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Abstract
We study the problem of learning near-optimal behavior in finite Markov Decision Processes
(MDPs) with a polynomial number of samples. These “PAC-MDP”algorithms include the well-
known E3 and R-MAX algorithms as well as the more recent Delayed Q-learning algorithm. We
summarize the current state-of-the-art by presenting bounds for the problem in a unified theoretical
framework. A more refined analysis for upper and lower boundsis presented to yield insight into
the differences between the model-free Delayed Q-learningand the model-based R-MAX.

Keywords: reinforcement learning, Markov decision processes, PAC-MDP, exploration, sample
complexity

1. Introduction

In the reinforcement-learning (RL) problem (Sutton and Barto, 1998), an agent acts in an unknown
or incompletely known environment with the goal of maximizing an external reward signal. In the
most standard mathematical formulation of the problem, the environment is modeledas a finite
Markov Decision Process (MDP) where the goal of the agent is to obtain near-optimal discounted
return. Recent research has dealt with probabilistic bounds on the number of samples required
for near-optimal learning in finite MDPs (Kearns and Singh, 2002; Kakade, 2003; Brafman and
Tennenholtz, 2002; Strehl and Littman, 2005; Strehl et al., 2006a,b). The purpose of this paper is
to summarize this field of knowledge by presenting the best-known upper andlower bounds for
the problem. For the upper bounds, we present constructive proofs using a unified framework in
Section 3.1; these tools may be useful for future analysis. While none of thebounds we present
are entirely new, the main contribution of this paper is to streamline as well as consolidate their
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analyses. In addition, the bounds we present are stated in terms of anadmissibleheuristic provided
to the algorithm (see Section 1.3) and the (unknown) optimal value function. These bounds are
more refined than the ones previously presented in the literature and more accurately reflect the
performance of the corresponding algorithms. For the lower bound, we provide an improved result
that matches the upper bound in terms of the number of states of the MDP.

An outline of the paper is as follows. This introduction section concludes with aformal spec-
ification of the problem and related work. In Section 2, R-MAX and DelayedQ-learning are de-
scribed. Then, we present their analyses and prove PAC-MDP upperbounds in Section 3. A new
lower bound is proved in Section 4.

1.1 Main Results

We present two upper bounds and one lower bound on the achievablesample complexityof general
reinforcement-learning algorithms (see Section 1.5 for a formal definition).The two upper bounds
dominate all previously published bounds, but differ from one another.When logarithmic factors
are ignored, the first bound, for the R-MAX algorithm, is

Õ(S2A/(ε3(1− γ)6)),

while the corresponding second bound, for the Delayed Q-learning algorithm, is

Õ(SA/(ε4(1− γ)8)).

Here,SandA are the number of states and the number of actions, respectively, of the MDP, ε and
δ are accuracy parameters, andγ is a discount factor. R-MAX works by building an approximate
MDP model and theS2A term in its sample complexity follows from requiring accuracy in each of
theS2A parameters of the model. Delayed Q-learning, on the other hand, does notbuild an explicit
model and can be viewed as an approximate version of value iteration. Thus, accuracy only needs
to be guaranteed for each of theSAentries in the value function.

While previous bounds are in terms of an upper bound 1/(1− γ) on the value function, we
find that tighter bounds are possible if a more informative value-function upper bound is given.
Specifically, we can rewrite the bounds in terms of the initial admissible heuristic values (see Sec-
tion 1.3) supplied to the algorithms,U(·, ·), and the true (unknown) value functionV∗(·). Ignoring
logarithmic factors, for R-MAX the bound is

Õ

(

V3
maxS|{(s,a) ∈ S ×A|U(s,a)≥V∗(s)− ε}|

ε3(1− γ)3

)

, (1)

and for Delayed Q-learning

Õ

(

V3
max∑(s,a)∈S×A[U(s,a)−V∗(s)]+

ε4(1− γ)4

)

, (2)

whereVmax≥ maxs,aU(s,a) is an upper bound on the admissible heuristic (and also on the true
value function), and[x]+ is defined as max(0,x) for x∈ R. Thus, we observe that for R-MAX one
factor of SA/(1− γ)3 gets replaced by|{(s,a) : U(s,a) ≥ V∗(s)− ε}|V3

max,
1 the number of state-

action pairs whose heuristic initial value is larger thanV∗− ε, while for Delayed Q-learning the

1. This quantity can be as small asSV3
max and as large asSAV3

max, whereVmax∈ [0, 1
1−γ ].
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factor SA/(1− γ)4 is replaced byV3
max∑(s,a)∈S×A(U(s,a)−V∗(s)),2 V3

max times the total sum of
differences between the heuristic values and the optimal value function. The latter term is better,
because it takes more advantage of accurate heuristics. For instance, ifU(s,a) =V∗(s)+ε andV∗(s)
is large for alls, then the bound for R-MAX stays essentially the same but the one for Delayed Q-
learning is greatly improved. Please see Russell and Norvig (1994) for discussions and references
on admissible heuristics. The method of incorporating admissible heuristics into Q-learning (Ng
et al., 1999) and R-MAX (Asmuth et al., 2008) are well known, but the bounds given in Equation 1
and Equation 2 are new.

The upper bounds summarized above may be pessimistic and thus may not reflect the worst-case
behavior of these algorithms. Developing lower bounds, especiallymatchinglower bounds, tells us
what can (or cannot) be achieved. Although matching lower bounds are known for deterministic
MDPs (Koenig and Simmons, 1996; Kakade, 2003), it remains an open question for general MDPs.
The previous best lower bound is due to Kakade (2003), and was developed for the slightly different
notion ofH-horizon value functions instead of theγ-discounted ones we focus on here. Adapting
his analysis to discounted value functions, we get the following lower bound:

Ω
(

SA
ε(1− γ)2 ln

1
δ

)

.

Based on the work of Mannor and Tsitsiklis (2004), we provide an improved lower bound

Ω
(

SA
ε2 ln

S
δ

)

(3)

which simultaneously increases the dependence on bothS and 1/ε. While we choose to drop de-
pendence on 1/(1− γ) in our lower bound to facilitate a cleaner analysis, we believe it is possible
to force a quadratic dependence by a more careful analysis. This new lower bound (3) has a few
important implications. First, it implies that Delayed Q-learning’s worst-case sample complexity
has theoptimal dependence onS. Second, it increases the dependence on 1/ε significantly from
linear to quadratic. It would be interesting to know whether a cubic dependence on 1/ε is possible,
which would match the upper bound for R-MAX (ignoring logarithmic factors).

Our lower bound is tight for the factorsS, 1/ε, and 1/δ, in the weakerparallel samplingmodel
(Kearns and Singh, 1999). This finding suggests that a worse dependence on 1/ε is possible only in
MDPs with slowmixingrates.3 In both the parallel sampling model and the MDP used to prove the
lower bound given by Equation 3 (see Section 4), the distribution of states being sampled/visited
mixes extremely fast (in one and two timesteps, respectively). The slower themixing rate, the more
difficult the temporal credit assignmentproblem (Sutton and Barto, 1998). In other words, a worse
dependence on 1/ε may require the construction of an MDP wheredeep planningis necessary.

Before finishing the informal introduction, we should point out that the present paper focuses
on worst-caseupper bounds and so the sample complexity of exploration bounds like Equations 1
and 2 can be too conservative for MDPs encountered in practice. However, the algorithms and their
analyses have proved useful for guiding development of more practical exploration schemes as well
as improved algorithms. First of all, these algorithms formalize the principle of “optimism under the

2. This quantity can be as small as 0 and as large asSAV4
max, whereVmax∈ [0, 1

1−γ ].
3. There are many ways to define a mixing rate. Roughly speaking, it measures how fast the distribution of states an

agent reaches becomes independent of the initial state and the policy being followed.
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face of uncertainty” (Brafman and Tennenholtz, 2002) which has beenempirically observed to be
effective for encouraging active exploration (Sutton and Barto, 1998). Sample complexity analysis
not only shows soundness of this principle in a mathematically precise manner,but also motivates
novel RL algorithms with efficient exploration (e.g., Nouri and Littman 2009 and Li et al. 2009).
Second, there are several places in the proofs where the analysis canbe tightened under various
assumptions about the MDP. The use of admissible heuristic functions as discussed above is one
example; another example is the case where the number of next states reachable from any state-
action pair is bounded by a constant, implying the factorS in Equation 1 may be shaved off (cf.,
Lemma 14). More opportunities lie in MDPs with various structural assumptions.Examples include
factored-state MDPs (Kearns and Koller, 1999; Strehl et al., 2007; Diuk et al., 2009), Relocatable
Action Models (Leffler et al., 2007), and Object-Oriented MDPs (Walsh etal., 2009), in all of
which an exponential reduction in sample complexity can be achieved, as wellas in MDPs where
prior information about the model is available (Asmuth et al., 2009). Third, thestreamlined analysis
we present here is very general and applies not only to finite MDPs. Similarproof techniques have
found useful in analyzing model-based algorithms for continuous-state MDPs whose dynamics are
linear (Strehl and Littman, 2008a) or multivariate normal (Brunskill et al., 2008); see Li (2009) for
a survey.

1.2 Markov Decision Processes

This section introduces the Markov Decision Process (MDP) notation usedthroughout the paper; see
Sutton and Barto (1998) for an introduction. LetPX denote the set of probability distributions over
the setX. A finite MDP M is a five tuple〈S ,A,T,R ,γ〉, whereS is a finite set called the state space,
A is a finite set called the action space,T : S×A→ PS is the transition distribution,R : S×A→ PR

is the reward distribution, and 0≤ γ < 1 is a discount factor on the summed sequence of rewards. We
call the elements ofS andA states and actions, respectively, and useSandA to denote the number
of states and the number of actions, respectively. We letT(s′|s,a) denote the transition probability
of states′ of the distributionT(s,a). In addition,R(s,a) denotes the expectation of the distribution
R (s,a).

We assume that the learner (also called theagent) receivesS, A, andγ as input. The learning
problem is defined as follows. The agent always occupies a single statesof the MDPM. The agent
is told this state and must choose an actiona. It then receives animmediate reward r∼ R (s,a)
and is transported to anext state s′ ∼ T(s,a). This procedure then repeats forever. The first state
occupied by the agent may be chosen arbitrarily. Intuitively, the solution orgoal of the problem is
to obtain as large as possible reward in as short as possible time. In Section 1.5, we provide one
possible formalization of this objective within the PAC-MDP framework. We define atimestepto
be a single interaction with the environment, as described above. Thet th timestep encompasses the
process of choosing thet th action. We also define anexperienceof state-action pair(s,a) to refer to
the event of taking actiona from states.

A policy is any strategy for choosing actions. A stationary policy is one that produces an action
based on only the current state, ignoring the rest of the agent’s history.We assume (unless noted
otherwise) that rewards4 all lie in the interval[0,1]. For any policyπ, letVπ

M(s) = E[∑∞
j=1 γ j−1r j |s]

(Qπ
M(s,a) = E[∑∞

j=1 γ j−1r j |s,a]) denote the discounted, infinite-horizon value (action-value) func-

4. It is easy to generalize, by linear transformations (Ng et al., 1999),to the case where the rewards are bounded above
and below by known but arbitrary constants without changing the optimal policy.

2416



REINFORCEMENTLEARNING IN FINITE MDPS: PAC ANALYSIS

tion for π in M (which may be omitted from the notation) from states. If H is a positive integer, let
Vπ

M(s,H) denote theH-step value of policyπ from s. If π is non-stationary, thens is replaced by a
partial path ct = (s1,a1, r1, . . . ,st), in the previous definitions. Specifically, letst andrt be thet th

encountered state and received reward, respectively, resulting from execution of policyπ in some
MDP M. Then,Vπ

M(ct) = E[∑∞
j=0 γ j rt+ j |ct ] andVπ

M(ct ,H) = E[∑H−1
j=0 γ j rt+ j |ct ]. These expectations

are taken over all possible infinite paths the agent might follow in the future. The optimal policy
is denotedπ∗ and has value functionsV∗M(s) andQ∗M(s,a). Note that a policy cannot have a value
greater than 1/(1− γ) by the assumption that the maximum reward is 1.5

1.3 Admissible Heuristics

We also assume that the algorithms are given an admissible heuristic for the problem before learning
occurs. Anadmissible heuristicis a functionU : S ×A→R that satisfiesU(s,a)≥Q∗(s,a) for all
s∈ S anda∈ A. We also assume thatU(s,a)≤Vmax for all (s,a) ∈ S ×A and some quantityVmax.
Prior information about the problem at hand can be encoded into the admissible heuristic and its
upper boundVmax. With no prior information, we can always setU(s,a) = Vmax = 1/(1− γ) since
V∗(s) = maxa∈A Q∗(s,a) is at most 1/(1− γ). Therefore, without loss of generality, we assume
0≤U(s,a)≤Vmax≤ 1/(1− γ) for all (s,a) ∈ S ×A.

1.4 A Note on the Use of Subscripts

Each algorithm that we consider maintains several variables. For instance, anaction valueor action-
value estimate, Q(s,a), sometimes called aQ-value, where(s,a) is any state-action pair, is main-
tained. We will often discuss a particular instance or timet during the execution of the algorithm.
In this case, when we refer toQ(s,a) we mean the value of that variable at the current moment. To
be more explicit, we may writeQt(s,a), which refers to the value ofQ(s,a) immediately preceding
thet th action of the agent. Thus,Q1(s,a) is the initial value ofQ(s,a).

1.5 PAC-MDP Model

There are three essential ways to quantify the performance of a reinforcement-learning algorithm.
They arecomputational complexity, the amount of per-timestep computation the algorithm uses
during learning;space complexity, the amount of memory used by the algorithm; andlearning
complexity, a measure of how much experience the algorithm needs to learn in a given task. The
last of these is difficult to define and several different ideas have been discussed in the literature.
On the one hand, requiring an algorithm to “optimally explore”—meaning to obtainmaximum
expected discounted reward (E[∑∞

t=1 γt−1rt ]) over a known prior of MDPs—is an extremely difficult
task tractable only in highly specialized cases (Gittins, 1989). Thus, we consider the relaxed but
still challenging and useful goal of acting near-optimally on all but a polynomial number of steps
(Kakade, 2003; Strehl and Littman, 2008b).

To formalize the notion of “efficient learning”, we allow the learning algorithmto receive two
additional inputs,ε andδ, both positive real numbers. The first parameter,ε, controls the quality of
behavior we require of the algorithm (how close to optimality do we want the algorithm to be) and
the second parameter,δ, is a measure of confidence (how certain do we want to be of the algorithm’s

5. Thus, when comparing our results to the original R-MAX paper Brafman and Tennenholtz (2002), note that 1 takes
the place of the quantityRmax.
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performance). As these parameters approach zero, greater exploration and learning is necessary, as
higher quality is demanded of the algorithms.

In the following definition, we view an algorithm as a non-stationary (in terms ofthe current
state) policy that, on each timestep, takes as input an entire history or trajectory through the MDP
(its actual history) and outputs an action (which the agent then executes).Formally, we define the
policy of any algorithmA at a fixed instance in timet to be a functionAt : {S×A× [0,1]}∗×S→A,
that maps future paths to future actions.6

Definition 1 (Kakade 2003) Let c= (s1,a1, r1,s2,a2, r2, . . .) be a random path generated by exe-
cuting an algorithmA in an MDP M. For any fixedε > 0, thesample complexity of exploration
(sample complexity, for short) ofA is the number of timesteps t such that the policy at time t,At ,
satisfies VAt (st) < V∗(st)− ε.

Note that the sample complexity of an algorithm is dependent on some infinite-length path
through the MDP. We believe this definition captures the essence of measuring learning. It directly
measures the number of times the agent acts poorly (quantified byε) and we view “fast” learners as
those that act poorly as few times as possible. Based on this intuition, we define what it means to
be an “efficient” learning algorithm.

Definition 2 An algorithmA is said to be anefficient PAC-MDP (Probably Approximately Cor-
rect in Markov Decision Processes) algorithm if, for anyε > 0 and 0 < δ < 1, the per-timestep
computational complexity, space complexity, and the sample complexity ofA are less than some
polynomial in the relevant quantities (S,A,1/ε,1/δ,1/(1− γ)), with probability at least1−δ. It is
simplyPAC-MDP if we relax the definition to have no computational complexity requirement.

The terminology, PAC, in this definition is borrowed from Angluin (1988) forthe distribution-
free supervised-learning model of Valiant (1984). One thing to note is that we only require a PAC-
MDP algorithm to behave poorly (non-ε-optimally) on no more than a small (polynomially) number
of timesteps. We do not place any limitations on when the algorithm acts poorly or how poorly it
acts on those timesteps. This definition is in contrast to Valiant’s PAC notion, which is more “off-
line” in that it requires the algorithm to make all of its mistakes ahead of time (duringthe learning
phase) before identifying a near-optimal policy. The notion of PAC-MDP isalso closely related
to the Mistake Bound (MB) model of Littlestone (1988) where the goal of a learner that predicts
sequentially must make a small (polynomial) number of mistakes during a whole run. Indeed, if we
count every timestep in which an algorithm behaves non-ε-optimally as a mistake, then a PAC-MDP
algorithm makes only a polynomial number of mistakes during a whole run with highprobability,
similar to an MB algorithm. However, a mistake in a PAC-MDP algorithm refers to thequality of a
policy rather than prediction errors as in MB.

Efficient learnability in the sample-complexity framework from above implies efficient learn-
ability in a more realistic framework calledAverage Lossthat measures the actual return (sum of
rewards) achieved by the agent against the expected return of the optimal policy (Strehl and Littman,
2008b). The analysis of R-MAX by Kakade (2003) and of MBIE by Strehl and Littman (2005) use
the same definition as above. The analysis of R-MAX by Brafman and Tennenholtz (2002) and of

6. The action of an agent on timestept in statest is given by the function evaluated at the empty history,At( /0,st).
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E3 by Kearns and Singh (2002) use slightly different definitions of efficient learning.7 Our analyses
are essentially equivalent, but simpler in the sense that mixing-time arguments are avoided. Com-
pared with recently published regret bounds (Auer et al., 2009), our sample complexity bounds are
easier to obtain and do not depend on quantities like mixing time or diameter that may be hard to
determinea priori.

1.6 Related Work

There has been some theoretical work analyzing RL algorithms. In a Bayesian setting, with a
known prior over possible MDPs, we could ask for the policy that maximizes expected reward. This
problem has been solved (Gittins, 1989) for a specialized class of MDPs,calledK-armed bandits.
However, a solution to the more general problem seems unlikely to be tractable, although progress
has been made (Duff and Barto, 1997; Poupart et al., 2006).

Early results include proving that under certain conditions various algorithms can, in the limit,
compute the optimal value function from which the optimal policy can be extracted(Watkins and
Dayan, 1992). These convergence results make no performance guarantee after only a finite amount
of experience, although more recent work has looked at convergence rates (Szepesvári, 1998; Kearns
and Singh, 1999; Even-Dar and Mansour, 2003). These types of analyses make assumptions that
simplify the exploration issue.

The work by Fiechter (1994) was the first to prove that efficient (polynomial) approximate
learning is achievable, via a model-based algorithm, when the agent has an action thatresetsit
to a distinguished start state. Other recent work has shown that various model-based algorithms,
including E3 (Kearns and Singh, 2002), R-MAX (Brafman and Tennenholtz, 2002), and MBIE
(Strehl and Littman, 2005) can achieve polynomial learning guarantees without the necessity of
resets.

2. Algorithms

The total number of RL algorithms introduced in the literature is huge, so we limit thestudy to
those with the best formal PAC-MDP learning-time guarantees. The two algorithms we study are
R-MAX and Delayed Q-learning, because the best sample complexity bounds known for any PAC-
MDP algorithm are dominated by the bound for one of these two algorithms. However, the bounds
for R-MAX and Delayed Q-learning are incomparable—the bound for R-MAX is better in terms
of 1/ε and 1/(1− γ), while the bound for Delayed Q-learning is better in terms ofS. In fact, in
Section 4 we will show that the sample complexity of Delayed Q-learning is optimal interms ofS
via a matching lower bound.

2.1 R-MAX

Suppose that the agent has acted for some number of timesteps and consider its experience with
respect to some fixed state-action pair(s,a). Let n(s,a) denote the number of timesteps in which
the agent has taken actiona from states. Suppose the agent has observed the followingn(s,a)
immediate rewards for taking actiona from states: r[1], r[2], . . . , r[n(s,a)]. Then, the empirical

7. Kearns and Singh (2002) dealt with discounted and undiscounted MDPs differently. In the discounted case the agent
is required to halt after a polynomial amount of time and output a near-optimal policy from the current state, with
high probability.

2419



STREHL, L I , AND L ITTMAN

mean reward is

R̂(s,a) :=
1

n(s,a)

n(s,a)

∑
i=1

r[i].

Let n(s,a,s′) denote the number of times the agent has taken actiona from states and immediately
transitioned to the states′. Then, theempirical transition distributionis the distributionT̂(s,a)
satisfying

T̂(s′|s,a) :=
n(s,a,s′)
n(s,a)

for eachs′ ∈ S.

In the R-MAX algorithm, the action-selection step is always to choose the actionthat maximizes
the current action value,Q(s, ·). The update step is to solve the following set of Bellman equations:

Q(s,a) = R̂(s,a)+ γ∑
s′

T̂(s′|s,a)max
a′

Q(s′,a′), if n(s,a)≥m, (4)

Q(s,a) = U(s,a), otherwise,

whereR̂(s,a) and T̂(·|s,a) are the empirical (maximum-likelihood) estimates for the reward and
transition distribution of state-action pair(s,a) using only data from the firstm observations of
(s,a). Solving this set of equations is equivalent to computing the optimal action-value function
of an MDP, which we callModel(R-MAX). This MDP uses the empirical transition and reward
distributions for those state-action pairs that have been experienced by the agent at leastm times.
Rather than attempt to model the other state-action pairs, we assert their valueto beU(s,a), which
is guaranteed to be an upper bound on the true value function. An importantpoint is that R-MAX
usesonly the first m samplesin the empirical model. To avoid complicated notation, we redefine
n(s,a) to be the minimum ofmand the number of times state-action pair(s,a) has been experienced.
This usage is consistent with the pseudo-code provided in Algorithm 1. That is, the computation of
R̂(s,a) andT̂(s′|s,a) in Equation 4, uses only the firstn(s,a) = msamples.

Any implementation of R-MAX must choose a technique for solving the set of Equations 4 such
as dynamic programming and linear programming approaches (Puterman, 1994), and this choice
will affect the computational complexity of the algorithm. However, for concreteness we choose
value iteration(Puterman, 1994), a relatively simple and fast MDP solving routine that is widely
used in practice. Rather than require exact solution of Equations 4, a morepractical approach is
to only guarantee a near-optimal greedy policy. The following two classic results are useful in
quantifying the number of iterations needed.

Proposition 3 (Corollary 2 from Singh and Yee 1994) Let Q′(·, ·) and Q∗(·, ·) be two action-value
functions over the same state and action spaces. Suppose that Q∗ is the optimal value function
of some MDP M. Letπ be the greedy policy with respect to Q′ and π∗ be the greedy policy with
respect to Q∗, which is the optimal policy for M. For anyα > 0 and discount factorγ < 1, if
maxs,a{|Q′(s,a)−Q∗(s,a)|} ≤ α(1− γ)/2, thenmaxs{Vπ∗(s)−Vπ(s)} ≤ α.

Proposition 4 Let β > 0 be any real number satisfyingβ < 1/(1− γ) whereγ < 1 is the discount

factor. Suppose that value iteration is run for
⌈

ln(1/(β(1−γ)))
1−γ

⌉

iterations where each initial action-

value estimate, Q(·, ·), is initialized to some value between0 and 1/(1− γ). Let Q′(·, ·) be the
resulting action-value estimates. Then, we have thatmaxs,a{|Q′(s,a)−Q∗(s,a)|} ≤ β.
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Proof Let Qi(s,a) denote the action-value estimates after theith iteration of value iteration.8 Let
∆i := max(s,a) |Q

∗(s,a)−Qi(s,a)|. Now, we have that

∆i = max
(s,a)
|(R(s,a)+ γ∑

s′
T(s,a,s′)V∗(s′))− (R(s,a)+ γ∑

s′
T(s,a,s′)Vi−1(s

′))|

= max
(s,a)
|γ∑

s′
T(s,a,s′)(V∗(s′)−Vi−1(s

′))|

≤ γ∆i−1.

Using this bound along with the fact that∆0 ≤ 1/(1− γ) shows that∆i ≤ γi/(1− γ). Setting this
value to be at mostβ and solving fori yields i ≥ ln(β(1−γ))

lnγ . We claim that

ln 1
β(1−γ)

1− γ
≥

ln(β(1− γ))
ln(γ)

. (5)

Note that Equation 5 is equivalent to the statement 1− γ ≤ − lnγ, which follows from the identity
ex≥ 1+x.

The previous two propositions imply that if we require value iteration to produce anα-optimal

policy it is sufficient to run it forO
(

ln(1/(α(1−γ)))
1−γ

)

iterations. The resulting pseudo-code for R-

MAX is given in Algorithm 1. We have added a real-valued parameter,ε1, that specifies the desired
closeness to optimality of the policies produced by value iteration. In Section 3.2.2, we show that
both m andε1 can be set as functions of the other input parameters,ε, δ, S, A, andγ, in order to
make theoretical guarantees about the learning efficiency of R-MAX.

2.2 Delayed Q-learning

The Delayed Q-learningalgorithm was introduced by Strehl et al. (2006b) as the first algorithm
that is known to be PAC-MDP and its per-timestep computational demands are minimal (roughly
equivalent to those of Q-learning). Due to its low memory requirements, it canalso be viewed as a
model-freealgorithm and the first to be provably PAC-MDP. Its analysis is also noteworthy because
the polynomial upper bound on its sample complexity is a significant improvement, asymptotically,
over the best previously known upper bound for any algorithm, when only the dependence onSand
A is considered.

The algorithm is called “delayed” because it waits until a state-action pair hasbeen experienced
m times before updating that state-action pair’s associated action value, where m is a parameter
provided as input. When it does update an action value, the update can be viewed as an average
of the target values for them most recently missed update opportunities. An important observa-
tion is that, whenm is large enough, a Delayed Q-learning update will be sufficiently close to a
true Bellman update (Lemma 22). In this sense, this algorithm is similar to Real-Time Dynamic
Programming (Barto et al., 1995), but uses online transitions to dynamically form an approximate
Bellman backup.

To encourage exploration, Delayed Q-learning uses the “optimism in the face of uncertainty”
principle as in R-MAX. Specifically, its initial action-value function is an over-estimate of the true

8. The initial values are therefore denoted byQ0(·, ·).
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Algorithm 1 R-MAX
0: Inputs: S, A, γ, m, ε1, andU(·, ·)
1: for all (s,a) do
2: Q(s,a)←U(s,a) // action-value estimates
3: r(s,a)← 0
4: n(s,a)← 0
5: for all s′ ∈ Sdo
6: n(s,a,s′)← 0
7: end for
8: end for
9: for t = 1,2,3, · · · do

10: Let s denote the state at timet.
11: Choose actiona := argmaxa′∈AQ(s,a′).
12: Let r be the immediate reward ands′ the next state after executing actiona from states.
13: if n(s,a) < m then
14: n(s,a)← n(s,a)+1
15: r(s,a)← r(s,a)+ r // Record immediate reward
16: n(s,a,s′)← n(s,a,s′)+1 // Record immediate next-state
17: if n(s,a) = m then

18: for i = 1,2,3, · · · ,
⌈

ln(1/(ε1(1−γ)))
1−γ

⌉

do

19: for all (s̄, ā) do
20: if n(s̄, ā)≥m then
21: Q(s̄, ā)← R̂(s̄, ā)+ γ∑s′ T̂(s′|s̄, ā)maxa′Q(s′,a′).
22: end if
23: end for
24: end for
25: end if
26: end if
27: end for

function; during execution, the successive value function estimates remainover-estimates with high
probability, thanks to the delayed update rule (Lemma 23).

Like R-MAX, Delayed Q-learning performs a finite number of action-value updates. Due to
the strict restrictions on the computational demands used by Delayed Q-learning, slightly more
sophisticated internal logic is needed to guarantee this property. Pseudo-code9 for Delayed Q-
learning is provided in Algorithm 2. More details are provided in the following subsections.

In addition to the standard inputs, the algorithm also relies on two free parameters,

• ε1 ∈ (0,1): Used to provide a constant “exploration bonus” that is added to each action-value
estimate when it is updated.

9. Compared to the implementation provided by Strehl et al. (2006b), we have modified the algorithm to keep track of
b(s,a), the “beginning” timestep for the current attempted update for(s,a). The original pseudo-code kept track of
t(s,a), the time of the last attempted update for(s,a). The original implementation is less efficient and adds a factor
of 2 to the computational bounds. The analysis of Strehl et al. (2006b) also applies to the pseudo-code presented
here, however.
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Algorithm 2 Delayed Q-learning
0: Inputs: S, A, γ, m, ε1, andU(·, ·)
1: for all (s,a) do
2: Q(s,a)←U(s,a) // action-value estimates
3: AU(s,a)← 0 // used for attempted updates
4: l(s,a)← 0 // counters
5: b(s,a)← 0 // beginning timestep of attempted update
6: LEARN(s,a)← true // the LEARN flags
7: end for
8: t∗← 0 // time of most recent action value change
9: for t = 1,2,3, · · · do

10: Let s denote the state at timet.
11: Choose actiona := argmaxa′∈AQ(s,a′).
12: Let r be the immediate reward ands′ the next state after executing actiona from states.
13: if b(s,a)≤ t∗ then
14: LEARN(s,a)← true
15: end if
16: if LEARN(s,a) = true then
17: if l(s,a) = 0 then
18: b(s,a)← t
19: end if
20: l(s,a)← l(s,a)+1
21: AU(s,a)← AU(s,a)+ r + γmaxa′Q(s′,a′)
22: if l(s,a) = m then
23: if Q(s,a)−AU(s,a)/m≥ 2ε1 then
24: Q(s,a)← AU(s,a)/m+ ε1

25: t∗← t
26: else ifb(s,a) > t∗ then
27: LEARN(s,a)← false
28: end if
29: AU(s,a)← 0
30: l(s,a)← 0
31: end if
32: end if
33: end for

• A positive integerm: Represents the number of experiences of a state-action pair before an
update is allowed.

In the analysis of Section 3.3, we provide precise values form andε1 in terms of the other inputs
(S, A, ε, δ, andγ) that guarantee the resulting algorithm is PAC-MDP. In addition to its action-value
estimates,Q(s,a), the algorithm also maintains the following internal variables,

• l(s,a) for each(s,a): The number of samples (or target values) gathered for(s,a).
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• AU(s,a) for each(s,a): Stores the running sum of target values used to updateQ(s,a) once
enough samples have been gathered.

• b(s,a) for each(s,a): The timestep for which the first experience of(s,a) was obtained for
the most recent or ongoing attempted update.

• LEARN(s,a) ∈ {true, false} for each(s,a): A Boolean flag that indicates whether or not,
samples are being gathered for(s,a).

2.2.1 THE UPDATE RULE

Suppose that, at timet ≥ 1, actiona is performed from states, resulting in anattempted update,
according to the rules to be defined in Section 2.2.2. Letsk1,sk2, . . . ,skm be them most recent next-
states observed from executing(s,a) at timesk1 < k2 < · · · < km, respectively (km = t). For the
remainder of the paper, we also letr i denote theith reward received during the execution of Delayed
Q-learning.

Thus, at timeki , actiona was taken from states, resulting in a transition to stateski and an
immediate rewardrki . After thet th action, the following update occurs:

Qt+1(s,a) =
1
m

m

∑
i=1

(rki + γVki (ski ))+ ε1 (6)

as long as performing the update would result in a new action-value estimate that is at leastε1

smaller than the previous estimate. In other words, the following equation must be satisfied for an
update to occur:

Qt(s,a)−

(

1
m

m

∑
i=1

(rki + γVki (ski ))

)

≥ 2ε1. (7)

If this condition does not hold, then no update is performed, and soQt+1(s,a) = Qt(s,a).

2.2.2 MAINTENANCE OF THE LEARNFLAGS

We provide an intuition behind the behavior of theLEARN flags. Please see Algorithm 2 for a
formal description of the update rules. The main computation of the algorithm is that every time
a state-action pair(s,a) is experiencedm times, an update ofQ(s,a) is attempted as in Section
2.2.1. For our analysis to hold, however, we cannot allow an infinite numberof attempted updates.
Therefore, attempted updates are only allowed for(s,a) whenLEARN(s,a) is true. Besides being
set totrue initially, LEARN(s,a) is also set totrue when any state-action pair is updated (because
our estimateQ(s,a) may need to reflect this change).LEARN(s,a) can only change fromtrue to
falsewhen no updates are made during a length of time for which(s,a) is experiencedm times
and the next attempted update of(s,a) fails. In this case, no more attempted updates of(s,a) are
allowed until another action-value estimate is updated.

2.2.3 DELAYED Q-LEARNING’ S MODEL

Delayed Q-learning was introduced as amodel-freealgorithm. This terminology was justified by
noting that the space complexity of Delayed Q-learning, which isO(SA), is much less than what
is needed in the worst case to completely represent an MDP’s transition probabilities (O(S2A)).
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However, there is a sense in which Delayed Q-learning can be thought ofas using a model. This
interpretation follows from the fact that Delayed Q-learning’s update (Equation 6) is identical toε1

plus the result of a full Bellman backup using the empirical (maximum likelihood) model derived
from themmost recent experiences of the state-action pair being updated. Sincem is much less than
what is needed to accurately model the true transition probability (in theL1 distance metric), we say
that Delayed Q-learning uses asparse model(Kearns and Singh, 1999). In fact, Delayed Q-learning
uses this sparse model precisely once, throws it away, and then proceeds to gather experience for
another sparse model. Whenm= 1, this process may occur on every timestep and the algorithm
behaves very similarly to a version of Q-learning that uses a unit learning rate.

3. PAC-MDP Analysis

First, we present a general framework that allows us to prove the bounds for both algorithms. We
then proceed to analyze R-MAX and Delayed Q-learning.

3.1 General Framework

We now develop some theoretical machinery to prove PAC-MDP statements about various algo-
rithms. Our theory will be focused on algorithms that maintain a table of action values,Q(s,a), for
each state-action pair (denotedQt(s,a) at timet).10 We also assume an algorithm always chooses
actions greedily with respect to the action values. This constraint is not really a restriction, since
we could define an algorithm’s action values as 1 for the action it chooses and 0 for all other ac-
tions. However, the general framework is understood and developed more easily under the above
assumptions. For convenience, we also introduce the notationV(s) to denote maxaQ(s,a) andVt(s)
to denoteV(s) at timet.

Definition 5 Suppose an RL algorithmA maintains a value, denoted Q(s,a), for each state-action
pair (s,a)∈ S×A. Let Qt(s,a) denote the estimate for(s,a) immediately before the tth action of the
agent. We say thatA is a greedy algorithm if the tth action ofA , at , is at := argmaxa∈A Qt(st ,a),
where st is the tth state reached by the agent.

For all algorithms, the action valuesQ(·, ·) are implicitly maintained in separate max-priority
queues (implemented with max-heaps, say) for each state. Specifically, ifA = {a1, . . . ,ak} is the
set of actions, then for each states, the valuesQ(s,a1), . . . ,Q(s,ak) are stored in a single priority
queue. Therefore, the operations maxa′∈A Q(s,a) and argmaxa′∈A Q(s,a), which appear in almost
every algorithm, takes constant time, but the operationQ(s,a)←V for any valueV takesO(ln(A))
time (Cormen et al., 1990). It is possible that other data structures may resultin faster algorithms.

The following is a definition of a new MDP that will be useful in our analysis.

Definition 6 Let M= 〈S ,A,T,R ,γ〉 be an MDP with a given set of action values, Q(s,a), for each
state-action pair(s,a), and a set K of state-action pairs, called theknown state-action pairs. We
define theknown state-action MDPMK = 〈S ∪{zs,a|(s,a) 6∈ K},A,TK ,RK ,γ〉 as follows. For each
unknown state-action pair,(s,a) 6∈ K, we add a new state zs,a to MK , which has self-loops for each

10. However, the main result in this subsection (Theorem 10) does not rely on the algorithm having an explicit repre-
sentation of each action value. For example, they could be implicitly held insideof a function approximator (e.g.,
Brunskill et al. 2008).
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action (TK(zs,a|zs,a, ·) = 1). For all (s,a) ∈ K, RK(s,a) = R(s,a) and TK(·|s,a) = T(·|s,a). For
all (s,a) 6∈ K, RK(s,a) = Q(s,a)(1− γ) and TK(zs,a|s,a) = 1. For the new states, the reward is
RK(zs,a, ·) = Q(s,a)(1− γ).

The known state-action MDP is a generalization of the standard notions of a “known state
MDP” of Kearns and Singh (2002) and Kakade (2003). It is an MDP whose dynamics (reward
and transition functions) are equal to the true dynamics ofM for a subset of the state-action pairs
(specifically those inK). For all other state-action pairs, the value of taking those state-action pairs
in MK (and following any policy from that point on) is equal to the current action-value estimates
Q(s,a). We intuitively view K as a set of state-action pairs for which the agent has sufficiently
accurate estimates of their dynamics.

Definition 7 For algorithmA , for each timestep t, let Kt (we drop the subscript t if t is clear from
context) be a set of state-action pairs defined arbitrarily in a way that depends only on the history
of the agent up to timestep t (before the(t)th action). We define AK to be the event, called theescape
event, that some state-action pair(s,a) /∈ Kt is experienced by the agent at time t.

The following is a well-known result of the Chernoff-Hoeffding Bound and will be needed later;
see Li (2009, Lemma 56) for a slightly improved result.

Lemma 8 Suppose a weighted coin, when flipped, has probability p> 0 of landing with heads up.
Then, for any positive integer k and real numberδ∈ (0,1), there exists a number m= O((k/p) ln(1/δ)),
such that after m tosses, with probability at least1−δ, we will observe k or more heads.

One more technical lemma is needed before presenting the main result in this section. Note that
even if we assumeV∗M(s)≤Vmax andQ(s,a)≤Vmax for all s∈ S anda∈ A, it may not be true that
V∗MK

(s)≤Vmax. However, the following lemma shows we may instead use 2Vmax as an upper bound.

Lemma 9 Let M = 〈S ,A,T,R ,γ〉 be an MDP whose optimal value function is upper bounded by
Vmax. Furthermore, let MK be a known state-action MDP for some K⊆ S ×A defined using value
function Q(s,a). Then, V∗MK

(s)≤Vmax+maxs′,a′Q(s′,a′) for all s∈ S .

Proof For any policyπ and any states∈ S , let (s1,a1, r1,s2,a2, r2,s3,a3, r3, . . .) be a path generated
by starting in states= s1 and followingπ in the known state-action MDP,MK , wherest andrt are
the state and reward at timestept, andat = π(st) for all t. The value function,Vπ

MK
(s), can be written

as (see, e.g., Sutton and Barto 1998)

Vπ
MK

(s) = EMK

[

r1 + γr2 + γ2r3 + · · · | s1 = s,π
]

,

which says the quantityVπ
MK

(s) is the expected discounted total reward accumulated on this random
path. Here, we useEMK to denote the expectation with respect to randomness in the MDPMK .

Denote byτ be thefirst timestep in which(sτ,aτ) /∈ K; noteτ = ∞ if all visited state-actions are
in K. Due to construction ofMK , if τ is finite, then

sτ = sτ+1 = sτ+2 = · · ·

aτ = aτ+1 = aτ+2 = · · ·= π(sτ)

rτ = rτ+1 = rτ+2 = · · ·= (1− γ)Q(sτ,aτ).
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Thus, for any fixedτ≥ 1, the discounted total reward

r1 + γr2 + γ2r3 + · · ·

= r1 + γr2 + · · ·+ γτ−2rτ−1 + γτ−1Q(sτ,aτ)

≤ r1 + γr2 + · · ·+ γτ−2rτ−1 +max
s′,a′

Q(s′,a′),

where the first step is due to the way we define transition/reward functions inMK for state-actions
outsideK. The above upper bound holds for all fixed value ofτ (finite or infinite), and so

EMK

[

r1 + γr2 + γ2r3 + · · · | s1 = s,π
]

≤ EMK

[

r1 + γr2 + · · ·+ γτ−2rτ−1 | s1 = s,π
]

+max
s′,a′

Q(s′,a′).

Finally, since the transition and reward functions ofM andMK are identical for state-actions inK,
we have

EMK

[

r1 + γr2 + · · ·+ γτ−2rτ−1 | s1 = s,π
]

= EM
[

r1 + γr2 + · · ·+ γτ−2rτ−1 | s1 = s,π
]

,

which implies

EMK

[

r1 + γr2 + γ2r3 + · · · | s1 = s,π
]

≤ EM
[

r1 + γr2 + · · ·+ γτ−2rτ−1
]

+max
s′,a′

Q(s′,a′)

≤ Vπ
M(s)+max

s′,a′
Q(s′,a′)

≤ Vmax+max
s′,a′

Q(s′,a′).

Note that all learning algorithms we consider takeε andδ as input. We letA(ε,δ) denote the
version of algorithmA parameterized withε andδ. The proof of Theorem 10 follows the structure
of the work of Kakade (2003), but generalizes several key steps. The theorem also generalizes a
previous result by Strehl et al. (2006a) by taking the admissible heuristic into account.

Theorem 10 Let A(ε,δ) be any greedy learning algorithm such that, for every timestep t, there
exists a set Kt of state-action pairs that depends only on the agent’s history up to timestep t. We
assume that Kt = Kt+1 unless, during timestep t, an update to some state-action value occurs or the
escape event AK happens. Let MKt be the known state-action MDP andπt be the current greedy
policy, that is, for all states s,πt(s) = argmaxaQt(s,a). Furthermore, assume Qt(s,a) ≤ Vmax for
all t and (s,a). Suppose that for any inputsε and δ, with probability at least1− δ, the following
conditions hold for all states s, actions a, and timesteps t: (1) Vt(s) ≥ V∗(s)− ε (optimism), (2)
Vt(s)−Vπt

MKt
(s)≤ ε (accuracy), and (3) the total number of updates of action-value estimates plus the

number of times the escape event from Kt , AK , can occur is bounded byζ(ε,δ) (learning complexity).
Then, whenA(ε,δ) is executed on any MDP M, it will follow a4ε-optimal policy from its current
state on all but

O

(

Vmaxζ(ε,δ)

ε(1− γ)
ln

1
δ

ln
1

ε(1− γ)

)

timesteps, with probability at least1−2δ.
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Proof Suppose that the learning algorithmA(ε,δ) is executed on MDPM. Fix the history of the
agent up to thet th timestep and letst be thet th state reached. LetAt denote the current (non-
stationary) policy of the agent. LetH = 1

1−γ ln 1
ε(1−γ) . From Lemma 2 of Kearns and Singh (2002),

we have that|Vπ
MKt

(s,H)−Vπ
MKt

(s)| ≤ ε, for any states and policyπ. Let W denote the event that,
after executing policyAt from statest in M for H timesteps, one of the two following events oc-
cur: (a) the algorithm performs a successful update (a change to any of its action values) of some
state-action pair(s,a), or (b) some state-action pair(s,a) 6∈ Kt is experienced (escape eventAK).
Assuming the three conditions in the theorem statement hold, we have the following:

VAt
M (st ,H)

≥ Vπt
MKt

(st ,H)−2VmaxPr(W)

≥ Vπt
MKt

(st)− ε−2VmaxPr(W)

≥ V(st)−2ε−2VmaxPr(W)

≥ V∗(st)−3ε−2VmaxPr(W).

The first step above follows from the fact that followingAt in MDP M results in behavior identical
to that of followingπt in MKt unless eventW occurs, in which case a loss of at most 2Vmax can
occur (Lemma 9). The second step follows from the definition ofH above. The third and final steps
follow from Conditions 2 and 1, respectively, of the proposition.

Now, suppose that Pr(W) < ε
2Vmax

. Then, we have that the agent’s policy on timestept is 4ε-
optimal:

VAt
M (st)≥VAt

M (st ,H)≥V∗M(st)−4ε.

Otherwise, we have that Pr(W)≥ ε
2Vmax

, which implies that an agent followingAt will either perform
a successful update inH timesteps, or encounter some(s,a) 6∈Kt in H timesteps, with probability at
least ε

2Vmax
. Call such an event a “success”. Then, by Lemma 8, afterO( ζ(ε,δ)HVmax

ε ln1/δ) timesteps
t where Pr(W) ≥ ε

2Vmax
, ζ(ε,δ) successes will occur, with probability at least 1− δ. Here, we have

identified the event that a success occurs after following the agent’s policy for H steps with the event
that a coin lands with heads facing up. However, by Condition 3 of the proposition, with probability
at least 1−δ, ζ(ε,δ) is the maximum number of successes that will occur throughout the execution
of the algorithm.

To summarize, we have shown that with probability 1−2δ, the agent will execute a 4ε-optimal
policy on all butO( ζ(ε,δ)HVmax

ε ln 1
δ) = O( ζ(ε,δ)Vmax

ε(1−γ) ln 1
δ ln 1

ε(1−γ)) timesteps.

3.2 Analysis of R-MAX

We will analyze R-MAX using the tools from Section 3.1.

3.2.1 COMPUTATIONAL COMPLEXITY

When the initial value function isU(s,a) = 1/(1− γ) for all (s,a), there is a simple way to change
the R-MAX algorithm that has a minimal affect on its behavior and saves greatly on computa-
tion. The important observation is that for a fixed states, the maximum action-value estimate,
maxaQ(s,a) will be 1/(1− γ) until all actions have been triedm times. Thus, there is no need to
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run value iteration (lines 17 to 25 in Algorithm 1) until each action has been triedexactlym times.
In addition, if there are some actions that have been triedm times and others that have not, the algo-
rithm should choose one of the latter. One method to accomplish this balance is to order each action
and try one after another until all are chosenm times. Kearns and Singh (2002) called this behavior
“balanced wandering”. However, it is not necessary to use balancedwandering; for example, it
would be perfectly fine to try the first actionm times, the second actionm times, and so on. Any
deterministic method for breaking ties in line 11 of Algorithm 1 is valid as long asmAexperiences
of a state-action pair results in all action being chosenm times.

On most timesteps, the R-MAX algorithm performs a constant amount of computation to choose
its next action. Only when a state’s last action has been triedm times does it solve its internal
model. Our version of R-MAX uses value iteration to solve its model. Therefore, the per-timestep
computational complexity of R-MAX is

Θ
(

SA(S+ ln(A))

(

1
1− γ

)

ln
1

ε1(1− γ)

)

.

This expression is derived using the fact that value iteration performs
⌈

1
1−γ ln 1

ε1(1−γ)

⌉

iterations,

where each iteration involvesSAfull Bellman backups (one for each state-action pair). A Bellman
backup requires examining all possibleO(S) successor states and the update to the priority queue
takes timeO(ln(A)). Note that R-MAX updates its model at mostS times. From this observation

we see that the total computation time of R-MAX isO
(

B+ S2A(S+ln(A))
1−γ ln 1

ε1(1−γ)

)

, whereB is the

number of timesteps for which R-MAX is executed.
When a general admissible initial value functionU is used, we need to run value iteration

whenever somen(s,a) reaches the thresholdm. In this case, a similar analysis shows that the total

computation time of R-MAX isO
(

B+ S2A2(S+ln(A))
1−γ ln 1

ε1(1−γ)

)

.

3.2.2 SAMPLE COMPLEXITY

The main result of this section is the following theorem.

Theorem 11 Suppose that0≤ ε < 1
1−γ and0≤ δ < 1 are two real numbers and M= 〈S ,A,T,R ,γ〉

is any MDP. There exists inputs m= m(1
ε ,

1
δ) andε1, satisfying m(1

ε ,
1
δ) = O

(

(S+ln(SA/δ))V2
max

ε2(1−γ)2

)

and
1
ε1

= O(1
ε ), such that if R-MAX is executed on M with inputs m andε1, then the following holds. Let

At denote R-MAX’s policy at time t and st denote the state at time t. With probability at least1−δ,
VAt

M (st)≥V∗M(st)− ε is true for all but

O

(

|{(s,a) ∈ S ×A|U(s,a)≥V∗(s)− ε}|
ε3(1− γ)3

(

S+ ln
SA
δ

)

V3
maxln

1
δ

ln
1

ε(1− γ)

)

timesteps t.

First, we discuss the accuracy of the model maintained by R-MAX. The following lemma shows
that two MDPs with similar transition and reward functions have similar value functions. Thus, an
agent need only ensure accuracy in the transitions and rewards of its model to guarantee near-
optimal behavior.
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Lemma 12 (Strehl and Littman, 2005) Let M1 = 〈S ,A,T1,R1,γ〉 and M2 = 〈S ,A,T2,R2,γ〉 be two
MDPs with non-negative rewards bounded by1 and optimal value functions bounded by Vmax. Sup-
pose that|R1(s,a)−R2(s,a)| ≤ α and ‖T1(s,a, ·)−T2(s,a, ·)‖1 ≤ 2β for all states s and actions
a. There exists a constant C> 0 such that for any0≤ ε ≤ 1/(1− γ) and stationary policyπ, if
α = 2β = Cε(1− γ)/Vmax, then

|Qπ
1(s,a)−Qπ

2(s,a)| ≤ ε.

Let nt(s,a) denote the value ofn(s,a) at timet during execution of the algorithm. For R-MAX,
let the “known” state-action pairsKt , at timet (See Definition 6), to be

Kt := {(s,a) ∈ S ×A|nt(s,a)≥m},

which is dependent on the parameterm that is provided as input to the algorithm. In other words,
Kt is the set of state-action pairs that have been experienced by the agent at leastm times. We will
show that for large enoughm, the dynamics, transition and reward, associated with these pairs can
be accurately approximated by the agent.

The following event will be used in our proof that R-MAX is PAC-MDP. We will provide a
sufficient condition (specifically,L1-accurate transition and reward functions) to guarantee that the
event occurs, with high probability. In words, the condition says that the value of any states, under
any policy, in the empirical known state-action MDP (M̂Kt ) is ε1-close to its value in the true known
state-action MDP (MKt ).

Event A1 For all stationary policiesπ, timesteps t and states s during execution of the R-MAX
algorithm on some MDP M,|Vπ

MKt
(s)−Vπ

M̂Kt
(s)| ≤ ε1.

Next, we quantify the number of samples needed from both the transition and reward distribu-
tions for a state-action pair to compute accurate approximations.

Lemma 13 Suppose that r[1], r[2], . . . , r[m] are m rewards drawn independently from the reward
distribution,R (s,a), for state-action pair(s,a). LetR̂(s,a) be the empirical (maximum-likelihood)
estimate ofR (s,a). LetδR be any positive real number less than 1. Then, with probability at least
1−δR, we have that|R̂(s,a)−R (s,a)| ≤ εR

n(s,a), where

εR
m :=

√

ln(2/δR)

2m
.

Proof This result follows directly from Hoeffding’s bound (Hoeffding, 1963).

Lemma 14 Suppose that̂T(s,a) is the empirical transition distribution for state-action pair(s,a)
using m samples of next states drawn independently from the true transition distribution T(s,a). Let
δT be any positive real number less than 1. Then, with probability at least1− δT , we have that
‖T(s,a)− T̂(s,a)‖1≤ εT

n(s,a) where

εT
m =

√

2[ln(2S−2)− ln(δT)]

m
.
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Proof The result follows immediately from an application of Theorem 2.1 of Weissman et al.
(2003).11

Lemma 15 There exists a constant C such that if R-MAX with parameters m andε1 is executed on
any MDP M= 〈S ,A,T,R ,γ〉 and m satisfies

m≥CV2
max

(

S+ ln(SA/δ)

ε1
2(1− γ)2

)

= Õ

(

SV2
max

ε1
2(1− γ)2

)

,

then Event A1 will occur with probability at least1−δ.

Proof Event A1 occurs if R-MAX maintains a close approximation of its known state-action MDP.
By Lemmas 9 and 12, it is sufficient to obtain(Cε1(1−γ)/Vmax)-approximate transition and reward
functions (whereC is a constant), for those state-action pairs inKt . The transition and reward
functions that R-MAX uses are the maximum-likelihood estimates, using only the first m samples
(of immediate reward and next-state pairs) for each(s,a) ∈ K. Intuitively, as long asm is large
enough, the empirical estimates for these state-action pairs will be accurate,with high probability.12

Consider a fixed state-action pair(s,a). From Lemma 13, we can guarantee the empirical reward

distribution is accurate enough, with probability at least 1− δ′, as long as
√

ln(2/δ′)
2m ≤ Cε1(1−

γ)/Vmax. From Lemma 14, we can guarantee the empirical transition distribution is accurate enough,

with probability at least 1− δ′, as long as
√

2[ln(2S−2)−ln(δ′)]
m ≤ Cε1(1− γ)/Vmax. It is possible to

choosem, as a function of the parameters of the MDPM, large enough so that both these expressions
are satisfied but small enough so that

m∝
S+ ln(1/δ′)
ε2

1(1− γ)2 V2
max.

With this choice, we guarantee that the empirical reward and empirical distribution for a single
state-action pair will be sufficiently accurate, with high probability. However, to apply the simula-
tion bounds of Lemma 12, we require accuracy for all state-action pairs. To ensure a total failure
probability of δ, we setδ′ = δ/(2SA) in the above equations and apply the union bound over all
state-action pairs.

Proof (of Theorem 11). We apply Theorem 10. Letε1 = ε/2. Assume that Event A1 oc-
curs. Consider some fixed timet. First, we verify Condition 1 of the theorem. We have that
Vt(s) ≥V∗

M̂Kt
(s)− ε1 ≥V∗MKt

(s)−2ε1 ≥V∗(s)−2ε1. The first inequality follows from the fact that

11. The result of Weissman et al. (2003) is established using an information-theoretic argument. A similar result can be
obtained (Kakade, 2003) by the multiplicative form of Chernoff’s bounds.

12. There is a minor technicality here. The samples, in the form of immediaterewards and next states, experienced by an
online agent in an MDP are not necessarily independent samples. The reason is that the learning environment or the
agent could prevent future experiences of state-action pairs based on previously observed outcomes. Nevertheless,
all the tail inequality bounds, including the Chernoff and Hoeffding Bounds, that hold for independent samples also
hold for online samples in MDPs that can be viewed as martingales, a fact that follows from the Markov property.
There is an extended discussion and formal proof of this fact elsewhere (Strehl and Littman, 2008b). An excellent
review (with proofs) of the tail inequalities for martingales that we use in the present paper is by McDiarmid (1989).
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R-MAX computes its action values by computing anε1-approximate solution of its internal model
(M̂Kt ) (using Proposition 4). The second inequality follows from Event A1 andthe third from the
fact thatMKt can be obtained fromM by removing certain states and replacing them with a maxi-
mally rewarding state whose actions are self-loops, an operation that only increases the value of any
state. Next, we note that Condition 2 of the theorem follows from Event A1. Finally, observe that
the learning complexity,ζ(ε,δ) ≤ |{(s,a)|U(s,a)≥V∗(s)− ε}|m. To see this fact, first note that
state-action pair(s,a) with U(s,a) < V∗(s)− ε will never be experienced, with high probability,
because initially the agent chooses actions greedily with respect toU(s,a) and there always exists
another actiona′ such thatQt(s,a′) > V∗(s)− ε. Next, note that each time an escape occurs, some
(s,a) 6∈ K is experienced. However, once(s,a) is experiencedm times, it becomes part of and never
leaves the setK. To guarantee that Event A1 occurs with probability at least 1−δ, we use Lemma 15
to setm.

3.3 Analysis of Delayed Q-learning

In this section, we analyze the computational and sample complexity of Delayed Q-learning.

3.3.1 COMPUTATIONAL COMPLEXITY

On most timesteps, Delayed Q-learning performs only a constant amount of computation. Its worst-
case computational complexity per timestep is

Θ(ln(A)),

where the logarithmic term is due to updating the priority queue that holds the action-value estimates

for the current state. Since Delayed Q-learning performs at mostSA
(

1+ SA
(1−γ)ε1

)

attempted updates

(see Lemma 19), each update involvesm transitions, and each transition requires computing the
greedy action whose computation complexity isO(ln(A)), the total computation time of Delayed
Q-learning is

O

(

B+
mS2A2 ln(A)

ε1(1− γ)

)

,

whereB is the number of timesteps for which Delayed Q-learning is executed. Since thenumber of
attempted updates is bounded by a constant, the amortized computation time per stepis O(1) asB
approaches∞.

3.3.2 SAMPLE COMPLEXITY

In this section, we show that Delayed Q-learning is PAC-MDP.

Theorem 16 (Strehl et al., 2006b) Suppose that0≤ ε < 1
1−γ and0≤ δ < 1 are two real numbers

and M= 〈S ,A,T,R ,γ〉 is any MDP. There exists inputs m= m(1
ε ,

1
δ) andε1, satisfying m(1

ε ,
1
δ) =

O
(

(1+γVmax)
2

ε2
1

ln SA
ε1δ(1−γ)

)

and 1
ε1

= O( 1
ε(1−γ)), such that if Delayed Q-learning is executed on M, then

the following holds. LetAt denote Delayed Q-learning’s policy at time t and st denote the state at
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time t. With probability at least1−δ, VAt
M (st)≥V∗M(st)− ε is true for all but

O

(

Vmax(1+ γVmax)
2 ∑(s,a)∈S×A[U(s,a)−V∗(s)]+

ε4(1− γ)4 ln
1
δ

ln
1

ε(1− γ)
ln

SA
δε(1− γ)

)

timesteps t.

Definition 17 Anupdate (or successful update) of state-action pair(s,a) is a timestep t for which
a change to the action-value estimate Q(s,a) occurs. Anattempted updateof state-action pair
(s,a) is a timestep t for which(s,a) is experienced, LEARN(s,a) = true and l(s,a) = m. An at-
tempted update that is not successful is anunsuccessful update.

To prove the main theorem we need some additional results. The following lemmasare modified
slightly from Strehl et al. (2006b). For convenience, define

κ :=
SA

(1− γ)ε1
.

Lemma 18 The total number of updates during any execution of Delayed Q-learningis at mostκ.

Proof Consider a fixed state-action pair(s,a). Its associated action-value estimateQ(s,a) is ini-
tialized toU(s,a) ≤ 1/(1− γ) before any updates occur. Each timeQ(s,a) is updated it decreases
by at leastε1. Since all rewards encountered are non-negative, the quantities involved in any update
(see Equation 6) are non-negative. Thus,Q(s,a) cannot fall below 0. It follows thatQ(s,a) cannot
be updated more than 1/(ε(1− γ)) times. Since there areSAstate-action pairs, we have that there
are at mostSA/(ε(1− γ)) total updates.

Lemma 19 The total number of attempted updates during any execution of Delayed Q-learning is
at most SA(1+κ).

Proof Consider a fixed state-action pair(s,a). Once(s,a) is experienced for themth time, an at-
tempted update will occur. Suppose that an attempted update of(s,a) occurs during timestept.
Afterwards, for another attempted update to occur during some later timestept ′, it must be the case
that a successful update of some state-action pair (not necessarily(s,a)) has occurred on or after
timestept and before timestept ′. From Lemma 18, there can be at mostκ total successful updates.
Therefore, there are at most 1+κ attempted updates of(s,a). Since there areSAstate-action pairs,
there can be at mostSA(1+κ) total attempted updates.

Definition 20 During timestep t of the execution of Delayed Q-learning, we define Kt to be the set

Kt :=

{

(s,a) ∈ S ×A | Qt(s,a)−

(

R(s,a)+ γ∑
s′

T(s′|s,a)Vt(s
′)

)

≤ 3ε1

}

.
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The setKt consists of the state-action pairs with low Bellman residual. The state-action pairs
not in Kt are the ones whose action-value estimates are overly optimistic in the sense thatthey
would decrease significantly if subjected to a Bellman backup (as in value iteration). Intuitively, if
(s,a) 6∈ Kt , then it is very likely that(s,a) will be updated successfully by Delayed Q-learning if
visitedm times. This intuition is formalized by the following definition and lemma.

Definition 21 Suppose we execute Delayed Q-learning in an MDP M. DefineEvent A2 to be the
event that for all timesteps t, if(s,a) /∈ Kk1 and an attempted update of(s,a) occurs during timestep
t, then the update will be successful, where k1 < k2 < · · ·< km = t are m last timesteps during which
(s,a) is experienced consecutively by the agent.

Lemma 22 Suppose we execute Delayed Q-learning with parameter m satisfying

m≥
(1+ γVmax)

2

2ε1
2 ln

(

3SA
δ

(

1+
SA

ε1(1− γ)

))

(8)

in an MDP M. The probability that Event A2 occurs is greater than or equalto 1−δ/3.

Proof Fix any timestepk1 (and the complete history of the agent up tok1) satisfying: the agent
is in states and about to take actiona, where(s,a) 6∈ Kk1 on timestepk1, LEARN(s,a) = true,
and l(s,a) = 0 at timek1. In other words, if(s,a) is experiencedm−1 more times after timestep
k1, then an attempted update will result. LetQ = [(s[1], r[1]), . . . ,(s[m], r[m])] ∈ (S×R)m be any
sequence ofm next-state and immediate reward tuples. Due to the Markov assumption, whenever
the agent is in statesand chooses actiona, the resulting next-state and immediate reward are chosen
independently of the history of the agent. Thus, the probability of the joint event

1. (s,a) is experiencedm−1 more times, and
2. the resulting next-state and immediate reward sequence equalsQ

is at most the probability thatQ is obtained bym independent draws from the transition and reward
distributions (for(s,a)). Therefore, it suffices to prove this lemma by showing that the probability
that a random sequenceQ could cause an unsuccessful update of(s,a) is at mostδ/3. We prove
this statement next.

Supposem rewards,r[1], . . . , r[m], andm next states,s[1], . . . ,s[m], are drawn independently
from the reward and transition distributions, respectively, for(s,a). By a straightforward application
of the Hoeffding bound (with random variablesXi := r[i]+ γVk1(s[i]) so that 0≤ Xi ≤ (1+ γVmax)),
it can be shown that our choice ofm guarantees that

1
m

m

∑
i=1

(r[i]+ γVk1(s[i]))−E[X1] < ε1

holds with probability at least 1− δ/(3SA(1+ κ)). If it does hold and an attempted update is
performed for(s,a) using thesem samples, then the resulting update will succeed. To see the
claim’s validity, suppose that(s,a) is experienced at timesk1 < k2 < · · ·< km = t and at timeki the
agent is transitioned to states[i] and receives rewardr[i] (causing an attempted update at timet).
Then, we have that

Qt(s,a)−

(

1
m

m

∑
i=1

(r[i]+ γVki (s[i]))

)

> Qt(s,a)−E[X1]− ε1 > 2ε1.
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We have used the fact thatVki (s
′)≤Vk1(s

′) for all s′ andi = 1, . . . ,m. Therefore, with high probabil-
ity, Equation 7 will be true and the attempted update ofQ(s,a) at timekm will succeed.

Finally, we extend our argument, using the union bound, to all possible timestepsk1 satisfying
the condition above. The number of such timesteps is bounded by the same bound we showed for
the number of attempted updates (that is,SA(1+κ)).

The next lemma states that, with high probability, Delayed Q-learning will maintain optimistic
action values.

Lemma 23 During execution of Delayed Q-learning, if m satisfies Equation 8, then Qt(s,a) ≥
Q∗(s,a) holds for all timesteps t and state-action pairs(s,a), with probability at least1−δ/3.

Proof It can be shown, by a similar argument as in the proof of Lemma 22, that
(1/m)∑m

i=1(rki + γV∗(ski )) > Q∗(s,a)− ε1 holds, for all attempted updates, with probability at least
1− δ/3. Assuming this equation does hold, the proof is by induction on the timestept. For the
base case, note thatQ1(s,a) = U(s,a)≥Q∗(s,a) for all (s,a). Now, suppose the claim holds for all
timesteps less than or equal tot. Thus, we have thatQt(s,a) ≥ Q∗(s,a), andVt(s) ≥V∗(s) for all
(s,a). Supposes is thet th state reached anda is the action taken at timet. If it does not result in an
attempted update or it results in an unsuccessful update, then no action-value estimates change, and
we are done. Otherwise, by Equation 6, we have thatQt+1(s,a) = (1/m)∑m

i=1(rki + γVki (ski ))+ε1≥
(1/m)∑m

i=1(rki + γV∗(ski )) + ε1 ≥ Q∗(s,a), by the induction hypothesis and an application of the
equation from above.

Lemma 24 (Strehl et al., 2006b) If Event A2 occurs, then the following statement holds: If an
unsuccessful update occurs at time t and LEARNt+1(s,a) = false, then(s,a) ∈ Kt+1.

Proof (By contradiction) Suppose an unsuccessful update occurs at timestept, LEARNt+1(s,a) =
f alse, and(s,a) /∈ Kt+1. Let k1 < k2 < · · ·< km be the most recentm timesteps in whicha is taken
in states. Clearly,km = t. Because of Event A2, we have(s,a) ∈ Kk1. Since no update occurred on
timestept, we have thatKt = Kt+1. It follows from Kt = Kt+1 that (s,a) /∈ Kt , implying that there
must exist some timestept ′ > k1 in which a successful update occurs. Thus, by the rules of Section
2.2.2,LEARNt+1(s,a) remainstrue, which contradicts our assumption.

The following lemma bounds the number of timestepst in which a state-action pair(s,a) 6∈ Kt

is experienced.

Lemma 25 If Event A2 occurs and Qt(s,a) ≥ Q∗(s,a) holds for all timesteps t and state-action

pairs(s,a), then the number of changes to the Q-function is at most∑(s,a)∈S×A

[U(s,a)−V∗(s)]+
ε1

, and the

number of timesteps t such that a state-action pair(st ,at) 6∈Kt is at most2m∑(s,a)∈S×A

[U(s,a)−V∗(s)]+
ε1

.

Proof We claim thatQ(s,a) cannot be changed more than[U(s,a)−V∗(s)]+
ε1

times. First, note that
Q(s,a) is initialized toU(s,a) and each successful update decreases its value by at leastε1. Now, let
a∗ = argmaxaQ∗(s,a). By assumptionQ(s,a∗) ≥ Q∗(s,a∗) = V∗(s). Thus, we conclude that once
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Q(s,a) falls belowV∗(s), actiona will never again be chosen in states, since actions are chosen
greedily with respect toQ(·, ·). Updates to(s,a) only occur after(s,a) has been experienced. Thus,
at most[U(s,a)−V∗(s)]+

ε1
changes toQ(s,a) can occur, and the total number of changes to the Q-function

is at most∑(s,a)∈S×A

[U(s,a)−V∗(s)]+
ε1

.
Suppose(s,a) 6∈ Kt is experienced at timet and LEARNt(s,a) = false (implying the last at-

tempted update was unsuccessful). By Lemma 24, we have that(s,a) ∈ Kt ′+1 wheret ′ was the time
of the last attempted update of(s,a). Thus, some successful update has occurred since timet ′+1.
By the rules of Section 2.2.2, we have thatLEARN(s,a) will be set totrue and by Event A2, the
next attempted update will succeed.

Now, suppose that(s,a) 6∈ Kt is experienced at timet andLEARNt(s,a) = true. Within at most
m more experiences of(s,a), an attempted update of(s,a) will occur. Suppose this attempted
update takes place at timeq and that them most recent experiences of(s,a) happened at times
k1 < k2 < · · ·< km = q. By Event A2, if(s,a) 6∈ Kk1, the update will be successful. Otherwise, since
(s,a) ∈ Kk1, some successful update must have occurred between timesk1 andt (sinceKk1 6= Kt).
Hence, even if the update is unsuccessful,LEARN(s,a) will remain true, (s,a) 6∈ Kq+1 will hold,
and the next attempted update of(s,a) will be successful.

In either case, if(s,a) 6∈ Kt , then within at most 2m more experiences of(s,a), a successful
update ofQ(s,a) will occur. Thus, reaching a state-action pair not inKt at timet will happen at
most 2m∑(s,a)∈S×A

[U(s,a)−V∗(s)]+
ε1

times.

Using these Lemmas we can prove the main result.

Proof (of Theorem 16) We apply Theorem 10. Setm as in Lemma 22 and letε1 = ε(1− γ)/3.
First, note thatKt is defined with respect to the agent’s action-value estimatesQ(·, ·) and other
quantities that don’t change during learning. Thus, we have thatKt = Kt+1 unless an update to
some action-value estimate takes place. We now assume that Event A2 occurs, an assumption that
holds with probability at least 1−δ/3, by Lemma 22. By Lemma 23, we have that Condition 1 of
Theorem 10 holds, namely thatVt(s)≥V∗(s)− ε for all timestepst. Next, we claim that Condition
2, Vt(s)−Vπt

MKt
(s) ≤ 3ε1

1−γ = ε also holds. For convenience letM′ denoteMKt . Recall that for all

(s,a), eitherQt(s,a) = Qπt
M′(s,a) when(s,a) 6∈Kt , orQt(s,a)−(R(s,a)+ γ∑s′ T(s′|s,a)Vt(s′))≤ 3ε1

when(s,a) ∈ Kt (by definition ofKt). Note thatVπt
M′ is the solution to the following set of Bellman

equations:

Vπt
M′(s) = R(s,πt(s))+ γ ∑

s′∈S

T(s′|s,πt(s))V
πt
M′(s

′) if (s,πt(s)) ∈ Kt ,

Vπt
M′(s) = Qt(s,πt(s)), if (s,πt(s)) 6∈ Kt .

The vectorVt is the solution to a similar set of equations except with some additional positive reward
terms on the right-hand side for the case(s,πt(s)) ∈ Kt , each bounded by 3ε1, due to our definition
of the setKt . This fact implies thatVt(s)−Vπt

MKt
(s) ≤ 3ε1

1−γ , as desired; see, e.g., Munos and Moore
(2000) for a proof. Finally, for Condition 3 of Theorem 10, we note thatby Lemma 25,ζ(ε,δ) =

O
(

2m∑(s,a)∈S×A

[U(s,a)−V∗(s)]+
ε1

)

= O
(

(1+γVmax)
2 ∑(s,a)∈S×A[U(s,a)−V∗(s)]+

ε3(1−γ)3 ln SA
εδ(1−γ)

)

, whereζ(ε,δ) is the

number of updates and escape events that occur during execution of Delayed Q-learning with inputs
ε andδ (equivalently, with inputsε1 andm, which are derived fromε andδ).
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We’ve proven upper bounds on the learning complexity of Delayed Q-learning and R-MAX.
The analysis techniques are general and have proven useful in analyzing other related algorithms
(Asmuth et al., 2008; Brunskill et al., 2008; Leffler et al., 2007; Strehl et al., 2007; Strehl and
Littman, 2008a).

4. A New Lower Bound

The main result of this section (Theorem 26) is an improvement on published lower bounds for
learning in MDPs. Existing results (Kakade, 2003) show a linear dependence onS andε, but we
find that a linearithmic onSand a quadratic dependence onε are necessary for any reinforcement-
learning algorithmA that satisfies the following assumptions:

• At is a deterministic policy at all timestepst, and

• At andAt+1 can differ only inst ; namely, the action-selection policy of the algorithm may
change only in the most recently visited state.

Both assumptions are introduced to simplify our analysis. We anticipate the same lower bound
to hold without these assumptions as they do not appear to restrict the powerof an algorithm in
the family of difficult-to-learn MDPs that we will describe soon. Also, while wechoose to drop
dependence on 1/(1− γ) in our new lower bound to facilitate a cleaner analysis, we believe it is
possible to force a quadratic dependence by a more careful analysis. Finally, we note that the
analysis bears some similarity to the lower bound analysis of Leffler et al. (2005) although their
result is different and is for a different learning model.

Theorem 26 For any reinforcement-learning algorithmA that satisfies the two assumptions above,
there exists an MDP M such that the sample complexity ofA in M is

Ω
(

SA
ε2 ln

S
δ

)

.

To prove this theorem, consider the family of MDPs depicted in Figure 1. The MDPs have
S= N + 2 states:S = {1,2, . . . ,N,+,−}, andA actions. For convenience, denote by[N] the set
{1,2, . . . ,N}. Transitions from each statei ∈ [N] are the same, so only the transitions from state 1
are depicted. One of the actions (the solid one) deterministically transports theagent to state+ with
reward 0.5+ ε. Let a be any of the otherA−1 actions (the dashed ones). From any statei ∈ [N],
takinga will transition to+ with reward 1 and probabilitypia, and to− with reward 0 otherwise,
wherepia ∈ {0.5,0.5+ 2ε} are numbers very close to 0.5+ ε. Furthermore, for eachi, there is at
most onea such thatpia = 0.5+2ε. Transitions from states+ and− are identical: they simply reset
the agent to one of the states in[N] uniformly at random.

In fact, the MDP defined above can be viewed asN copies of a multi-armed bandit problem
where the states+ and− are dummy states for randomly resetting the agent to the next “real” state.
Therefore, the optimal action in a statei is independent of the optimal action in any other state: it is
the solid action ifpia = 0.5 for all dashed actionsa; otherwise, it is the dashed actiona for which
pia = 0.5+2ε. Intuitively, this MDP is hard to learn for exactly the same reason that a biased coin
is hard to learn if the bias (that is, the probability ofhead after a coin toss) is close to 0.5.
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Figure 1: The difficult-to-learn MDPs for an improved sample complexity lowerbound.

Lemma 27 There exist constants c1,c2 ∈ (0,1) such that during a whole run of the algorithmA ,
for any state i∈ [N], the probability thatA takes sub-optimal actions in i more than mi times is at
least p(mi), where

p(mi) := c2exp

(

−
miε2

c1A

)

.

The following result is useful for proving Lemma 27.

Lemma 28 (Mannor and Tsitsiklis, 2004, Theorem 1) Consider the K-armed banditproblem and
let ε,δ ∈ (0,1). We call an algorithmAB (ε,δ)-correct if it always terminates after a finite number
T of trials and outputs anε-optimal arm with probability at least1−δ. Here, the sample complexity
T is a random variable, and we letE be the expectation with respect to randomness in the bandit’s
rewards andAB (if the algorithm is stochastic). Then there exist constants c1,c2,ε0,δ0∈ (0,1), such
that for every K≥ 2, ε ∈ (0,ε0), andδ ∈ (0,δ0), and for every(ε,δ)-correct algorithmAB, there is
a K-armed bandit problem such that

E[T]≥
c1K
ε2 ln

c2

δ
.

Proof (of Lemma 27) If we treat decision making in each state as anA-arm bandit problem, finding
the optimal action for that state becomes one of finding anε-optimal arm (action) in the bandit
problem. This bandit problem is the one used by Mannor and Tsitsiklis (2004) to establish the
sample complexity lower bound in Lemma 28.13

By construction of the MDP in Figure 1, there is at most one optimal action in each statei ∈ [N].
Thus, if any RL algorithmA can guarantee, with probability at least 1− δi , that at mostmi sub-
optimal actions are taken in statei during a whole run, then we can turn it into a bandit algorithm
AB with a sample complexity of 2mi +1 in the following way: we simply runA for 2mi +1 steps
and the majority action must beε-optimal with probability at least 1−δi . In other words, Lemma 28

13. The lower bound of Mannor and Tsitsiklis (2004) is forexpectedsample complexity. But, this result automatically
applies toworst-casesample complexity, which is what we consider in the present paper.
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for sample complexity inK-armed bandits results immediately in a lower bound for the total number
of sub-optimal actions taken byA , yielding

mi ≥
c1A
ε2 ln

c2

δi

for appropriately chosen constantsc1 andc2. Reorganizing terms gives the desired result.

We will need two technical lemma to prove the lower bound. Their proofs are given after the
proof of the main theorem.

Lemma 29 Let c and∆ be constants in(0,1). Under the constraints∑i mi ≤ ζ and mi > 0 for all i,
the function

f (m1,m2, . . . ,mN) = 1−
N

∏
i=1

(1−c∆mi )

is minimized when m1 = m2 = · · ·= mN = ζ
N . Therefore,

f (m1,m2, . . . ,mN)≥ 1−
(

1−c∆
ζ
N

)N
.

Lemma 30 If there exist some constants c1,c2 > 0 such that

δ≥ 1−

(

1−c2exp

(

−
ζη
c1Ψ

))Ψ
,

for some positive quantitiesη, ζ, Ψ, andδ, then

ζ = Ω
(

Ψ
η

ln
Ψ
δ

)

.

Proof (of Theorem 26) Letζ(ε,δ) be an upper bound of the sample complexity of any PAC-MDP
algorithmA with probability at least 1−δ. Let sub-optimal actions be takenmi times in statei ∈ [N]
during a whole run ofA . Consequently,

δ≥ Pr

(

N

∑
i=1

mi > ζ(ε,δ)

)

= 1−Pr

(

N

∑
i=1

mi ≤ ζ(ε,δ)

)

,

where the first step is because the actual sample complexity ofA is at least∑i mi .
We wish to find a lower bound for the last expression above by optimizing the values ofmi ’s

subject to the constraint,∑i mi ≤ ζ(ε,δ). Due to the statistical independence of what statesi ∈ [N]
are visited by the algorithm,14 we can factor the probability above to obtain

δ≥ 1− max
m1,...,mN;∑i mi≤ζ(ε,δ)

N

∏
i=1

(1− p(mi)) .

14. It does not help for the algorithm to base its policy in one state on samplescollected in other states, due to the
independence of states in this MDP. If an algorithm attempts to do so, an adversary can make use of this fact to assign
pia to evenincreasethe failure probability of the algorithm.
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where Lemma 27 is applied.
We now use Lemma 29 to obtain a lower bound of the last expression above, which in turn

lower-boundsδ. Applying this lemma withc = c2 and∆ = exp(− ε2

c1A) gives

δ≥ 1−

(

1−c2exp

(

−
ζ(ε,δ)ε2

c1NA

))N

. (9)

The theorem then follows immediately from Lemma 30 usingΨ = N andη = ε2/A.

Proof (of Lemma 29) Sincef (m1, . . . ,mN) ∈ (0,1), finding theminimumof f is equivalent to
finding themaximumof the following function:

g(m1,m2, . . . ,mN) = ln(1− f (m1,m2, . . . ,mN)) =
N

∑
i=1

ln(1−c∆mi ) ,

under the same constraints. Due to the concavity of ln(·), we have

g(m1,m2, . . . ,mN)≤ N ln

(

1
N

N

∑
i=1

(1−c∆mi )

)

= N ln

(

1−
c
N

N

∑
i=1

∆mi

)

.

Finally, we use the fact that the arithmetic mean is no less than the geometric mean to further
simplify the upper bound ofg:

g(m1,m2, . . . ,mN)≤ N ln
(

1−c∆
1
N ∑N

i=1 mi

)

≤ N ln
(

1−c∆
ζ
N

)

.

Equality holds in all inequalities above whenm1 = m2 = · · ·= mN = ζ
N .

Proof (of Lemma 30) Reorganizing terms in Equation (9) gives

1−c2exp

(

−
ζη
c1Ψ

)

≥ (1−δ)
1
Ψ .

The function(1− δ)1/δ is a decreasing function ofδ for 0 < δ < 1, and limδ→0+(1− δ)1/δ = 1/e.
Therefore, as long asδ is less than some constantc3 ∈ (0,1), we will have

(1−δ)
1
Ψ =

(

(1−δ)
1
δ

)
δ
Ψ
≥ (c4)

δ
Ψ = exp

(

−
c5δ
Ψ

)

,

wherec4 = (1−c3)
1/c3 ∈

(

0, 1
e

)

andc5 = ln 1
c4
∈ (1,∞) are two constants. It is important to note

thatc3 (and thusc4 andc5) does not depend onη or Ψ. Now, apply the inequalityex ≥ 1+ x for
x =−c5δ/Ψ to get exp(−c5δ/Ψ)≥ 1−c5δ/Ψ. The above chain of inequalities results in:

1−c2exp

(

−
ζη
c1Ψ

)

≥ 1−
c5δ
Ψ

.

Solving this inequality forζ gives the desired lower bound forζ.

We have shown a new sample complexity lower bound that has a linearithmic dependence onS
in the worst case. Thus, Delayed Q-learning is optimal in the sense of minimizingthe dependence
(of sample complexity of exploration) on the number of states.
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5. Conclusion

We have presented and improved PAC-MDP upper and lower bounds reported in the literature.
We studied two algorithms, R-MAX (which is modelbased) and Delayed Q-learning (which is
model free) that are able to make use of non-trivial admissible heuristic functions. Comparing
the relative strengths of model-based and model-free algorithms has been an important problem
in the reinforcement-learning community (see, e.g., Atkeson and Gordon 1997 and Kearns and
Singh 1999). Our analysis indicates that both can learn efficiently in finite MDPs in the PAC-MDP
framework. The bounds suggest that a model-free method can be less sensitive on the size of the
state space (linearithmic vs. quadratic dependence in the bound, matching thelower bound) whereas
a model-based method can be less sensitive to the effective horizon, 1/(1− γ). Future work should
focus on tightening bounds further and expanding analyses to state spaces in which generalization
is necessary.
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