconnections
between variables as in the neural network of Henderson (2003), where there are different relations
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r(t ′, t) for selecting previous decision variablesDt ′ and for selecting previous latent variablesSt ′ .
Namely, the following four types of relations for selecting the previous positions t ′ : r(t ′, t) for
latent variablesSt ′ are used:

1. Stack Context: the last previous position with the same element on top of the stack as at
current positiont.

2. Sub-Top of Stack: the last previous position where the node under the current top of the stack
was on top of the stack.

3. Left Child of Top of Stack: the last previous position where the leftmost child of the current
stack top was on top of the stack.

4. Right Child of Top of Stack: the last previous position where the rightmost child of the current
stack top was on top of the stack.

These relations were motivated by linguistic considerations and many of them have also been found
useful in other parsing models (Johnson, 1998; Roark and Johnson,1999). Also, this set of relations
ensures that the immediately preceding state is always included somewhere in the set of connected
states. This requirement ensures that information, at least theoretically, can pass between any two
states in the decision sequence, thereby avoiding any hard independence assumptions. Also note that
each relation only selects at most one position (the most recent one of that kind). This ensures that
the number of such connections to a latent vector remains bounded at four, so it should generalise
well across larger, more complex constituency structures.

For selecting the previous positionst ′ : r(t ′, t) for decision variablesDt ′ , the following relations
are use:

1. Previous: the previous positiont −1.

2. Top: the position at which the current top of the stack was shifted (if it is a terminal)or
introduced (if non-terminal).

3. Last Shift: the position at which the last terminal was shifted.

4. Left Terminal of Top of Stack: the position when the leftmost terminal dominated by the
current stack top was shifted.

This set includes the previous decision (Previous), which is important if the model does not do back-
ward reasoning, as in the feed-forward approximation. The remaining relations pick out important
labels, part-of-speech tags, and words in the context.

We used the Penn Treebank Wall Street Journal corpus to perform theempirical evaluation
of the considered approaches. It is expensive to train the IMF approximation on the whole WSJ
corpus, so instead we both trained and tested the model only on sentences of length at most 15, as
in Taskar et al. (2004); Turian et al. (2006); Finkel et al. (2008). The standard split of the corpus
into training (9,753 sentences, 104,187 words), validation (321 sentences, 3,381 words), and testing
(603 sentences, 6,145 words) was performed.

As in Henderson (2003) and Turian and Melamed (2006) we used a publicly available tag-
ger (Ratnaparkhi, 1996) to provide the part-of-speech tag for each word in the sentence. For each
tag, there is an unknown-word vocabulary item which is used for all thosewords which are not
sufficiently frequent with that tag to be included individually in the vocabulary. We only included
a specific tag-word pair in the vocabulary if it occurred at least 20 time in thetraining set, which
(with tag-unknown-word pairs) led to the very small vocabulary of 567 tag-word pairs.

3559



HENDERSON ANDTITOV

R P F1

Bikel, 2004 87.9 88.8 88.3
Taskar et al., 2004 89.1 89.1 89.1
NN method 89.1 89.2 89.1
Turian et al., 2006 89.3 89.6 89.4
IMF method 89.3 90.7 90.0
Charniak, 2000 90.0 90.2 90.1
Finkel et al., 2008, ‘feature-based’ 91.1 90.2 90.6

Table 1: Percentage labelled constituent recall (R), precision (P), combination of both (F1) on the
testing set.

For decoding, we use best-first search with the search space prunedin two different ways. First,
only a fixed number of the most probable partial derivations are pursuedafter each word shift opera-
tion. Secondly, the branching factor at each decision is limited. In the experiments presented in this
chapter, we used the post-shift beam width of 10 and the branching factor of 5. Increasing the beam
size and the branching factor beyond these values did not significantly effect parsing accuracy. For
both of the models, the state vector length of 40 was used. All the parameters for both the NN and
IMF models were tuned on the validation set. A single best model of each type was then applied to
the final testing set.

Table 1 lists the results of the NN approximation and the IMF approximation,7 along with re-
sults of different generative and discriminative parsing methods evaluated in the same experimental
setup (Bikel, 2004; Taskar et al., 2004; Turian et al., 2006; Charniak,2000; Finkel et al., 2008).8

The IMF model improves over the baseline NN approximation, with a relative error reduction in
F-measure exceeding 8%. This improvement is statistically significant.

The IMF model achieves results which do not appear to be significantly different from the re-
sults of the best model in the list (Charniak, 2000). Although no longer oneof the most accurate
parsing models on the standard WSJ parsing benchmark (including sentences of all lengths), the
(Charniak, 2000) parser achieves competitive results (89.5% F-measure) and is still considered a
viable approach, so the results reported here confirm the viability of our models. It should also be
noted that previous results for the NN approximation to ISBNs on the standard WSJ benchmark
(Henderson, 2003, 2004) achieved accuracies which are still competitive with the state of the art
(89.1% F-measure for Henderson, 2003 and 90.1% F-measure for Henderson, 2004). For com-
parison, the LPCFG model of Petrov et al. (2006) achieve 89.7% F-measure on the standard WSJ
benchmark.

We do not report the results on our data set of the LPCFG model of Petrovet al. (2006), probably
the most relevant previous work on grammar learning (see the extended discussion in Section 8), as
it would require tuning of their split-merge EM algorithm to achieve optimal resultson the smaller

7. Approximate training times on a standard desktop PC for the IMF and NN approximations were 140 and 3 hours,
respectively, and parsing times were 3 and 0.05 seconds per token, respectively. Parsing with the IMF method could
be made more efficient, for example by not requiring the numerical approximations to reach convergence.

8. The results for the models of Bikel (2004) and Charniak (2000) trained and tested on sentences of length at most 15
were originally reported by Turian and Melamed (2005).
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data set. However, we note that the CRF-based model of Finkel et al. (2008) (the reported ‘feature-
based’ version) and the LPCFG achieves very close results when trained and tested on the sentences
of length under 100 (Finkel et al., 2008) and, therefore, would be expected to demonstrate similar
results in our setting. Note also that the LPCFG decoding algorithm uses a form of Bayes risk
minimisation to optimise for the specific scoring function, whereas our model, as most parsing
methods in the literature, output the highest scoring tree (maximum a-posteriori decoding). In fact,
approximate Bayes risk minimisation can be used with our model and in our previous experiments
resulted in approximately 0.5% boost in performance (Titov and Henderson, 2006). We chose not
to use it here, as the maximum a-posteriori decoding is simpler, more widely accepted and, unlike
Bayes risk minimisation, is expected to result in self-consistent trees.

These experimental results suggest that ISBNs are an appropriate modelfor structured predic-
tion. Even approximations such as those tested here, with a very strong factorisability assumption,
allow us to build quite accurate parsing models. We believe this provides strongjustification for
work on more accurate approximations of ISBNs.

8. Additional Related Work

Whereas graphical models are standard models for sequence processing, there has not been much
previous work on graphical models for the prediction of structures more complex than sequences.
Sigmoid belief networks were used originally for character recognition tasks, but later a Markovian
dynamic extension of this model was applied to the reinforcement learning task(Sallans, 2002).
However, their graphical model, approximation method, and learning method differ substantially
from those of this paper.

When they were originally proposed, latent variable models for natural language parsing were
not particularly successful, demonstrating results significantly below the state-of-the-art models (Kuri-
hara and Sato, 2004; Matsuzaki et al., 2005; Savova and Peshkin, 2005; Riezler et al., 2002) or they
were used in combination with already state-of-the-art models (Koo and Collins, 2005) and demon-
strated a moderate improvement. More recently several methods (Petrov et al., 2006; Petrov and
Klein, 2007; Liang et al., 2007), framed as grammar refinement approaches, demonstrated results
similar to the best results achieved by generative models. All these approaches considered exten-
sions of a classic PCFG model, which augment non-terminals of the grammar with latent variables
(Latent-annotated PCFGs, LPCFGs). Even though marginalisation can be performed efficiently
by using dynamic programming, decoding under this model is NP-hard (Matsuzaki et al., 2005;
Sima’an, 1992). Instead, approximate parsing algorithms were considered.

The main reason for the improved performance of the more recent LPCFG methods is that
they address the problem that with LPCFGs it is difficult to discover the appropriate latent variable
augmentations for non-terminals. Early LPCFG models which used straight-forward implemen-
tations of expectation maximisation algorithms did not achieve state-of-the-art results (Matsuzaki
et al., 2005; Prescher, 2005). To solve this problem the split-and-mergeapproach was considered
in Petrov et al. (2006); Petrov and Klein (2007) and Dirichlet Process priors in Liang et al. (2007).
The model of Petrov and Klein (2007) achieved the best reported resultfor a single model parser
(90.1% F-measure). Even with the more sophisticated learning methods, in all of the work on
LPCFGs the number of latent annotations which are successfully learnt is small, compared to the
40-dimensional vectors used in our experiments with ISBNs.
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One important difference between LPCFGs and ISBNs is that in LPCFGs thelatent annotations
are used to expand the set of atomic labels used in a PCFG, whereas ISBNsdirectly reason with a
vector of latent features. This use of a vector space instead of atomic labels provides ISBNs with a
much larger label space with a much richer structure of similarity between labels, based on shared
features. This highly structured label space allows standard gradient descent techniques to work
well even with large numbers of latent features. In contrast, learning forLPCFGs has required the
specialised methods discussed above and has succeeded in searching amuch more limited space
of latent annotations. These specialised methods impose a hierarchical structure of similarity on
the atomic labels of LPCFGs, based on recursive binary augmentations of labels (“splits”), but this
hierarchical structure is much less rich that the similarity structure of a vectorspace.

Another important difference with LPCFGs is that ISBN models do not place strong restrictions
on the structure of statistical dependencies between latent variables, such as the context-free restric-
tion of LPCFGs. This makes ISBNs easily applicable to a much wider set of problems. For example,
ISBNs have been applied to the dependency parsing problem (Titov and Henderson, 2007) and to
joint dependency parsing and semantic role labelling (Henderson et al., 2008; Gesmundo et al.,
2009), where in both cases they achieved state-of-the-art results. The application of LPCFG mod-
els to even dependency parsing has required sophisticated grammar transformations (Musillo and
Merlo, 2008), to which the split-and-merge training approach has not yetbeen successfully adapted.

The experiments reported in Henderson et al. (2008) also suggest thatthe latent annotations
of syntactic states are not only useful for syntactic parsing itself but alsocan be helpful for other
tasks. In these experiments, semantic role labelling performance rose by about 3.5% when latent
annotations for syntactic decision were provided, thereby indicating that the latent annotation of
syntactic parsing states helps semantic role labelling.

9. Conclusions

This paper proposes a new class of graphical models for structured prediction problems, incremen-
tal sigmoid belief networks, and has applied it to natural language grammar learning. ISBNs allow
the structure of the graphical model to be dependent on the output structure. This allows the model
to directly express regularities that are local in the output structure but not local in the input struc-
ture, making ISBNs appropriate for parsing problems. This ability supportsthe induction of latent
variables which augment the grammatical structures annotated in the training data, thereby solving
a limited form of grammar induction. Exact inference with ISBNs is not tractable, but we derive
two tractable approximations. First, it is shown that the feed-forward neural network of Henderson
(2003) can be considered as a simple approximation to ISBNs. Second, a more accurate but still
tractable approximation based on mean field theory is proposed.

Both approximation models are empirically evaluated. First, artificial experimentswere per-
formed, where both approximations significantly outperformed a baseline. The mean field method
achieved average relative error reduction of about 27% over the neural network approximation,
demonstrating that it is a more accurate approximation. Second, both approximations were applied
to the natural language parsing task, where the mean field method demonstrated significantly bet-
ter results. These results are non-significantly different from the results of another history-based
probabilistic model of parsing (Charniak, 2000) which is competitive with the state-of-the-art for
single-model parsers. The fact that a more accurate approximation leadsto a more accurate parser
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suggests that the ISBNs proposed here are a good abstract model forgrammar learning. This em-
pirical result motivates further research into more accurate approximations of ISBNs.
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Appendix A.

This appendix presents details of computing gradients for the incremental mean field approxima-
tion. We perform maximum likelihood estimation of the ISBN parameters, using the estimator of
the structure probability defined in expression (8). We focus on the incremental mean field approxi-
mation introduced in Section 5.3. As we have shown there, estimates of the conditional distribution
qt

k(d)≈ P(dt
k = d|h(t,k)) are dependent on the meansµt,k computed at the elementary step(t,k) in

the same way as the estimatesqt
k(d) in the feed-forward approximation depend on the meansµt in

expression (10), that is,

qt
k(d) =

Φh(t,k)(d)exp(∑ j Wd jµ
t,k
j )

∑d′ Φh(t,k)(d′)exp(∑ j Wd′ jµ
t,k
j )

. (15)

We use the gradient descent algorithm, so the goal of this section is to describe how to compute
derivatives of the log-likelihood

L̂(T) = ∑
t,k

∑
j

Wdt
k jµ

t,k
j − log

(

∑
d′

Φh(t,k)(d
′)exp(∑

j

Wd′ jµ
t,k
j )

)

with respect to all the model parameters. The derivatives ofL̂(T) with respect to model parameters
can be expressed as

dL̂(T)
dx

= ∑
d, j

∂L̂(T)
∂Wd j

dWd j

dx
+ ∑

t,k,i

∂L̂(T)

∂µt,k
i

dµt,k
i

dx
, (16)

wherex is any model parameter, that is, entries of the weight matricesJ, B andW. All the terms

except fordµt,k
i

dx are trivial to compute:

∂L̂(T)
∂Wd j

= ∑
t,k

µt,k
j

(

δdt
kd −qt

k(d)
)

, (17)

∂L̂(T)

∂µt,k
i

= (1−δk,Kt+1)

(

Wdt
ki −∑

d

qt
k(d)Wdi

)

,
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whereδi j is the Kronecker delta. Computation of the total derivativesdµt,k
i

dx is less straightforward.

The main challenge is that dependence ofµt,k
j for k > 1 on other model parameters cannot be ex-

pressed analytically, as we found values ofµt,k
j by performing numerical maximisation of the ex-

pressionLt,k
V (13). In the next several paragraphs we will consider only the case of k > 1, but later

we will return to the simpler case ofk= 1, where the computation of derivatives is equivalent to the
backpropagation algorithm in standard feed-forward neural networks.

Note that the gradient of the log-likelihood can be easily computed in the standard mean field
methods for SBNs (Saul and Jordan, 1999; Saul et al., 1996), even though they also use numeric
strategies to find optimal means. There means are selected so as to maximise the variational upper
boundLV (4), which is used as the log-likelihood̂L = LV in their approach. In static SBNs it
is feasible to perform complete maximisation of the entireL̂, which involves multiple backward-
forward passes through the structure of the graphical model. This leadsto all the derivativesdL̂

dµi

being equal to zero. Therefore, no error backpropagation is needed in their case. All the derivatives
dL̂
dx can be computed using variational parameters associated with the nodes corresponding to the
parameterx. E.g. if x is a weight of an edge then only variational parameters associated with
the variables at its ends are needed to compute the derivative. Unfortunately, learning with the
incremental mean field approximation proposed in this paper is somewhat more complex.

In order to compute derivativesdµt,k
i

dx we assume that maximisation ofLt,k
V is done until conver-

gence, then the partial derivatives ofLt,k
V with respect toµt,k

i are equal to zero. This gives us a system
of linear equations, which describes interdependencies between the current meansµt,k, the previous
meansµt,k−1 and the weightsW:

F t,k
i =

∂Lt,k
V

∂µt,k
i

= ln(1−µt,k
i )− lnµt,k

i − ln(1−µt,k−1
i )+ lnµt,k−1

i

+Wdt
k−1i −∑

d

q̂t
k−1(d)Wdi = 0,

for 1< i ≤ n, whereq̂t
k−1 is the distribution over decisions computed in the same way asqt

k−1 (15),

but using meansµt,k
i instead ofµt,k−1

i :

q̂t
k−1(d) =

Φh(t,k−1)(d)exp(∑ j Wd jµ
t,k
j )

∑d′ Φh(t,k−1)(d′)exp(∑ j Wd′ jµ
t,k
j )

.

This system of equations permits the use of implicit differentiation to compute the derivatives
∂µt,k

i
∂z , wherez can be a weight matrix componentWd j or a previous meanµt,k−1

j involved in ex-
pression (13). It is important to distinguishz from x, used above, becausex can be an arbitrary
model parameter not necessary involved in the expressionLt,k

V but affecting the current meansµt,k
i

throughµt,k−1
j . Equally important to distinguish partial derivatives∂µt,k

i
∂z from the total derivatives

dµt
i

dz , because the dependency ofµt,k
i on parameterzcan be both direct, through maximisation ofLt,k

V ,

but also indirect through previous maximisation steps(t ′,k′), whereLt ′,k′

V was dependent onz. The
relation between the total and partial derivatives can be expressed as

dµt,k
i

dz
=

∂µt,k
i

∂z
+∑

j

∂µt,k
i

∂µt,k−1
j

dµt,k−1
j

dz
,
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meaning that indirect dependencies ofµt,k
i (k > 1) on parametersz are coming through previous

meansµt,k−1
j . We apply the implicit differentiation theorem and obtain the vector of partial deriva-

tives with respect to a parameterz Dzµt = {
∂µt

1
∂z , . . . ,

∂µt
n

∂z } as

Dzµ
t =−

(

Dµt F t,k
)−1

DzF
t,k, (18)

whereDµt F t,k andDzF t,k are Jacobians:

Dµt F t,k =









∂F t,k
1

∂µt
1

. . .
∂F t,k

1
∂µt

n

. . . . . . . . .
∂F t,k

n
∂µt

1
. . . ∂F t,k

n
∂µt

n









, DzF t,k =







∂F t,k
1

∂z
. . .

∂F t,k
n

∂z






.

Now we derive the JacobiansDµt F t,k andDzF t,k for different types of parametersz. The matrix
Dµt F t,k consists of the components

∂F t,k
i

∂µt,k
j

=−
δi j

µt,k
j (1−µt,k

j )
−∑

d

q̂t
k−1(d)WdiWd j

+

(

∑
d

q̂t
k−1(d)Wdi

)(

∑
d

q̂t
k−1(d)Wd j

)

, (19)

whereδi j is the Kronecker delta. If we considerW·i as a random variable accepting valuesWdi under
distribution q̂t

k−1, we can rewrite the JacobianDµt F t,k as the negated sum of a positive diagonal
matrix and the covariance matrixΣq̂t

k−1
(W). Therefore the matrixDµt F t,k is negative semidefinite.

Note that this matrix is the Hessian for the expressionLt,k
V (13), which implies concavity ofLt,k

V
stated previously without proof. Similarly, the Hessian for (11) is only different by including output
weight covariances for all the previous elementary decision, not only for the last one, and therefore
expression (11) is also concave.

To conclude with the computation of∂µt,k
i

∂z , we computeDµt,k−1F t,k andDWF t,k:

∂F t,k
i

∂µt,k−1
j

=
δi j

µt,k−1
j (1−µt,k−1

j )
, (20)

∂F t,k
i

∂Wd j
= δi j δddt

k
− q̂t

k−1(d)

(

δi j +(Wdi −∑
d′

q̂t
k−1(d

′)Wd′i)µ
t,k
j

)

. (21)

Now the partial derivatives∂µt,k
i

∂Wd j
and ∂µt,k

i

∂µt,k−1
i

can be computed by substituting expressions (19)-(21)

into (18).
Fork= 1, µt,1

i was shown to be equal to the sigmoid function of the weighted sum of the parents
means as defined in (12) and (14). Therefore, we can compute the partial derivatives ofµt,1

i with
respect to other means and parameters involved in (12) and (14):

∂µt,1
i

∂µ
t ′,Kt′+1
j

= σ′(ηt
i ) ∑

r:r(t ′,t)

Jr
i j ,
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∂µt,1
i

∂Jr
jl
= δi j σ′(ηt

i ) ∑
t ′:r(t ′,t)

µ
t ′,Kt′+1
l ,

∂µt,1
i

∂Brk
jd

= δi j σ′(ηt
i ) ∑

t ′:r(t ′,t)

δddt′
k
.

whereσ′(ηt
i ) = σ(ηt

i )(1−σ(ηt
i )).

In order to computedµt,k
i

dx in (16), derivatives with respect to previous means∂µt,k
i

∂µt,k−1
i

are used to

propagate the error in a similar way to the neural network backpropagationalgorithm (Rumelhart
et al., 1986). We denote the total derivative of the approximate log-likelihood with respect to the

means of the latent variables asεt,k
i = dL̂(T)

dµt,k
i

. The incrementality of the mean field algorithm guar-

antees that latent vectors of meansµt,k are computed from the means of the previous elementary
steps. Therefore, valuesεt,k

i can be computed in the opposite order, propagating the information
back through the structure. Namely, the recursive formulae would be:

εt,k
i =

∂logqt
k

∂µt,k
i

+∑
j

εt,k+1
j

∂µt,k+1
j

∂µt,k
i

, k≤ Kt ,

εt,Kt+1
i = ∑

r,t ′:r(t,t ′)
∑

j

εt ′,1
j σ′(ηt ′

j )J
r
ji .

After computing valuesε for all the elementary steps(t,k), we can evaluate the derivatives of
the model parameters. We start with the output distribution parametersWdi:

dL̂(T)
dWdi

=
∂L̂(T)
∂Wdi

+∑
t,k

∑
j

εt,k
∂µt,k

j

∂Wdi
.

The first term here is evaluated as defined in (17), the term
∂µt,k

j

∂Wdi
is computed as explained above.

Finally, the total derivatives of the log-likelihood with respect to the parameters Jt
i j andBrk

id are
found as follows

dL̂(T)
dJr

i j
= ∑

t
µt

j ∑
t ′:r(t,t ′)

εt ′,1
i σ′(ηt ′

i ),

dL̂(T)

dBrk
id

= ∑
t

δdt
kd ∑

t ′:r(t,t ′)

εt ′,1
i σ′(ηt ′

i ).
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