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Abstract
We consider a sequential version of the classical bin packing problem in which items are received
one by one. Before the size of the next item is revealed, the decision maker needs to decide whether
the next item is packed in the currently open bin or the bin is closed and a new bin is opened. If
the new item does not fit, it is lost. If a bin is closed, the remaining free space in the bin accounts
for a loss. The goal of the decision maker is to minimize the loss accumulated overn periods. We
present an algorithm that has a cumulative loss not much larger than any strategy in a finite class
of reference strategies for any sequence of items. Special attention is payed to reference strategies
that use a fixed threshold at each step to decide whether a new bin is opened. Some positive and
negative results are presented for this case.

Keywords: bin packing, on-line learning, prediction with expert advice

1. Introduction

In the classicaloff-linebin packing problem, an algorithm receivesitems(also calledpieces) of size
x1,x2, . . . , xn ∈ (0,1]. We have an infinite number of bins, each with capacity 1, and every item is to
be assigned to a bin. Further, the sum of the sizes of the items (also denoted by xt) assigned to any
bin cannot exceed its capacity. A bin is empty if no item is assigned to it, otherwise, it is used. The
goal of the algorithm is to minimize the number of used bins. This is one of the classical NP-hard
problems and heuristic and approximation algorithms have been investigated thoroughly, see, for
example, Coffman et al. (1997).

Another well-studied version of the problem is the so-calledon-linebin packing problem. Here
items arrive one by one and each itemxt must be assigned to a bin (with free space at leastxt)
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immediately, without any knowledge of the next pieces. In this setting the goal isthe same as in
the off-line problem, that is, the number of used bins is to be minimized, see, forexample, Seiden
(2002).

In both the off-line and on-line problems the algorithm has access to the bins inarbitrary or-
der. In this paper we abandon this assumption and introduce a more restricted version that we call
sequential bin packing. In this setting items arrive one by one (just like in the on-line problem)
but in each round the algorithm has only two possible choices: assign the given item to the (only)
open bin or to the “next” empty bin (in this case this will be the new open bin), anditems cannot
be assigned anymore to closed bins. An algorithm thus determines a sequence of binary decisions
i1, . . . , in whereit = 0 means that the next item is assigned to the open bin andit = 1 means that a
new bin is opened and the next item is assigned to that bin. Of course, ifit = 0, then it may happen
that the itemxt does not fit in the open bin. In that case the item is “lost.” If the decision isit = 1 then
the remaining empty space in the last closed bin is counted as a loss. The measure of performance
we use is the total sum of all lost items and wasted empty space.

Just as in the original bin packing problem, we may distinguish off-line and on-line versions
of the sequential bin packing problem. In theoff-line sequentialbin packing problem the entire
sequencex1, . . . ,xn is known to the algorithm at the outset. Note that unlike in the classical bin
packing problem, the order of the items is relevant. This problem turns out to be computationally
significantly easier than its non-sequential counterpart. In Section 3 we present a simple algorithm
with running time ofO(n2) that minimizes the total loss in the off-line sequential bin packing
problem.

Much more interesting is the on-line variant of the sequential bin packing problem. Here the
itemsxt are revealed one by one,after the corresponding decisionit has been made. In other words,
each decision has to be made without any knowledge on the size of the item. Formulated this way,
the problem is reminiscent of an on-lineprediction problem, see Cesa-Bianchi and Lugosi (2006).
However, unlike in standard formulations of on-line prediction, here the loss the predictor suffers
depends not only on the outcomext and decisionit but also on the “state” defined by the fullness of
the open bin.

Our goal is to extend the usual bin packing problems to situations in which one can handle only
one bin at a time, and items must be processed immediately so they cannot wait forbin changes.
To motivate the on-line sequential model, one may imagine a simple revenue management problem
in which a decision maker has a unit storage capacity at his disposal. A certain product arrives in
packages of different size and after each arrival, it has to be decided whether the stored packages
are shipped or not. (Storage of the product is costly.) If the stored goods are shipped, the entire
storage capacity becomes available again. If they are not shipped one waits for the arrival of the
next package. However, if the next package is too large to fit in the remaining open space, it is lost
(it will be stored in another warehouse).

In another example of application, a sensor collects measurements that can be compressed to
variable size (these are the items). The sensor communicates its measurements by sending frames
of some fixed size (bins). Since it has limited memory, it cannot store more data than one frame.
To save energy, the sensor must maximize its throughput (the proportion ofuseful data in each
frame) and at the same time minimize data loss (this trade-off is reflected in the definition of the
loss function).

Just like in on-line prediction, we compare the performance of an algorithm with the best in
a pool of reference algorithms (experts). Given a set ofN reference strategies, we construct a
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randomized algorithm for the sequential on-line bin packing problem that achieves a cumulative
loss (measured as the sum of the total wasted capacity and lost items) that is less than the total loss
of the best strategy in the class (determined in hindsight) plus a quantity of the order ofn2/3 ln1/3N.

Arguably the most natural comparison class contains all algorithms that use afixed threshold
to decide whether a new bin is opened. In other words, reference predictors are parameterized by
a real numberp∈ (0,1]. An expert with parameterp simply decides to open a new bin whenever
the remaining free space in the open bin is less thanp. We call such an expert aconstant-threshold
strategy. First we point out that obtaining uniform regret bounds for this class is difficult. We
present some impossibility results in relation to this problem. We also offer some data-dependent
bounds for an algorithm designed to compete with the best of all constant-threshold strategies, and
show that if item sizes are jittered with a certain noise then a uniform regret bound of the order of
n2/3 ln1/3n may be achieved .

The principal difficulty of the problem lies in the fact that each action of the decision maker takes
the problem in a new “state” (determined by the remaining empty space in the openbin) which has
an effect on future losses. Moreover, the state of the algorithm is typicallydifferent from the state
of the experts which makes comparison difficult. In related work, Merhav et al. (2002) considered
a similar setup in which the loss function has a “memory,” that is, the loss of a predictor depends on
the loss of past actions. Furthermore, Even-Dar et al. (2005) and Yu et al. (2009) considered theMDP

case where the adversarial reward function changes according to some fixed stochastic dynamics.
However, there are several main additional difficulties in the present case. First, unlike in Merhav
et al. (2002), but similarly to Even-Dar et al. (2005) and Yu et al. (2009), the loss function has an
unbounded memory as the state may depend on an arbitrarily long sequence of past predictions.
Second, the state space is infinite (the[0,1) interval) and the class of experts we compare to is also
infinite, in contrast to both of the above papers. However, the special properties of the bin packing
problem make it possible to design a prediction strategy with small regret.

Note that theMDP setting of Even-Dar et al. (2005) and Yu et al. (2009) would be a too pes-
simistic approach to our problem, as in our case there is a strong connection between the rewards in
different states, thus the absolute adversarial reward function resultsin an overestimated worst case.
Also, in the present case, state transitions are deterministically given by the outcome, the previous
state, and the action of the decision maker, while in the setup of Even-Dar et al. (2005) and Yu et al.
(2009) transitions are stochastic and depend only on the state and the decision of the algorithm, but
not on the reward (or on the underlying individual sequence generating the reward).

We also mention here the similaron-line bin packing with rejectionproblem where the algorithm
has an opportunity to reject some items and the loss function is the sum of the number of the used
bins and the “costs” of the rejected items, see He and Dósa (2005).1 However, instead of the number
of used bins, we use the sum of idle capacities (missed or free spaces) in the used bins to measure
the loss.

The following example may help explain the difference between various versions of the prob-
lem.

Example 1 Let the sequence of the items be〈0.4,0.5,0.2, 0.5,0.5,0.3,0.5,0.1〉. Then the cumula-
tive loss of the optimal off-line bin packing is0 and it is 0.4 in the case of sequential off-line bin
packing (see Figure 1). In the sequential case the third item (0.2) has been rejected.

1. In sequential bin packing we assume that the cost of the items coincideswith their size. In this case the optimal
solution of bin-packing with rejection is trivially to reject all items.
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Figure 1: The difference between the optimal solutions for the off-line andsequential off-line prob-
lems.

The rest of the paper is organized as follows. In Section 2 the problem is defined formally.
In Section 3 the complexity of the off-line sequential bin packing problem is analyzed. The main
results of the paper are presented in Sections 4 and 5.

2. Setup

We use a terminology borrowed from the theory of on-line prediction with expert advice. Thus, we
call the sequential decisions of the on-line algorithmpredictionsand we useforecasteras a synonym
for algorithm.

We denote byIt ∈ {0,1} the action of the forecaster at timet (i.e., whent −1 items have been
received). Action 0 means that the next item will be assigned to the open bin and action 1 represents
the fact that a new bin is opened and the next item is assigned to the next emptybin. Note that
we assume that we start with an open empty bin, thus for any reasonable algorithm, I1 = 0, and we
will restrict our attention to such algorithms. The sequence of decisions up totime t is denoted by
I t ∈ {0,1}t .

Denote bŷst ∈ [0,1) the free space in the open (last) bin at timet ≥ 1, that is, after having placed
the itemsx1,x2, . . . ,xt according to the sequenceI t of actions. This is thestateof the forecaster.
More precisely, the state of the forecaster is defined, recursively, asfollows: As at the beginning we
have an empty bin,̂s0 = 1. Fort = 1,2, . . . ,n,

• ŝt = 1−xt , when the algorithm assigns the item to the next empty bin (i.e.,It = 1);

• ŝt = ŝt−1, when the assigned item does not fit in the open bin (i.e.,It = 0 andŝt−1 < xt);

• ŝt = ŝt−1−xt , when the assigned item fits in the open bin (i.e.,It = 0 andŝt−1 ≥ xt).

This may be written in a more compact form:

ŝt = ŝt(It ,xt , ŝt−1)

= It(1−xt)+(1− It)(ŝt−1− I{ŝt−1≥xt}xt)

whereI{·} denotes the indicator function of the event in brackets, that is, it equals 1 ifthe event is
true and 0 otherwise. The loss suffered by the forecaster at roundt is

ℓ(It ,xt | ŝt−1),
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where the loss functionℓ is defined by

ℓ(0,x | s) =

{
0, if s≥ x;

x, otherwise
(1)

and
ℓ(1,x | s) = s . (2)

The goal of the forecaster is to minimize its cumulative loss defined by

L̂t = LI t ,t =
t

∑
s=1

ℓ(Is,xs | ŝs−1) .

In the off-line version of the problem, the entire sequencex1, . . . ,xn is given and the solution is the
optimal sequenceI ∗n of actions

I ∗n = argmin
In∈{0,1}n

LIn,n .

In the on-line version of the problem the forecaster does not know the size of the next items, and the
sequence of items can be completely arbitrary. We allow the forecaster to randomize its decisions,
that is, at each time instancet, It is allowed to depend on a random variableUt whereU1, . . . ,Un are
i.i.d. uniformly distributed random variables in[0,1].

Since we allow the forecaster to randomize, it is important to clarify that the entire sequence
of items are determinedbeforethe forecaster starts making decisions, that is,x1, . . . ,xn ∈ (0,1] are
fixed and cannot depend on the randomizing variables. (This is the so-called oblivious adversary
model known in the theory of sequential prediction, see, for example, Cesa-Bianchi and Lugosi
2006.)

The performance of a sequential on-line algorithm is measured by its cumulative loss. It is
natural to compare it to the cumulative loss of the off-line solutionI ∗n. However, it is easy to see
that in general it is impossible to achieve an on-line performance that is comparable to the optimal
solution. (This is in contrast with the non-sequential counterpart of the binpacking problem in
which there exist on-line algorithms for which the number of used bins is within aconstant factor
of that of the optimal solution, see Seiden 2002.)

So in order to measure the performance of a sequential on-line algorithm in ameaningful way,
we adopt an approach extensively used in on-line prediction (the so-called “experts” framework).
We define a set of reference forecasters, the so-calledexperts. The performance of the algorithm is
evaluated relative to this set of experts, and the goal is to perform asymptotically as well as the best
expert from the reference class.

Formally, let fE,t ∈ {0,1} be the decision of an expertE at roundt, whereE ∈ E andE is the
set of the experts. This set may be finite or infinite, we consider both casesbelow. Similarly, we
denote the state of expertE with sE,t after thet-th item has been revealed. Then the loss of expertE
at roundt is

ℓ( fE,t ,xt | sE,t−1)

and the cumulative loss of expertE is

LE,n =
n

∑
t=1

ℓ( fE,t ,xt | sE,t−1).
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SEQUENTIAL ON-LINE BIN PACKING PROBLEM WITH EXPERT ADVICE

Parameters: setE of experts, state spaceS = [0,1), action spaceA = {0,1}, non-
negative loss functionℓ : (A× (0,1]|S) → [0,1), numbern of items.
Initialization: ŝ0 = 1 andsE,0 = 1 for all E ∈ E .

For each roundt = 1, . . . ,n,

(a) each expert forms its actionfE,t ∈ A ;

(b) the forecaster observes the actions of the experts and forms its own decision
It ∈ A ;

(c) the next itemxt ∈ (0,1] is revealed;

(d) the algorithm incurs lossℓ(It ,xt | ŝt−1) and each expertE ∈ E incurs loss
ℓ( fE,t ,xt | sE,t−1). The states of the experts and the algorithm are updated.

Figure 2: Sequential on-line bin packing problem with expert advice.

The goal of the algorithm is to perform almost as well as the best expert from the reference classE
(determined in hindsight). Ideally, the normalized difference of the cumulative losses (the so-called
regret) should vanish asn grows, that is, one wishes to achieve

limsup
n→∞

1
n
(L̂n− inf

E∈E
LE,n) ≤ 0

with probability one, regardless of the sequence of items. This property is calledHannan consis-
tency, see Hannan (1957). The model of sequential on-line bin packing with expert advice is given
in Figure 2.

In Sections 4 and 5 we design sequential on-line bin packing algorithms. In Section 4 we assume
that the classE of experts is finite. For this case we establish a uniform regret bound, regardless of
the class and the sequence of items. In Section 5 we consider the (infinite) class of experts defined
by constant-threshold strategies. This case turns out to be considerablymore difficult. We show
that algorithms, similar (in some sense) to the one developed for the finite expertclasses, cannot
work in general in this situation. We provide a data-dependent regret bound for a generalization
of the finite-expert algorithm of Section 4, which, in accordance with the previous result, does not
guarantee consistency in general. However, we show that if the item sizesare jittered with certain
noise, the regret of the algorithm vanishes uniformly regardless of the original sequence of items.

But before turning to the on-line problem, we show how the off-line problemcan be solved by
a simple quadratic-time algorithm.

3. Sequential Off-line Bin Packing

As it is well known, most variants of the bin packing problem areNP-hard, including bin packing
with rejection, see He and D́osa (2005), and maximum resource bin packing, see Boyar et al. (2006).
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In this section we show that the sequential bin packing problem is significantlyeasier. Indeed, we
offer an algorithm to find the optimal sequential strategy with time complexityO(n2) wheren is the
number of the items.

The key property is that after thet-th item has been received, the 2t possible sequences of
decisions cannot lead to more thant different states.

Lemma 1 For any fixed sequence of items x1,x2, . . . ,xn and for every1≤ t ≤ n,

|St | ≤ t,

where
St = {s : s= sI t ,t , I t ∈ {0,1}t}

and sI t ,t is the state reached after receiving items x1, . . . ,xt with the decision sequenceI t .

Proof The proof goes by induction. Note that sinceI1 = 0, we always havesI1,1 = 1− x1, and
therefore|S1| = 1. Now assume that|St−1| ≤ t − 1. At time t, the state of every sequence of
decisions withIt = 0 belongs to the setS ′

t = {s′ : s′ = s− I{s≥xt}xt ,s∈ St−1} and the state of those
with It = 1 becomes 1−xt . Therefore,

|St | ≤ |S ′
t |+1≤ |St−1|+1≤ t

as desired.

To describe a computationally efficient algorithm to computeI ∗n, we set up a graph with the set
of possible states as a vertex set (there areO(n2) of them by Lemma 1) and we show that the shortest
path on this graph yields the optimal solution of the sequential off-line bin packing problem.

To formalize the problem, consider a finite directed acyclic graph with a set ofverticesV =
{v1, . . . ,v|V|} and a set of edgesE={e1, . . . ,e|E|}. Each vertexvk = v(sk, tk) of the graph is defined
by a time indextk and a statesk ∈ Stk and corresponds to statesk reachable aftertk steps. To show
the latter dependence, we will writevk ∈ Stk. Two vertices(vi ,v j) are connected by an edge if and
only if vi ∈ St−1, v j ∈ St and statev j is reachable from statevi . That is, by choosing either action
0 or action 1 in statevi , the new state becomesv j after itemxt has been placed. Each edge has a
label and a weight: the label corresponds to the action (zero or one) andthe weight equals the loss,
depending on the initial state, the action, and the size of the item. Figure 3 showsthe proposed
graph. Moreover a sink vertexv|V| is introduced that is connected with all vertices inSn. These
edges have weight equal to the loss of the final states. These losses onlydepend on the initial state
of the edges. More precisely, for(vi ,v|V|) the loss is 1−si , wherevi ∈ Sn.

Notice that there is a one to one correspondence between paths fromv1 to v|V| and possible
sequences of actions of lengthn. Furthermore, the total weight of each path (calculated as the sum
of the weights on the edges of the path) is equal to the loss of the corresponding sequence of actions.
Thus, if we find a path with minimal total weight fromv1 to v|V|, we also find the optimal sequence
of actions for the off-line bin packing problem. It is well known that this canbe done inO(|V|+ |E|)
time.2

Now by Lemma 1,|V| ≤ n(n+ 1)/2+ 1, where the additional vertex accounts for the sink.
Moreover it is easy to see that|E| ≤ n(n−1)+n = n2. Hence the total time complexity of finding
the off-line solution isO(n2).

2. Here we assume the simplified computational model that referring to each vertex (and edge) requires a constant
number of operations. In a more refined computational model this may be scaled with an extra log|V| factor.
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Figure 3: The graph corresponding to the off-line sequential bin packing problem.

4. Sequential On-line Bin Packing

In this section we study the sequential on-line bin packing problem with expert advice, as described
in Section 2. We deal with two special cases. First we consider finite classes of experts (i.e.,
reference algorithms) without any assumption on the form or structure of the experts. We construct
a randomized algorithm that, with large probability, achieves a cumulative loss not larger than that
of the best expert plusO(n2/3 ln1/3N) whereN = |E | is the number of experts.

The following simple lemma is a key ingredient of the results of this section. It shows that in
sequential on-line bin packing the cumulative loss is not sensitive to the initial states in the sense
that the cumulative loss depends on the initial state in a minor way.

Lemma 2 Let i1, . . . , im ∈ {0,1} be a fixed sequence of decisions and let x1, . . . ,xm ∈ (0,1] be a
sequence of items. Let s0,s′0∈ [0,1) be two different initial states. Finally, let s0, . . . ,sm and s′0, . . . ,s

′
m

denote the sequences of states generated by i1, . . . , im and x1, . . . ,xm starting from initial states s0
and s′0, respectively. Then

∣∣∣∣∣

m

∑
t=1

ℓ(it ,xt | s′t−1)−
m

∑
t=1

ℓ(it ,xt | st−1)

∣∣∣∣∣≤ s′0 +s0 ≤ 2 .

Proof Let m′ denote the smallest index for whichim′ = 1. Note thatst−1 = s′t−1 for all t > m′.
Therefore, we have

m

∑
t=1

ℓ(it ,xt | s′t−1)−
m

∑
t=1

ℓ(it ,xt | st−1)

=
m′

∑
t=1

ℓ(it ,xt | s′t−1)−
m′

∑
t=1

ℓ(it ,xt | st−1)

=
m′−1

∑
t=1

ℓ(0,xt | s′t−1)−
m′−1

∑
t=1

ℓ(0,xt | st−1)+ ℓ(1,xm′ | s′m′−1)− ℓ(1,xm′ | sm′−1) .
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Now using the definition of the loss (see Equations 1 and 2), we write

m

∑
t=1

ℓ(it ,xt | s′t−1)−
m

∑
t=1

ℓ(it ,xt | st−1)

=
m′−1

∑
t=1

xt(I{s′t−1<xt}− I{st−1<xt})+s′m′−1−sm′−1

≤
m′−1

∑
t=1

xt(1− I{st−1<xt})+s′m′−1−sm′−1

≤
m′−1

∑
t=1

xt(1− I{st−1<xt})+s′0

≤ s0 +s′0

where the next-to-last inequality holds becauses′m′−1 ≤ s′0 andsm′−1 ≥ 0, and the last inequality
follows from the fact that

0≤ sm′−1 = sm′−2− I{sm′−2≥xm′−1}xm′−1

= sm′−3− I{sm′−3≥xm′−2}xm′−2− I{sm′−2≥xm′−1}xm′−1

= s0−
m′−1

∑
t=1

I{st−1≥xt}xt .

Similarly,
m

∑
t=1

ℓ(it ,xt | st−1)−
m

∑
t=1

ℓ(it ,xt | s′t−1) ≤ s′0 +s0

and the statement follows.

The following example shows that the upper bound of the lemma is tight.

Example 2 Let x1 = s0, s′0 < s0, and m′ = 2. Then

m

∑
t=1

ℓ(it ,xt | s′t−1)−
m

∑
t=1

ℓ(it ,xt | st−1)

= ℓ(0,x1 | s′0)+ ℓ(1,x2 | s′1)−
(
ℓ(0,x1 | s0)+ ℓ(1,x2 | s1)

)

= ℓ(0,s0 | s′0)+ ℓ(1,x2 | s′0)−
(
ℓ(0,s0 | s0)+ ℓ(1,x2 | 0)

)

= s0 +s′0− (0+0) .

Now we consider the on-line sequential bin packing problem when the goalof the algorithm is
to keep its cumulative loss close to the best in a finite set of experts. In other words, we assume
that the class of experts is finite, say|E | = N, but we do not assume any additional structure of the
experts. The ideas presented here will be used in Section 5 when we consider the infinite class of
constant-threshold experts.

The proposed algorithm partitions the time periodt = 1, . . . ,n into segments of lengthm where
m < n is a positive integer whose value will be specified later. This way we obtainn′ = ⌊n/m⌋
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segments of lengthm, and, ifm does not dividen, an extra segment of length less thanm. At the
beginning of each segment, the algorithm selects an expert randomly, according to an exponentially
weighted average distribution. During the entire segment, the algorithm followsthe advice of the
selected expert. By changing actions so rarely, the algorithm achieves a certain synchronization
with the chosen expert, since the effect of the difference in the initial statesis minor, according to
Lemma 2. (A similar idea was used in Merhav et al. (2002) in a different context.) The algorithm
is described in Figure 4. Recall that each expertE ∈ E recommends an actionfE,t ∈ {0,1} at every
time instancet = 1, . . . ,n. Since we haveN experts, we may identifyE with the set{1, . . . ,N}. Thus,
experts will be indexed by the positive integersi ∈ {1, . . . ,N}. At the beginning of each segment, the
algorithm chooses experti randomly, with probabilitypi,t , where the distributionpt = (p1,t , . . . , pN,t)
is specified in the algorithm. The random selection is made independently for each segment.

The following theorem establishes a performance bound of the algorithm. Recall thatL̂n denotes
the cumulative loss of the algorithm whileLi,n is that of experti.

Theorem 3 Let n, N≥ 1, η > 0, 1 ≤ m≤ n, andδ ∈ (0,1). For any sequence x1, . . . ,xn ∈ (0,1]
of items, the cumulative losŝLn of the randomized strategy defined in Figure 4 satisfies for all
i = 1, . . . ,N, with probability at least1−δ,

L̂n ≤ Li,n +
m
η

ln
1

wi,0
+

nη
8

+

√
nm
2

ln
1
δ

+
2n
m

+2m.

In particular, choosing wi,0 = 1/N for all i = 1, . . . ,N, m= (16n/ ln(N/δ))1/3 andη =
√

8mlnN/n,
one has

L̂n− min
i=1,...,N

Li,n ≤
3
3
√

2
n2/3 ln1/3 N

δ
+4

(
2n

ln(N/δ)

)1/3

.

Proof We introduce an auxiliary quantity, the so-calledhypothetical loss, defined as the loss the
algorithm would suffer if it had been in the same state as the selected expert. This hypothetical
loss does not depend on previous decisions of the algorithm. More precisely, the true loss of the
algorithm at time instancet is ℓ(It ,xt | ŝt) and its hypothetic loss isℓ(It ,xt | sJt ,t). Introducing the
notation

ℓi,t = ℓ( fi,t ,xt | si,t) ,

the hypothetical loss of the algorithm is just

ℓ(It ,xt | sJt ,t) = ℓ( fJt ,t ,xt | sJt ,t) = ℓJt ,t .

Now it follows by a well-known result of randomized on-line prediction (see, e.g., Lemma 5.1 and
Corollary 4.2 in Cesa-Bianchi and Lugosi, 2006) that the hypothetical loss of the sequential on-line
bin packing algorithm satisfies simultaneously for alli = 1, . . . ,N, with probability at least 1−δ,

n

∑
t=1

ℓJt ,t ≤
n

∑
t=1

ℓi,t +m

(
1
η

ln
1

wi,0
+

n′η
8

+

√
n′

2
ln

1
δ

)
+m , (3)

wheren′ = ⌊ n
m⌋ and the lastm term comes from bounding the difference on the last, not necessarily

complete segment. Now we may decompose the regret relative to experti as follows:

L̂n−Li,n =

(
L̂n−

n

∑
t=1

ℓJt ,t

)
+

(
n

∑
t=1

ℓJt ,t −Li,n

)
.
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SEQUENTIAL ON-LINE BIN PACKING ALGORITHM

Parameters:Real numberη > 0 andm∈ N
+.

Initialization: ŝ0 = 1, si,0 = 1 andwi,0 > 0 are set arbitrarily fori = 1, . . . ,N such that
w1,0 +w2,0 + · · ·+wN,0 = 1.

For each roundt = 1, . . . ,n,

(a) If ((t −1) modm) = 0 then

– calculate the updated probability distribution

pi,t =
wi,t−1

∑N
j=1w j,t−1

for i = 1, . . . ,N;

– randomly select an expertJt ∈ {1, . . . ,N} according to the probability dis-
tributionpt = (p1,t , . . . , pN,t);

otherwise, letJt = Jt−1.

(b) Follow the chosen expert:It = fJt ,t .

(c) The size of next itemxt ∈ (0,1] is revealed.

(d) The algorithm incurs loss
ℓ(It ,xt | ŝt−1)

and each experti incurs lossℓ( fi,t ,xt | si,t−1). The states of the experts and the
algorithm are changed.

(e) Update the weights
wi,t = wi,t−1e−ηℓ( fi,t ,xt |si,t−1)

for all i ∈ {1, . . . ,N}.

Figure 4: Sequential on-line bin packing algorithm.

The second term on the right-hand side is bounded using (3). To bound the first term, observe that
by Lemma 2,

L̂n−
n

∑
t=1

ℓJt ,t =
n

∑
t=1

ℓ(It ,xt | ŝt−1)−
n

∑
t=1

ℓ(It ,xt | sJt−1,t−1)

≤ m+
n′−1

∑
s=0

m

∑
t=1

(
ℓ(Ism+t ,xsm+t | ŝsm+t−1)− ℓ(Ism+t ,xsm+t | sJsm+t−1,sm+t−1)

)

≤ m+2n′

where in the first inequality we bounded the difference on the last segmentseparately.
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5. Constant-threshold Experts

In this section we address the sequential on-line bin packing problem whenthe goal is to perform
almost as well as the best in the class of all constant-threshold strategies. Recall that a constant-
threshold strategy is parameterized by a numberp∈ (0,1] and it opens a new bin if and only if the
remaining empty space in the bin is less thanp. More precisely, if the state of the algorithm defined
by expert with parameterp is sp,t−1, then at timet the expert’s advice isI{sp,t−1<p}. To simplify
notation, we will refer to each expert with its parameter, and, similarly to the previous section,fp,t

andsp,t will denote the decision of expertp at timet, and its state after the decision, respectively.
The difficulty in this setup is that there are uncountably many constant-threshold experts. The

simplest possibility is to discretize the class. For example, by considering the set of constant-
threshold experts with values ofp in the set{1/N,2/N, . . . ,1} and using the randomized algorithm
described in the previous section, we immediately obtain that the cumulative regret of the algorithm,
when compared to the best constant-threshold expert withp in this set is bounded byO(n2/3 ln1/3N)
with high probability. It is natural to suspect that ifN is large, the loss of the best discretized
constant-threshold expert is not much larger than that corresponding tothe best (unrestricted) value
of p∈ (0,1]. However, this is not true in general. The next lemma shows that any such discretization
is doomed to failure, at least in the worst-case sense. We denote byLp,n the cumulative loss of the
constant-threshold expert indexed byp∈ (0,1].

Lemma 4 For all n such that n/4 is a positive integer and1/2 < a < b≤ 1 there exists a sequence
x1, . . . ,xn of items such that

sup
p∈(a,b]

Lp,n < inf
p/∈(a,b]

Lp,n−
n
4

+3

for any values of the initial states sp,0 ∈ [p,1], p∈ (0,1].3

Proof Given 1/2 ≤ a < b ≤ 1, we construct a sequence with the announced property. The first
fourth of the sequence is defined byx1 = 1−a andx2 = · · · = xn/4 = 1. If an expert asks for a new
bin after the first item then it suffers no loss fort = 2, . . . ,n/4, thus the cumulative loss up to time
n/4 is bounded asLp,n/4 ≤ 1. Note that any expert with parameterp > a is such, as the first item
always fits the actual bin, as by the conditions of the lemma 1−a≤ a< p≤ sp,0, but then the empty
space becomess0,p− (1−a) ≤ a < p, and so expertp opens a new bin. In case of an expert with
parameterq≤ a, it depends on the initial state if the expert opens a new bin. If the actual binis left
open after the first item then the expert suffers lossLq,n/4 = n/4−1. In particular, ifsq,0 = 1 then
after the first item expertq moves to statesq,1 = a and leaves the bin open. Thus, after timen/4 an
expert either suffers loss at leastn/4−1 (then the parameter of the expert is at mosta), or it suffers
loss at most 1, but then it is in the statesp,n/4 = 1. Now for the second forth of the sequence repeat
the first one, that is, letxn/4+1 = 1−a, xn/4+2 = · · · = xn/2 = 1. By the above argument we can see
that if an expert with parameterq≤ a does not suffer large loss up to timen/4 then it starts with an
empty bin and suffers a large loss in the second fourth of the segment. Thus, Lq,n/2 ≥ n/4−1 for
anyq≤ a. On the other hand, for any expertp > a we haveLp,n/2 < 2 andsp,n/2 = 1.

3. Note that for any expertp∈ (0,1], sp,t ∈ [p,1] for all t ≥ 1 regardless of the initial state, and so it is natural to restrict
the initial state to[p,1], as well.
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After this point of time, letxn/2+1 = 1−b, xn/2+2 = b and repeat this pair of itemsn/4 times.
After receivingxn/2+1 = 1−b, every expert with parameterp∈ (a,b] keeps the bin open and there-
fore does not suffer any loss after receiving the next item. On the otherhand, experts with parameter
r > b close the bin, suffer lossb, and afterxn/2+2 = b is received, once again they close the bin and
suffer loss 1−b (here we used the fact thatr > 1−b since we assumedb > 1/2. Thus, between
periodsn/2+1 andn, all experts withp∈ (a,b] suffer zero loss while experts with parameterr > b
suffer lossn/4.

Summarizing, for the sequence

1−a, 1,1, . . . ,1︸ ︷︷ ︸
n/4−1 periods

,1−a, 1,1, . . . ,1︸ ︷︷ ︸
n/4−1 periods

,1−b,b,1−b,b. . . ,1−b,b︸ ︷︷ ︸
n/2 periods

,

we have

Lp,n






< 2 if p∈ (a,b]

≥ n/4−1 if p≤ a

≥ n/4 if p > b.

Lemma 4 implies that one cannot expect a small regret with respect to all possible constant-
threshold experts. This is true for any algorithm that, as the one proposedin the previous section,
divides time into segments and on each segment chooses a constant-threshold expert and acts as
the chosen expert during the following segment. Recall that this segmentationwas necessary to
make sure that the state of the algorithm gets synchronized with the chosen one. The statement is
formalized below.

Theorem 5 Consider any sequential on-line bin packing algorithm that divides time into segments
of lengths m1,m2, . . . ,mk ≥ 3 (where∑k

i=1mi = n) such that, at the beginning of each segment mi , the
algorithm chooses (in a possibly randomized way) a parameter pi ∈ (0,1] and follows this expert
during the segment, that is, It = I{ŝt−1<pi} for all t = ∑i−1

j=1mj + 1, . . . ,∑i
j=1mj . Then there exists

a sequence of items x1, . . . ,xn such that the loss of the algorithm satisfies, with probability at least
1/2,

L̂n ≥ inf
p∈(0,1]

Lp,n +
n
4
−6k .

Proof We construct the sequence of items using the sequence shown in the proofof Lemma 4 as a
building block. At time 1, divide the interval(0,1] into 2k subintervals of equal length and choose
one of these intervals uniformly at random. Denote the end points of this interval by (A1,B1]. Then
during the first segment we define the items by

1−A1, 1,1, . . . ,1︸ ︷︷ ︸
⌊m1/4⌋−1 periods

,1−A1, 1,1, . . . ,1︸ ︷︷ ︸
⌊m1/4⌋−1 periods

,1−B1,B1,1−B1,B1 . . . ,1−B1,B1︸ ︷︷ ︸
⌊m1/2⌋ periods

.

If m1 is not divisible by 4, we may define the remaining (at most three) items arbitrarily. Then,
according to Lemma 4, if the algorithm does not choose an expert to follow from the interval(A1,B1]
then its loss is larger by at leastm1

4 −6 than that of any expert in(A1,B1]. (The extra 3 come from
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the possibility thatm1 is not divisible by 4.) However, no matter how the algorithm chooses the
expert to follow, the probability that it finds the correct subinterval is 1/(2k).

To continue the construction, we now divide the interval(A1,B1] into 2k intervals of equal length
and choose one at random, say(A2,B2]. We define the next items similarly to the first segment, but
now we make sure that the optimal constant-threshold expert falls in the interval (A2,B2], that is,
the items of the second segment are defined by

1−A2, 1,1, . . . ,1︸ ︷︷ ︸
⌊m2/4⌋−1 periods

,1−A2, 1,1, . . . ,1︸ ︷︷ ︸
⌊m2/4⌋−1 periods

,1−B2,B2,1−B2,B2 . . . ,1−B2,B2︸ ︷︷ ︸
⌊m2/2⌋ periods

.

As before, ifm2 is not divisible by 4, we may define the remaining (at most three) items arbitrarily.
Once again, the excess loss of the algorithm, when compared to the best constant-threshold expert,
is at leastm2

4 −6 with probability 1/(2k).
We may continue the same randomized construction of the item sizes in the same manner,

always dividing the previously chosen interval into 2k equal pieces, choosing one at random, and
constructing the item sequence so that experts in the chosen interval are significantly better than any
other expert.

By the union bound, the probability that the forecaster never chooses thecorrect interval is at
least 1/2, so with probability at least 1/2,

L̂n− inf
p∈(0,1]

Lp,n ≥
k

∑
i=1

(mi

4
−6
)

=
n
4
−6k

as desired.

The theorem above shows that if one uses a segmentation for synchronization purposes, one
cannot expect nontrivial regret bounds that hold uniformly over all possible sequences of items and
for all constant-threshold experts, unless the number of segments is proportional to n. It seems
unlikely that without such synchronization one may achieveo(n) regret. Unfortunately, we do not
have a formal proof for arbitrary algorithms (that do not divide time into segments).

However, one may still obtain meaningful regret bounds that depend on the data. We derive
such a bound next. We also show that under some natural restrictions on the item sizes, this result
allows us to derive regret bounds that hold uniformly over all constant-threshold experts.

In order to understand the structure of the problem of constant-threshold experts, it is important
to observe that on any sequence ofn items, experts can exhibit only a finite number of different be-
haviors. In a sense, the “effective” number of experts is not too largeand this fact may be exploited
by an algorithm.

For t = 1, . . . ,n we call two expertst-indistinguishable(with respect to the sequence of items
x1, . . . ,xt−1) if their decision sequences are identical up to timet (note that any two experts are
1-indistinguishable, as all expertsp start with a decisionfp,1 = 0). This property defines a nat-
ural partitioning of the class of experts into maximalt-indistinguishable sets, where any two ex-
perts that belong to the same set aret-indistinguishable, and experts from different sets are not
t-indistinguishable. Obviously, there are no more than 2t maximal t-indistinguishable sets. This
bound, although finite, is still too large to be useful. However, it turns out that the number of
maximalt-indistinguishable sets only grows at most quadratically witht.

102



ON-LINE SEQUENTIAL BIN PACKING

The first step in proving this fact is the next lemma that shows that the maximalt-indistinguishable
expert sets are intervals.

Lemma 6 Let 1 ≥ p > r > 0 be such that expert p and expert r are t-indistinguishable. Then
for any p> q > r expert q is t-indistinguishable from both experts p and r. Thus, the maximal
t-indistinguishable expert sets form subintervals of(0,1].

Proof By the assumption of the lemma the decision sequences of expertsp andr coincide, that is,

fp,u = fr,u and sp,u = sr,u

for all u = 1,2, . . . , t. Let t1, t2, . . . denote the time instances when expertp (or expertr) assigns the
next item to the next empty bin (i.e.,fp,u = 1 for u = t1, t2, . . .). If expertq also decides 1 at timetk
for somek, then it will decide 0 fort = tk+1, . . . , tk+1−1 since so does expertp andp> q, and will
decide 1 at timetk+1 asq > r. Thus the decision sequence of expertq coincides with that of expert
p andr for time instancestk +1, . . . , tk+1 in this case. Since all experts start with the empty bin at
time 0, the statement of the lemma follows by induction.

Based on the lemma we can identify thet-indistinguishable sets by their end points. LetQt =
{q1,t , . . . ,qNt ,t} denote the set of the end points after receivingt −1 items, whereNt = |Qt | is the
number of maximalt-indistinguishable sets, andq0,t = 0 < q1,t < q2,t < · · · < qNt ,t = 1. Then the
t-indistinguishable sets are(qk−1,t ,qk,t ] for k = 1, . . . ,Nt . The next result shows that the number of
maximalt-indistinguishable sets cannot grow too fast.

Lemma 7 The number of the maximal t-indistinguishable sets is at most quadratic in the number
of the items t. More precisely, Nt ≤ 1+ t(t −1)/2 for any1≤ t ≤ n.

Proof The proof is by induction. First,N1 = 1 (andQ1 = {1}) since the first decision of each
expert is 1. Now assume thatNt ≤ 1+ t(t −1)/2 for some 1≤ t ≤ n−1. When the next itemxt

arrives, an expertp with states decides 1 in the next step if and only if 0≤ s− xt < p. There-
fore, as each expert belonging to the same indistinguishable set has the same state, thek-th max-
imal (t − 1)-indistinguishable interval with states is split into two subintervals if and only if
qk−1,t−1 < s− xt ≤ qk,t−1 (experts in this interval with parameters larger thans− xt will form one
subset, and the ones with parameter at mosts− xt will form the other one). As the number of
possible states aftert decisions (the number of different possible values ofs− xt) is at mostt by
Lemma 1, it follows that at mostt intervals can be split, and soNt+1 ≤Nt +t ≤ 1+t(t +1)/2, where
the second inequality holds by the induction hypothesis.

Lemma 7 shows that the “effective” number of constant-threshold expertsis not too large. This
fact makes it possible to apply our earlier algorithm for the case of finite expert classes with reason-
able computational complexity. However, note that the number of “distinguishable” experts, that is,
the number of the maximal indistinguishable sets, constantly grows with time, and each indistin-
guishable set contains a continuum number of experts. Therefore we need to redefine the algorithm
carefully. This may be done by a two-level random choice of the experts:first we choose an indis-
tinguishable expert set, then we pick one expert from this set randomly. The resulting algorithm is
given in Figure 5.
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SEQUENTIAL ON-LINE BIN PACKING ALGORITHM WITH CONSTANT-THRESHOLD

EXPERTS

Parameters: η > 0 andm∈ N
+.

Initialization: w0,1 = 1, N1 = 1,Q1 = {1}, s1,0 = 1 andŝ0 = 1.

For each roundt = 1, . . . ,n,

(a) If ((t −1) modm) = 0 then

– for i = 1, . . . ,Nt , compute the probabilities

pi,t =
wi,t−1

∑Nt
j=1w j,t−1

;

– randomly select an intervalJt ∈ {1, . . . ,Nt} according to the probability
distributionpt = (p1,t , . . . , pNt ,t);

– choose an expertpt uniformly from the interval(qJt−1,t ,qJt ,t ];

otherwise, letpt = pt−1.

(b) Follow the decision of expertpt : It = fpt ,t .

(c) xt ∈ (0,1], the size of the next item is revealed.

(d) The algorithm incurs lossℓ(It ,xt | ŝt−1) and each expertp ∈ (0,1] incurs loss
ℓ( fp,t ,xt | sp,t−1), wherep∈ [0,1).

(e) Compute the statêst of the algorithm by (1), and calculate the auxiliary weights
and states of the expert sets for alli = 1, . . . ,Nt by

w̃i,t = wi,t−1e−ηℓ( fi,t ,xt |si,t−1)

s̃i,t = fi,t(1−xt)+(1− fi,t)(si,t − I{si,t≥xt}xt).

(f) Update the end points of the intervals:

Qt+1 = Qt ∪
Nt
[

i=1

{s̃i,t : qi−1,t < s̃i,t ≤ qi,t}

andNt+1 = |Qt+1|.

(g) Assign the new states and weights to the(t +1)-indistinguishable sets

si,t+1 = s̃j,t and wi,t+1 = w̃ j,t
qi,t+1−qi−1,t+1

q j,t −q j−1,t

for all i = 1, . . . ,Nt+1 and j = 1, . . . ,Nt such thatq j−1,t < qi,t+1 ≤ q j,t .

Figure 5: Sequential on-line bin packing algorithm with constant-threshold experts.
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Up to step (e) the algorithm is essentially the same as in the case of finitely many experts.
The two-level random choice of the expert is performed in step (a). In step (f) we update thet-
indistinguishable sets, and usually introduce new indistinguishable expert sets. Because of these
new expert sets, the update of the weightswi,t and the statessi,t are performed in two steps, (e) and
(g), where the actual update is made in step (e), and reordering of thesequantities according to the
new indistinguishable sets is performed in step (g) together with the introductionof the weights and
states for the newly formed expert sets. (Note that in step (g) the factor(qi,t+1−qi−1,t+1)/(q j,t −
q j−1,t) is the proportion of the lengths of the indistinguishable intervals expertqi,t+1 belongs to at
timest +1 andt.)

The performance and complexity of the algorithm is given in the next theorem.

Theorem 8 Let n≥ 1, η > 0, 1 ≤ m≤ n, andδ ∈ (0,1). For any sequence x1, . . . ,xn ∈ (0,1] of
items, the cumulative losŝLn of the randomized strategy defined above satisfies for all p∈ (0,1],
with probability at least1−δ,

L̂n ≤ Lp,n +
m
η

ln
1

lp,n
+

nη
8

+

√
nm
2

ln
1
δ

+
2n
m

+2m

where lp,n is the length of the maximal n-indistinguishable interval that contains p. Moreover, the
algorithm can be implemented with time complexity O(n3) and space complexity O(n2).

Remark 9 (i) By choosing m∼n1/3 andη∼n−1/3, the regret bound is of the order of n2/3 ln(1/lp,n).
Note that the constantln(1/lp,n) reflects the difficulty of the problem (similarly to, for example, the
notion of margin in classification, lp,n measures the freedom in choosing an optimal decision bound-
ary, that is, an optimal threshold). If the indistinguishable interval containing the optimal experts is
small, then the problem is hard (and the corresponding penalty term in the bound is large). On the
other hand, as Nn ≤ 1+ n(n−1)/2, if the classes of indistinguishable experts are more or less of
uniform size, then the corresponding term in the bound is of the order oflnn. We show below that
this is always the case if there is a certain randomness in the item sizes.

(ii) The way of splitting the weight between new maximal indistinguishable classes in step (g)
could be modified in many different ways. For example, instead of assigning weights proportionally
to the length of the new intervals, one could simply give half of the weight to bothnew classes.
In this case, instead of the termln(1/lp∗,n) for the optimal expert p∗, we would get in the bound
the number of splits performed until reaching the optimal maximal n-indistinguishable class. The
hardness of the problem comes from the fact that the partitioning of the experts into maximal indis-
tinguishable classes is not known in advance. If we knew it, we could just simply apply the algorithm
of Theorem 3 to the resulting Nn experts (as in Theorem 4.1 of Cesa-Bianchi and Lugosi, 2006) to
obtain a uniformly good bound over all constant-threshold experts.

Proof It is easy to see that the two-level choice of the expertpt ensures that the algorithm is the
same as for the finite expert class with the experts defined byQn with initial weightswi,0 = lqi,n,n =
qi,n−qi−1,n for then-indistinguishable expert class containingqi,n. Thus, Theorem 3 can be used to
bound the regret, where the number of experts isNt .

For the second part note that the algorithm has to store the states, the intervals, the weights and
the probabilities, each on the order ofO(n2) based on Lemma 7. Concerning time complexity, the
algorithm has to update the weights and states in each round (requiringO(n2) computations per
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round), and has to compute the probabilities once in everymstep, which requiresO(n3/m) compu-
tations. Thus the time complexity of the algorithm isO(n3).

Next we use Theorem 8 to show that, for many natural sequences of items,the algorithm above
guarantees a small regret uniformly for all constant-threshold experts.In particular, we show that
if item sizes are jittered by random noise, then the algorithm shown above hasa small regret
with respect to all constant-threshold experts (it is well-known that, for general systems, intro-
ducing such random perturbations often reduces the sensitivity, and hence results in a more uni-
form performance, for different values of the input). To this end, we simply need to show that
n-indistinguishable intervals cannot be too short. We consider a simple model when the item sizes
are noisy versions of an arbitrary fixed sequence. For simplicity we assume that the noise is uni-
formly distributed but the result remains true under more general circumstances. For illustration
purposes the simplified model is sufficient.

Theorem 10 Let y1, . . . ,yn ∈ (0,1] be arbitrary and define the item sizes by

xt =






yt +σt if yt +σt ∈ (0,1]
1 if yt +σt > 1
0 if yt +σt ≤ 0

whereσ1, . . . ,σn are independent random variables, uniformly distributed on the interval[−ε,ε]
for someε > 0. If the algorithm of Figure 5 is used with parameters m= (16n/ ln(n5/εδ))1/3 and
η =

√
8mln(n5/ε)/n, then with probability at least1−δ−1/(4n), one has

L̂n− min
p∈(0,1]

Lp,n ≤
3
3
√

2
n2/3 ln1/3 n5

εδ
+4

(
2n

ln(n5/εδ)

)1/3

. (4)

Proof The result follows directly from Theorem 8 if we show that the length of the shortest maximal
n-indistinguishable interval is at mostε/n5 with probability at least 1−1/(4n) (with respect to the
distribution of the random noise). A very crude bounding suffices to show this. Simply recall from
the proof of Lemma 7 that, at timet, a maximalt-indistinguishable interval(p,q) is split if and only
if xt ∈ (s+ p,s+q) wheresdenotes the state of a corresponding constant-threshold expert. Note that
(s+ p,s+q) ⊆ (0,1), sincext = 0 or xt = 1 cannot split any maximalt-indistinguishable interval,
but any such interval can be split by an appropriately chosenxt . At time t there are at mostt2/2
different maximalt-indistinguishable intervals and at mostt different states, so by the union bound,
the probability that there exists a maximalt-indistinguishable interval of length at mostε/n5 that is
split at timet is bounded byt3/2 times the probability thatxt ∈ (s+ p,s+q) for a fixed interval with
q− p≤ ε/n5. Because of the assumption on howxt is generated, the latter probability is bounded by
(q− p)/(2ε)≤ 1/(2n5) (the truncation ofxt at 0 and 1 has no effect, because(s+ p,s+q)⊆ (0,1)).
Hence, the probability that there exists a maximalt-indistinguishable interval of length at mostε/n5

that is split at timet is no more thant3/2 ·1/(2n5) ≤ 1/(4n2). Thus, using the union bound again,
the probability that during then rounds of the game there exists any maximalt-indistinguishable
interval of length at mostε/n5 that is split is at most 1/(4n), and therefore, with probability at least
1−1/(4n), all maximaln-indistinguishable intervals have length at leastε/n5, as desired.
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Remark 11 (i) The theorem above shows that, for example, ifε = Ω(n−a) for some a> 0 (i.e., if
the noise level is not too small), then the regret with respect to the best constant-threshold expert is
O(n2/3 ln1/3n).

(ii) A similar model can be obtained, if, instead of having perturbed item sizes, the experts
observe the free space in their bins with some noise. Thus, instead of sp,t−1, expert p observes
sp,t−1 + σp,t truncated to the interval[0,1], and makes decision fp,t based on this value. As in
the case of Theorem 10, we assume that the noise is independent over time, that is, the random
ensembles{σp,t}p∈(0,1] are independent for all t. If each component is identical, that is,σp,t = σt

for all p ∈ (0,1], then essentially the same argument applies as in the previous theorem, and so
(4) holds if the sequenceσ1, . . . ,σn satisfies the assumptions of Theorem 10. On the other hand,
if the components of the vectors are also independent, then the problem becomes more difficult, as
the t-indistinguishable classes may not be disjoint intervals anymore. An intermediate assumption
on the noise that still guarantees that(4) holds for this scenario is thatσp,t = σq,t if p and q
are t-indistinguishable. Then the same argument as in Theorem 10 works with the only difference
(omitting the effects of truncation to[0,1]) that here we have to estimate the probability that xt ∈
(s+ p+ σt,q,s+q+ σt,q) for a fixed xt instead of estimating the probability that xt ∈ (s+ p,s+q)
with a randomized xt . However, it is easy to see that the same bound holds in both cases.

Finally, we present a simple example that reveals that the loss of the best expert can be arbitrarily
far from that of the optimal sequential off-line packing.

Example 3 Let the sequence of items be

〈 ε,1−ε,ε,1−ε, . . . ,ε,1−ε︸ ︷︷ ︸
2k

,ε,1,1, . . . ,1︸ ︷︷ ︸
k

〉,

where the number of items is n= 3k+ 1 and0 < ε < 1/2. An optimal sequential off-line packing
is achieved if we drop any of theε terms; then the total loss isε. In contrast to this, the loss of any
constant-threshold expert is1− ε + k independently of the choice of the parameter p. Namely, if
p≤ 1−ε then the loss is0 for the first2k items, but after the algorithm is stuck and suffers k+1−ε
loss. If p> 1− ε, then the loss is k for the first2k items and after that1− ε for the rest of the
sequence.

6. Conclusions

In this paper we provide an extension of the classical bin packing problemsto an on-line sequential
scenario. In this setting items are received one by one, and before the size of the next item is
revealed, the decision maker needs to decide whether the next item is packed in the currently open
bin or the bin is closed and a new bin is opened. If the new item does not fit, it islost. If a bin is
closed, the remaining free space in the bin accounts for a loss. The goal of the decision maker is to
minimize the loss accumulated overn periods.

We give an algorithm that has a cumulative loss not much larger than any finiteset of reference
algorithms. We also study in detail the case when the class of reference strategies contains all
constant-threshold experts. We prove some negative results, showing that it is hard to compete with
the overall best constant-threshold expert if no assumption is imposed on the item sizes. We also
derive data-dependent regret bounds and show that under some mild assumptions on the data the
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cumulative loss can be made not much larger than that of any strategy that uses a fixed threshold
at each step to decide whether a new bin is opened. An interesting aspect of the problem is that
the loss function has an (unbounded) memory. The presented solutions rely on the fact that one
can “synchronize” the loss function in the sense that no matter in what state an algorithm is started,
its loss may change only by a small additive constant. The result for constant-threshold experts is
obtained by a covering of the uncountable set of constant-threshold experts such that the cardinality
of the chosen finite set of experts grows only quadratically with the sequence length. The approach
in the paper can easily be extended to any control problem where the loss function has such a
synchronizable property.
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