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Abstract
Process discovery is the automated construction of structured process models from information sys-
tem event logs. Such event logs often contain positive examples only. Without negative examples,
it is a challenge to strike the right balance between recall and specificity, and to deal with problems
such as expressiveness, noise, incomplete event logs, or the inclusion of prior knowledge. In this
paper, we present a configurable technique that deals with these challenges by representing process
discovery as a multi-relational classification problem on event logs supplemented with Artificially
Generated Negative Events (AGNEs). This problem formulation allows using learning algorithms
and evaluation techniques that are well-know in the machinelearning community. Moreover, it
allows users to have a declarative control over the inductive bias and language bias.

Keywords: graph pattern discovery, inductive logic programming, Petri net, process discovery,
positive data only

1. Introduction

Learning descriptive or predictive models from sequence data is an important data mining task
with applications in Web usage mining, fraud detection, bio-informatics, and process discovery.
The learning task can be formulated as follows: given a sequence database that contains a finite
number of sequences, find a useful generative model that describesor predicts its spatio-temporal
properties. Depending on the application domain, a variety of sequence models and corresponding
learning algorithms are available. For instance, probabilistic generative models such as (hidden)
Markov models have been successfully applied in speech analysis, and bio-informatics (Durbin
et al., 1998), whereas deterministic models such as partial orders have been applied in domains
such as Web usage mining (Mannila and Meek, 2000; Pei et al., 2006). Inthis paper, we focus on
the problem of process discovery, the discovery of business process models from event-based data
generated by information systems. Process models typically contain structures such as sequences,
or-splits, and-splits (parallel threads), or-joins, and-joins, loops (iterations), non-local, non-free,
history-dependent or-splits, and duplicate activities. Because Petri nets can represent these con-
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structs, they are known to be a convenient process modeling language (van der Aalst, 1998; Alves
de Medeiros, 2006) provides a detailed overview of how these structures can be represented with
Petri nets.

The motivation for process discovery is the abundant availability of information system event
logs. The analysis of such event logs can provide insight into how processesactually take place,
and to what extent actual processes deviate from a normative processmodel. Information system
events keep track of, among others, the completion of an activity of a particular activity type. For
example, an event can report that a particular activity of type ‘apply forlicense’ has completed. The
goal of process discovery is to construct a useful process model that describesthe event sequences
recorded in the event log. Example 1, illustrates the learning problem for a fictitious driver’s license
application process. Given the event sequence database in Example 1, auseful process models is to
be conceived.

Example 1 DriversLicensel—discovery of a driver’s license application process with loop. The
transitions correspond to activity types that have the following meaning: a start,b apply for li-
cense, c attend classes cars, d attend classes motor bikes, e obtain insurance, f theoretical exam, g
practical exam cars, h practical exam motor bikes, i get result, j receive license, and k end.

σ1 abcefgijk
σ2 abdfehijk
σ3 abdefhijbdfehijk
σ4 abcfegik
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(d) over-specific

The construction of useful process models from an event log is subjected to many challenging
problems. An inherent difficulty is that process discovery is limited to a setting of unsupervised
learning. Event logs rarely contain negative information about state transitions that were prevented
from taking place. Such negative information can be useful to discover the discriminating properties
of the underlying process. In the absence of negative information, it is necessary to provide a learner
with a particularinductive bias, to accurately strike the right balance between generality and speci-
ficity. The absence of negative information, makes the learning task aim at accurately summarizing
an event log such that the discovered process model allows the observed behavior (recall) but does
not include unintended, random behavior that is not present in the event log (specificity). In addition
to accuracy, the learning problem faces challenges such as expressiveness, noise, incomplete event
logs, and the inclusion of prior knowledge:

• accuracy: accuracy refers to the extent to which the induced model fits the behavior inthe
event log. Accuracy necessitates a tradeoff between specificity and recall. The Petri net in
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Example 1, called a flower model, is capable of parsing every sequence in the event log. How-
ever, it can be considered to be overly general as it allows any activity tooccur in any order.
In contrast, the Petri net in Example 1 is overly specific, as it provides a mere enumeration
of the different sequences in the event log. The Petri net in Example 1 is likely to be the
more suitable process model. It is well-structured, and strikes a reasonable balance between
specificity and generality, allowing for instance an unseen sequenceabcefgik, but disallowing
random behavior. An additional difficulty is that in the absence of negative information, the
specificity of a learned process model is difficult to quantify.

• expressiveness: expressiveness relates to the ability to comprehensively summarize an event
log using a rich palette of structures such as sequences, or-splits, and-splits (parallel threads),
or-joins, and-joins, loops (iterations), history-dependent or-splits, and duplicate activities.

• noise: human-centric processes are prone to exceptions and logging errors. This causes ad-
ditional low-frequent behavior to be present in the event log that is unwanted in the process
model to be learned. Process discovery algorithms face the challenge of not overfitting this
noise.

• incomplete logs: incomplete event logs do not contain the complete set of sequences that
occur according to the underlying, real-life process. This is particularlythe case for pro-
cesses that portray a large amount of concurrent and recurrent behavior. In this case, process
discovery algorithms must be capable of generalizing beyond the observed behavior.

• prior knowledge: the problem of consolidating the knowledge extracted from the data with
the knowledge representing the experience of domain experts, is called theknowledge fusion
problem (Dybowski et al., 2003). Prior knowledge constrains the hypothesis space of a se-
quence mining algorithm. In the context of process discovery, prior knowledge might refer
to knowledge about concurrency (parallelism), locality, or exclusivity ofactivities. When a
learner produces a process model that is not in line with the prior knowledge of a domain
expert, the expert might refuse using the discovered process model. For instance, a domain
expert might refuse a process model in which a pair of activities cannot take place concur-
rently, whereas in reality such parallelism is actually allowed.

In this paper, these challenges addressed by representing process discovery as an ILP classi-
fication learning problem on event logs supplemented with artificially generated negative events
(AGNEs). The AGNEs technique is capable of constructing Petri net modelsfrom event logs and
has been implemented as a mining plugin in the ProM framework. A benchmark experiment with
34 artificial event logs and comparison to four state-of-the-art process discovery algorithms indicate
that the technique is expressive, robust to noise, and capable of dealing with incomplete event logs.
A second contribution of the paper is the definition of a new metric for quantifying the specificity
of an induced process model, based on these artificially generated negative events.

The remainder of this paper is structured as follows. Section 2 introduces some preliminaries
and notations about inductive logic programming, event logs, and Petri nets. Section 3 explains
the rationale for generating artificial negative events and provides a detailed description of the used
algorithms. Section 4 discusses the process discovery technique. Section5 introduces the new
specificity metric that is based on negative events. Sections 6 and 7 provideboth an experimental
and practical evaluation of the process discovery technique. Finally, Section 8 provides an overview
of the work in the area of process discovery and outlines the contributionsmade.
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2. Preliminaries

This section introduces the most important concepts and notations that are used in the remainder of
this paper.

2.1 Inductive Logic Programming

Inductive Logic Programming (ILP) (Muggleton, 1990; Džeroski and Lavrǎc, 1994, 2001; Ďzeroski,
2003) is a research domain in machine learning involving learners that use logic programming
to represent data, background knowledge, the hypothesis space, and the learned hypothesis. ILP
learners are called multi-relational learners and extend classical, uni-relational learners in the sense
that they can not only learn patterns that occur within single tuples (within rows), but can also find
patterns that may range over different tuples of different relations (between multiple rows of a single
or multiple tables). For process discovery, this multi-relational property is much desired, as it allows
discovering patterns that relate the occurrence of an event to the occurrence of any other event in
the event log.

Within ILP, concept learningis an important learning task. An ILP classification learner will
search for a hypothesisH in a hypothesis spaceS that best discriminates between the positiveP
and negative examplesN (E = P∪N) in combination with some given background knowledgeB.
A particularly salient feature of such learners is that they have a highly configurable language bias.
The language biasL specifies the hypothesis spaceS of logic programsH that can be considered.
In addition, users of ILP learners can specify background knowledge B as a logic program. Such
background knowledge is a more parsimonious encoding of knowledge that is true about every
example, than is the case for the attribute-value encoding of propositional learners. In addition to
their multi-relational capabilities, the power of ILP concept learners lies with the configurability of
their language biasL and background knowledgeB. The effectiveness by which an ILP learner can
be applied to a learning task depends on the choices that are made in representing the examplesE,
the background knowledgeB and the language biasL.

In this text, we make use of TILDE (Blockeel and De Raedt, 1998), a first-order decision tree
learner available in the ACE-ilProlog data mining system (Blockeel et al., 2002). Blockeel (1998)
formalizes the learning task of TILDE as follows:
given:

• a set of classesC

• a set of classified examplesE, each example(e,c) ∈ E is an independent logic program for
which the predicateClass(c) denotes thate is classified into classc.

• a logic programB that represents the background knowledge

• a language biasL that specifies a hypothesis spaceS of logic programs.

find: a hypothesisH ∈ S (a logic program) such that for all labeled examples(e,c) ∈ E,

• ∀e∈ E : H ∧e∧B � Class(c)

• ∀e∈ E,∀c′ ∈C\{c} : H ∧e∧B 2 Class(c′).
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TILDE is a first-order generalization of the well-known C4.5 algorithm for decision tree induc-
tion (Quinlan, 1993). Like C4.5, TILDE (Blockeel and De Raedt, 1998; Blockeel et al., 2002) ob-
tains classification rules by recursively partitioning the data set accordingto logical conditions that
can be represented as nodes in a tree. This top-down induction of logicaldecision trees (TILDE) is
driven by refining the node criteria according to the provided language biasL. Unlike C4.5, TILDE
is capable of inducing first-order logical decision trees (FOLDT). A FOLDT is a tree that holds
logical formula containing variables instead of propositions. Blockeel andDe Raedt (1998) show
how each FOLDT can be converted into a logic program.

2.2 Event Logs

In process discovery, an event log is a database of event sequences. Each event reports an instan-
taneous state change of an activity of a particular activity type. Activities and events that pertain
to the same process instance are identified by a so-called case identifier. Inprocess discovery, the
MXML format for event logs (van Dongen and van der Aalst, 2005a) is the commonly accepted
format for event logs. To use event logs with TILDE event logs have to be represented as a logi-
cal program. LetX be a set of event identifiers,P a set of case identifiers, the alphabetA a set of
activity types, andE = {completed,completeRejected} a set of event types. An event predicate is
a quintupleEvent(x, p,a,e, t), wherex∈ X is the event identifier,p∈ P is the case identifier,a∈ A
the activity type,e∈ E the event type, andt ∈N the time of occurrence of the event. The function
Case∈ X∪L → P denotes the case identifier of an event or a sequence. The functionAT ∈ X → A
denotes the activity type of an event. The functionET∈ X → E denotes the event type of an event.
The functionTime∈X →N denotes the time of occurrence of an event. The setX of identifiers has a
complete ordering, such that∀x,y∈X : x< y∨y< x and∀x,y∈ L : x< y⇒ Time(x)≤ Time(y). The
event typesE = {completed,completeRejected} respectively indicate the completion of a particular
activity or that the completion of a particular activity could not take place, a negative event.

Let an event logL be a set of sequencesσ. Let σ ∈ L be an event sequence, an ordered set of
event identifiersx∈ X of events pertaining to the same process instance as denoted by the case id;
σ = {x | x ∈ X ∧Case(x) = Case(σ)}. The functionPosition∈ X ×L → N0 denotes the position
of an event with identifierx∈ X in the sequenceσ ∈ L. Two subsequent event identifiers within a
sequenceσ can be represented as a sequencex.y⊆ σ. We define the .-predicate as follows

x.y⇔∃x,y∈ σ : x < y∧∄z∈ σ : x < z< y.

In the text, this predicate is used within the context of a single sequenceσ which is therefore left
implicit. Given thatAT(x) = a,AT(y) = b the information in the sequence can be further abbreviated
asab, because the order of the activity types in a sequence is the most important information for the
purpose of process discovery. This notation is used to represent the event log in Example 1. Each
row σi in the event log represents a different execution sequence that corresponds to a particular
process instance.

2.3 Petri Nets

Example 1 is a Petri net representation of a simplified driver’s license application process. Petri nets
represent a graphical language with a formal semantics that has been used to represent, analyze,
verify, and simulate dynamic behavior (Murata, 1989). Petri nets consistof places, tokens, and
arcs. Places(drawn as circles) can containtokensand are a distributed representation of state.

1309



GOEDERTIER, MARTENS, VANTHIENEN AND BAESENS

Each different distribution of tokens over the places of a Petri net indicate a different state. Such a
state is called amarking. Transitions(drawn as rectangles) can consume and produce tokens and
represent a state change.Arcs(drawn as arrows) connect places and transitions and represent a flow
relationship. More formally, a marked Petri net is a pair((P,T,F),s) where,

• P is a finite set of places,

• T is a finite set of transitions such thatP∩T = /0, and

• F ⊆ (P×T)∪ (T ×P) is a finite set of direct arcs, and

• s∈ P→N is a bag overP denoting the marking of the net (van der Aalst, 1997, 1998).

Petri nets are bipartite directed graphs, that means that each arc must connect a transition to a place
or a place to a transition. The transitions in a Petri net can be labeled or not. Transitions that are
not labeled are calledsilent transitions. Different transitions that bear the same label are called
duplicate transitions.

The behavior of a Petri net is determined by thefiring rule. A transitiont isenablediff each input
placep of t contains at least one token. When a transition is enabled it canfire. When a transition
fires, it brings about a state change in the Petri net. In essence, it consumes one token from each
input placep and produces one token in each output placep of t. To evaluate the extent to which a
Petri net is capable of parsing an event sequence, transitions might be forced to fire. A transition that
is not enabled, can beforced to fire. When a transition is forced to fire, it consumes one token from
each input place that contains a token—if any—and produces one token ineach output place. Petri
nets are capable of representing structures such as sequences, or-splits, and-splits (parallel threads),
or-joins, and-joins, loops (iterations), history-dependent or-splits, and duplicate activities that are
typical for organizational processes.

3. Artificial Negative Events

Event logs generally contain sequences of positive events only. To makea tradeoff between overly
general or overly specific process models, learners make additional assumptions about the given
event sequences. Such assumptions are part of the inductive bias of alearner. Process discovery
algorithms generally include the assumption that event logs portray the completebehavior of the
underlying process and implicitly use this completeness assumption to make a tradeoff between
overly general and overly specific process models. Our technique makes this completeness assump-
tion explicit by inducing artificial negative information from the event log in a configurable way.

For processes that contain a lot of recurrent and concurrent behavior, the completeness assump-
tion can become problematic. For example, a process containing five parallelactivities (ten parallel
pairs) that are placed in a loop, has∑n

i=1(5!)i different possible execution sequences (n being the
maximum number of allowed loops).

The more recurrent behavior a process has, the more different kindsof event sequences a process
can produce. This makes a given event log less likely to contain all possible behavior. The problem
of recurrent behavior is addressed by restricting the window size (parameter:windowSize). Window
size is the number of events in the subsequence one hopes to detect at least once in the sequence
database. The larger the window size, the less probable that a similar subsequence is contained by
the other sequences in the event log. A limited window size can be advantageous in the presence
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of loops (recurrent behavior) in the underlying process. Limiting the window size to a smaller sub-
sequence of the event log, makes the completeness assumption less strict. Anunlimited window
size (windowSize= −1) results in the most strict completeness assumption.

The problem of concurrent behavior is addressed by exploiting some available parallelism in-
formation, discovered by induction or provided as prior knowledge by a domain expert. Given a
subsequence and parallelism information, all parallel variants of the subsequence can be calculated.
Taking into account the parallel variants of a subsequence makes the completeness assumption less
strict.The functionAllParallelVariants(τ) returns the set of all parallel variants that can be obtained
by permuting the activities in each sub-sequence ofτ while preserving potential dependency rela-
tionships among non-parallel activities.

Negative events record that at a particular position in an event sequence, a particular event
cannot occur. At each positionk in each event sequenceτi , it is examined which negative events can
be induced for this position. Algorithm 1 gives an overview of the negativeevent induction and is
discussed in the next paragraphs. In a first step, the event log is made more compact, by grouping
process instancesσ ∈ L that have identical sequences into grouped process instancesτ ∈ M (line
1). By grouping similar process instances, searching for similar behaviorin the event log can be
performed more efficiently.

In the next step, all negative events are induced for each grouped process instance (lines 2–12).
Making a completeness assumption about an event log boils down to assuming that behavior that
does not occur in the event log, should not occur in the process model tobe learned. Negative
examples can be introduced in grouped process instancesτi by checking at any given positive event
xk ∈ τi at positionk = Position(xk,τi) whether another event of interestzk of activity type b ∈
A\{AT(xk)} also could occur. For each eventxk ∈ τi , it is tested whether there exists a similar

sequenceτ‖j ∈AllParallelVariants(τ j) : τ j 6= τi in the event log in which at that point a state transition
yk has taken place that is similar tozk (line 6). If such a state transition does not occur in any other
sequence, such behavior is not present in the event logL. This means under the completeness
assumption that the state transition cannot occur. Consequently,zk can be added as a negative event
at this pointk in the event sequenceτi (lines 7–8). On the other hand, if a similar sequence is found
with this behavior, no negative event is generated.

Finally, the negative events in the grouped process instances are used toinduce negative events
into the similar non-grouped sequences. If a grouped sequenceτ contains negative events at position
k, then the ungrouped sequenceσ contains corresponding negative events at positionk. At each
position, a large number of negative events can generally be generated.To avoid an imbalance in the
proportion of negative versus positive events the addition of negative events can be manipulated with
a negative event injection probabilityπ (line 13).π is a parameter that influences the probability that
a corresponding negative event is recorded in an ungrouped traceσ. The smallerπ, the less negative
events are generated at each position in the ungrouped event sequences. A value ofπ = 1.0 means
that every induced negative event for a grouped sequence is included in every similar, corresponding,
non-grouped sequence. A value ofπ = 0 will result in no negative events being induced for any of
the corresponding, non-grouped sequences.

Example 2 illustrates how in an event log of two (grouped) sequencesτ1 andτ2 artificial negative
events can be generated. The event sequences originate from a simplified driver’s license process,
depicted at the bottom. Given the parallelism information,Parallel(e, f ), the event sequences each
have two parallel variants. When generating negative events into event sequenceτ1, it is examined
whether instead of the first eventb the eventsc,d,e, f ,g,h, or i could also have occurred at the
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Algorithm 1 Generating artificial negative events
1: Group similar sequencesσ ∈ L into τ ∈ M
2: for all τi ∈ M do
3: for all xk ∈ τi do
4: k = Position(xk,τi)
5: for all b∈ A\{AT(xk)} do
6: if ∄τ‖j ∈ AllParallelVariants(τ j) : ∀τ j ∈ M∧ τ j 6= τi∧

∀yl ∈ τ‖j ,Position(yl ,τ
‖
j ) = l = Position(xl ,τ j),k − windowSize< l < k : AT(yl ) =

AT(xl )∧

yk ∈ τ‖j ,Position(yk,τ
‖
j ) = k,AT(yk) = b then

7: zk = event withAT(zk) = b,ET(zk) = completeRejected
8: recordNegativeEvent(zk,k,τi)
9: end if

10: end for
11: end for
12: end for
13: Induce negative events in the non-grouped sequencesσ ∈ L according to an injection frequency

π

first position. Because there is no similar sequenceτ‖j in which c,d,e, f ,g,h, or i occur at this
position, it can be concluded that they are negative events. Consequently ¬c,¬d,¬e,¬ f ,¬g,¬h,

and¬i are added as negative events at this position. Other artificial negative events are generated
in a similar fashion. Notice that history-dependent processes generally will require a larger window
size to correctly detect all non-local dependencies. In Example 2, an unlimited window size is used.
Should the window size be limited to 1, for instance, then it would no longer be possible to take into
account the non-local dependency between the activity pairsc–g andd–h. In the experiments at the
end of this paper, an unlimited window size has been used (parameter value -1).

4. Process Discovery

Having an algorithm to artificially generate negative events, it becomes possible to represent process
discovery as a binary classification problem, that learns the conditions thatdiscriminate between the
occurrence of an activity (a positive event), or the non-occurrenceof an activity (a negative event).
Algorithm 2 outlines four major steps in the AGNEs process discovery procedure. These four steps
are addressed this section.

4.1 Step 1: Induce Parallelism and Locality Information

The starting point is the gathering of information about local dependency (Local(a,b)), and par-
allelism relationships (Parallel(a,b), or Serial(a,b)) that exist between pairs of activitiesa,b ∈ A
in an event logL. Locality information is used in the language bias of the classification learner,
to constrain the hypothesis space to locally discriminating preconditions when required. Without
locality information, the classification learner is likely also to come up with non-local dependencies
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Example 2 (Continued from example 1.) DriversLicense—Generating artificial negative events for
a simplified event log with two abbreviated event sequences.

τ1 b c e f g i
τ2 b d f e h i

Parallel(e, f ).

(a) given event log and background knowledge

τ‖1 b c f e g i

τ‖1 b c e f g i

τ‖2 b d f e h i

τ‖2 b d e f h i

(b) the derived parallel variants

τ1 b c e f g i
¬c ¬b ¬b ¬b ¬b ¬b
¬d ¬e ¬c ¬c ¬c ¬c
¬e ¬ f ¬d ¬d ¬d ¬d
¬ f ¬g ¬g ¬g ¬e ¬e
¬g ¬h ¬h ¬h ¬ f ¬ f
¬h ¬i ¬i ¬i ¬h ¬g
¬i ¬i ¬h

τ2 b d f e h i
¬c ¬b ¬b ¬b ¬b ¬b
¬d ¬e ¬c ¬c ¬c ¬c
¬e ¬ f ¬d ¬d ¬d ¬d
¬ f ¬g ¬g ¬g ¬e ¬e
¬g ¬h ¬h ¬h ¬ f ¬ f
¬h ¬i ¬i ¬i ¬g ¬g
¬i ¬i ¬h

(c) the induced negative events

b
c

d

g

hf
i

e

(d) the underlying Petri net

Algorithm 2 Process discovery by AGNEs: overview
1: step 1: induce parallelism and locality from frequent temporal constraints
2: step 2: generate artificial negative events
3: step 3: learn the preconditions of each activity type
4: step 4: transform the preconditions into a Petri net

that cannot easily be transformed into a graphical model. Parallelism information is used to prevent
the construction of sequential models, where in reality concurrency is expected.

This information is either gathered by the analysis of frequent temporal constraints that hold
in the event log or by means of user-specified prior knowledge. Frequent temporal constraints
are temporal constraints that hold in a sufficient number of sequencesσ within an event logL.
Goedertier (2008), defines a number of temporal constraints and showshow local dependency and
parallelism information can be derived from it.

Additionally, the end-user can also specify locality and parallelism informationin terms of prior
knowledge. In particular, the following predicates can be used:PriorParallel(a,b), PriorSerial(a,b),
PriorLocal(a,b), andPriorNonLocal(a,b). Information specified using these predicates defeats any
inference about locality or parallelism made on the basis of the information gathered from frequent
temporal constraints.

4.2 Step 2: Generate Artificial Negative Events

A second step in the process discovery technique is the induction of artificial negative events, as
described in Section 3. The inferred information about parallel activity pairs can be used for parallel
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variant calculation. Furthermore, the induction of negative events is dependent on the window size
windowSize, and negative event injection probabilityπ parameters.

4.3 Step 3: Learn the Preconditions of each Activity Type

It is now possible to represent process discovery as a multiple, first-order classification learning
problem that learns the preconditions that discriminate between the occurrence of either a positive
or a negative completion event for each activity type. In our experiments,we make use of TILDE,
an existing multi-relational classification learner, to perform the actual classification learning.

The motivation for representing process discovery as a classification problem is that it allows
using classification learning and evaluation techniques that are well-knownin the machine learning
community. Furthermore, classification learners have the potential to deal withso-calledduplicate
tasks. Duplicate tasks refer to the reoccurrence of identically labeled transitions, homonyms, in
different contexts within the event logs. Classification learning can detectthe different execution
contexts for these transitions and derive different preconditions for them. Transforming these pre-
conditions into graphs will eventually result in duplicate, homonymic activities in the graph model
that correspond to the different usage contexts. Techniques for process discovery, such as heuris-
tics miner and genetic miner, which have causal matrices as internal representation (Weijters et al.,
2006; Alves de Medeiros et al., 2007), are unable to discover duplicate activities. Alves de Medeiros
(2006), however, presents a non-trivial extension of the genetic minerthat includes duplicate tasks.

The motivation for using a multi-relational, first-order representation is that first-order learning
allows relating the occurrence of an event to the occurrence of any other event. This enables the
detection of patterns that involve non-local, historic, dependencies between events. Alternatively,
the history of each event could in part be represented as extra propositions, for instance by including
all preceding positive events as extra columns in the event log. This propositional representation
would have many difficulties.

Being able to detect non-local, historic patterns in an event log can also produce counter-intuitive
results. A non-local relationship might have more discriminating power than a local one and can
therefore be preferred by a learner. Unfortunately, an excess of non-local patterns makes it more
difficult to generate a graphical model, a Petri net, containing local connections. Because TILDE al-
lows specifying a language bias with dynamic refinement (Blockeel and De Raedt, 1998), it becomes
possible to constrain the hypothesis space to locally discriminating patterns whenever necessary.
One technique is the dynamic generation of constants, that can be used to constrain the combina-
tions of activity type constants that are to be considered for a particular language bias construct.
Additionally, it is also possible to constrain the occurrence of particular literals in a hypothesisH,
given the presence or absence of other literals that are already part of the hypothesis.

The classification task of TILDE is to predict whether for a given activity typea∈ A, at a given
time point t ∈ N in a given sequenceσ ∈ L, a positive or a negative event takes place. In the
case of a positive event, the target predicate evaluates toClass(a,σ, t,completed). In the case of
a negative event, the target predicate evaluates toClass(a,σ, t,completeRejected). In the language
bias, the target activity, indicated bya, will be used for dynamically constraining the combinations
of activity type constants generated.

The primary objective of AGNEs being the construction of a graphical model from an event log,
the language bias consists of a logical predicate that can represent the conditions under which a Petri
net place contains a token. This predicate is called the “no-sequel” predicate,NS(a1,a,σ, t). Let
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a1,a∈ A be activity types,σ ∈ L the sequence of a process instance, andt the time of observation.
TheNSpredicate is defined as follows:

∀a1,a∈ A, t ∈N : ∃x∈ σ : AT(x) = a1 ∧ Time(x) < t

∧ ∄y∈ σ : AT(y) = a ∧ Time(x) < Time(y) < t ⇒ NS(a1,a,σ, t).

In the remainder of this text, the argumentsσ andt will be implicitly assumed and therefore left
out. The predicateNS(a1,a) evaluates to true when at the time of observation, an activitya1 has
completed, but has not (yet) been followed by an activitya. In combination with conjunction (∧),
disjunction (∨) and negation-as-failure (∼), theNS(a1,a) predicate makes it possible to learn frag-
ments of Petri nets using a multi-relational classification learner.

Example 3 shows how the preconditions in the Petri net can be representedas conjunctions and
disjunctions ofNSatoms. This representation accounts for the different contexts in which theactiv-
itiesapplyForLicenseandendcan take place and derives different preconditions for these activities.
In addition, it can represent the non-local, non-free, history-dependent choice construct between the
activities attendClassesCars–doPracticalExamCars and attendClassesMotorBikes–
doPracticalExamMotorBikesand the maximum recurrence of the activityapplyForLicense. The
Petri net fragments included in the language bias of AGNEs are enumeratedin Figure 1 and are
briefly discussed in the remainder of this section.

Example 3 (Continued from example 2) DriversLicensel—A Petri net in terms of NS preconditions

activity precondition

a start true
b applyForLicense NS(a,b)
b applyForLicense (NS(i,b) ∧ NS(i, j) ∧ NS(i,k))

∧ OccursLessThan(b,3)
c attendClassesCars NS(b,c) ∧ NS(b,d)
d attendClassesMotorBikes NS(b,c) ∧ NS(b,d)
e obtainInsurance NS(c,e) ∨ NS(d,e)
f doTheoreticalExam NS(c, f ) ∨ NS(d, f )
g doPracticalExamCars (NS( f ,g) ∧ NS( f ,h)) ∧

(NS(e,g) ∧ NS(e,h)) ∧ NS(c,g)
h doPracticalExamMtrBikes (NS( f ,g) ∧ NS( f ,h)) ∧

(NS(e,g) ∧ NS(e,h)) ∧ NS(d,h)
i getResult NS(g, i) ∨ NS(h, i)
j receiveLicense NS(i,b) ∧ NS(i, j) ∧ NS(i,k)
k end NS( j,k)
k end NS(i,b) ∧ NS(i, j) ∧ NS(i,k)

applyForLicense applyForLicense

[OccursLessThan(applyForLicense, 3)]

[OccursLessThan(applyForLicense, 3)]

attendClassesCars attendClassesMotorBikes

doPracticalExamCars doPracticalExamMotorBikes

doTheoreticalExam

getResult

obtainInsurance

start

receiveLicense

end

end

(a) DriversLicensel—activity preconditions (b) DriversLicensel—Petri net

Figure 1(a) shows a graphical representation of the local sequence predicate that is part of the
language bias. A local sequence of two transitions labeleda1,a∈ A in a Petri net can be represented
by NS(a1,a). In the language bias, the following constraints apply:
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a1 a

NS(a1,a)

(a) local sequence

a

[OccursLessThan(a, N)]

OccursLessThan(a,N)

(b) max occurrence

a

[: Attribute = V alue]

: Attribute= Value

(c) data condition

a1

a2

a

NS(a1,a)∧NS(a1,a2)

(d) or-split

a1 a

NS(a1,a)

(e) global sequence

a1

a2

a

NS(a1,a)∨NS(a2,a)

(f) or-join

a1 a2

a

NS(a1,a)∧NS(a1,a2)

(g) skip sequence

Figure 1: Petri net patterns in the language bias

sequence NS(a1,a)
constraints: Local(a1,a). (1)

∄l ∈ H : l = [NS( ,a1)]. (2)

The conversion fromNS-based preconditions into Petri nets requires the conditions to refer to lo-
cal, immediately preceding events as much as possible. Therefore, constraint (1) requires to restrict
the generation of constantsa1 to constants that are local toa. In constraint (1) we do not requirea1

anda to be different activity types. This is sufficient for the discovery of length-one loops. Graphi-
cally, a conjunction ofNSconstructs can be considered to be the logical counterpart of a single Petri
net place. Besides the case of length-one loops—that can be expressed with a singleNSconstruct—
there is no reason for a Petri net place to contain both an input and an output arc that is connected
to the same transition. Constraint (2) has been put in place to keep a multi-relational learner from
constructing such useless hypotheses. The constraint stipulates that theconstructNS(a1,a) can only
be added to the current hypothesisH, if H does not already contain a logical condition that boils
down to an output arc towardsa1.

The sameNS(a1,a) construct, with different constraints, can be used to keep track of a global
sequence (see Figure 1(e)). Global sequences are used to represent non-local, non-free choice con-
structs. We require TILDE only to consider global sequence between activity types for which both
a precedence and a response relationship has been detected from the event log, this is expressed as
a language bias constraint. Because we assume that any transition must be locally connected, that
is connected to other transitions to which it is local in the event log, we requireas an additional
constraint that the global sequence construct must not be added firstto any hypothesis. The other
Petri net based language constructs depicted in Figure 1 have similar definitions and are described
in detail by Goedertier (2008).
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The language bias of TILDE is limited to conjunctions and disjunctions ofNS constructs of
length two and three. Or-splits and or-joins that involve more activity types are obtained by grouping
conjunctions and disjunctions ofNSconstructs into larger conjunctions and disjunctions in step 4.
However, this limitation in length sometimes leads to TILDE make inadequate refinements. Solving
this language bias issue, requires constructing a proprietary ILP classification algorithm that during
each refinement step allows considering conjunctions ofNSconstructs of variable lengths. We leave
this improvements to future work.

4.4 Step 4: Transform the Preconditions into a Petri Net

In the previous step, TILDE has learned preconditions for each activitytype independently. In
a Petri net, the preconditions for each activity type are nonetheless interrelated. Therefore, the
logic programs of activity preconditions are submitted to several rule-levelpruning steps, to make
sure that they do not produce redundant duplicate places in the Petri net to be constructed. These
pruning steps occur among the conditions within a single precondition, within a set of preconditions
to the same activity type and among preconditions of activity types that pertain tothe same or-split.
Given a pruned rule set of preconditions for each activity type, the construction of a Petri net is
fairly straightforward. Each induced precondition corresponds to a different transition in a Petri
net to be constructed. Because AGNEs may produce several preconditions for an activity type, the
constructed Petri net may contain duplicate transitions. Algorithm 3 providesan overview of these
procedures. In the remainder of this section, these different pruning steps will be discussed and
illustrated for a sample of rules from the DriversLicensel example.

The logic programs constructed by TILDE contain rules that classify the occurrence of either
a positive or a negative event. By construction, the language bias of AGNEs is such that TILDE
will never consider a negation of anNSconstruct to be explanatory for the occurrence of a positive
event. Therefore, TILDE will never construct a tree in which a right leaf predicts a positive event.
The latter entails that, in equivalent the logic program, the rules with aclass(a,σ, t,comleted) rule
head can be taken from the logic programs without loss of information (line 1). Example 4 depicts
the preconditions that are induced by TILDE for the apply for license andend activities in the
DriversLicensel example.

In a second step, a number of intra-rule pruning operations take place (lines 2–6). The top-
down refinement of hypotheses, can result in the derivation of logically redundant conditions. These
logical redundancies are removed for each rule (line 3). Each rule in thelogic program consists of
conjunctions of groups ofNSconstructs. A conjunction of a pair of or-split constructs that originate
from the same activitya1 can be combined into a larger or-split (line 4). Likewise, a conjunction
of a pair of or-joins can be combined into a larger or-join (line 5). Example 4 illustrates intra-rule
pruning for the DriversLicensel example.

In a third step, a number of inter-rule pruning operations are performed for the preconditions that
pertain to each activity type. In particular, a precondition that subsumes another precondition for the
same activity type, is redundant and thus removed from consideration (lines 10–12). Furthermore,
it is examined whether a more specific or-join can be constructed out of the groups ofNSconstructs
within the different preconditions of the same rule (lines 13–15). Finally, allrules are examined to
find the most specific or-split condition from the preconditions extracted byTILDE (lines 18–26).
Example 4 illustrates this pruning for the DriversLicensel example.
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Example 4 (Continued from example 3.) DriversLicensel—pruning

rules induced by TILDE :
b apply for license (NS(i,b)∨NS(a,b))∧ (NS(i,b)∧NS(i, j)).
b apply for license (NS(i,b)∨NS(a,b)).
k end (NS( j,k)).
k end (NS(i,b)∧NS(i,k)).

intra-rule pruning:
b apply for license (NS(i,b)∧NS(i, j)). (line 3)
b apply for license (NS(i,b)∨NS(a,b)).
k end (NS( j,k)).
k end (NS(i,b)∧NS(i,k)).

inter-rule pruning, most specific or split:
b apply for license (NS(i,b)∧NS(i, j)∧NS(i,k)). (lines 18–26)
b apply for license (NS(a,b)). (lines 10–12)
k end (NS( j,k)).
k end (NS(i,b)∧NS(i, j)∧NS(i,k)). (lines 18–26)

5. Evaluation Metrics

Discovered process models preferably allow the behavior in the event log(recall) but no other,
unobserved, random behavior (specificity). Having formulated process discovery as a binary classi-
fication problem on event logs supplemented with artificial negative events,it becomes possible to
use the true positive and true negative rate from classification learning theory to quantify the recall
and specificity of a process model:

• true positive rate TPrate or recall: the percentage of correctly classified positive events in
the event log. This probability can be estimated as follows:TPrate = TP

TP+FN , whereTP is the
amount of correctly classified positive events andFN is the amount of incorrectly classified
positive events.

• true negative rateTNrate or specificity: the percentage of correctly classified negative events
in the event log. This probability can be estimated as follows:TNrate = TN

TN+FP, whereTN
is the amount of correctly classified negative events andFP is the amount of incorrectly
classified negative events.

Accuracy is the sum of the true positive and true negative rate, weighted by the respective class
distributions. The fact that accuracy is relative to the underlying class distributions can lead to
unintuitive interpretations. Moreover, in process discovery, these class distributions can be quite
different and have no particular meaning. In order to make abstraction ofthe proportion of negative
and positive events, we propose, from a practical viewpoint to attach equal importance to both
recall and specificity:acc= 1

2recall+ 1
2specificity. According to this definition, the accuracy of

a majority-class predictor is12. Flower models, such as the one in Example 1(b), are an example
of such a majority-class predictors. Because a flower model representsrandom behavior, it has a
perfect recall of the all behavior in the event log but it also has muchadditionalbehavior compared
to the event log. Because of the latter fact, the flower model has zero specificity, and an accuracy of
1
2. Any useful process model should have an accuracy higher than1

2.

1318



ROBUST PROCESSDISCOVERY WITH ARTIFICIAL NEGATIVE EVENTS

Algorithm 3 Rule-level pruning

1: R+ = {r ∈ R | r has rule headclass(a,σ, t,comleted) }.
// intra-rule pruning:

2: for all r ∈ R+ do
3: reducer according to(NS1∨NS2)∧NS1 ≡ NS1.
4: group or-splits:NS(a1,a)∧NS(a1,a2) ∈ r andNS(a1,a)∧NS(a1,a3) ∈ r into NS(a1,a)∧

NS(a1,a2)∧NS(a1,a3).
5: group or-joins: NS(a1,a) ∨ NS(a2,a) ∈ r and NS(a3,a) ∨ NS(a4,a) ∈ r into NS(a1,a) ∨

NS(a2,a)∨NS(a3,a)∨NS(a4,a).
6: end for

//inter-rule pruning:
7: for all a∈ A do
8: R+

a = {r ∈ R+ | r is a precondition ofa}
9: for all r ∈ R+

a do
10: if ∃s∈ R+

a : s is more specific thanr then
11: remover.
12: end if
13: if ∃s∈ R+

a : s combined withr lead to a more specific or-join thanr then
14: replace the or-join inr with the more specific or-join.
15: end if
16: end for
17: end for

//keep the most specific or-split:
18: for all a∈ A do
19: Rsplit

a = {r ∈ R+ | r contains an or-split going outa }.
20: s= the most specific or-split by combining the or-splits going outa in Rsplit

a .
21: for all r ∈ Rsplit

a do
22: if s is more specific thanr then
23: replace the or-split inr with the or-split ins.
24: end if
25: end for
26: end for

The metrics that are introduced in this section will be used to evaluate the performance of
AGNEs in the following sections. They have been defined and implemented forPetri nets. However,
they can also be applied to other generative models.

5.1 Existing Metrics

Weijters et al. (2006) define a metric that has a somewhat similar interpretation asTPrate: the parsing
measurePM. The measure is defined as follows:

• parsing measurePM: the number of sequences in the event log that are correctly parsed by
the process model, divided by the total number of sequences in the event log. For efficiency,
the similar sequences in the event log are grouped. Letk represent the number of grouped
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sequences,ni the number of process instances in a grouped sequencei, ci a variable that is
equal to 1 if grouped sequencei can be parsed correctly, and 0 if grouped sequencei cannot
be parsed correctly. The parsing measure can be defined as follows Weijters et al. (2006):

PM =
∑k

i=1nici

∑k
i=1ni

.

PM is a coarse-grained metric. A single missing arc in a Petri net can result in parsing failure for all
sequences. A process model with a single point of failure is generally better than a process model
with more points of failure. This is not quantified by the parsing measurePM.

Rozinat and van der Aalst (2008) define two metrics that have a somewhatsimilar interpretation
asTPrate andTNrate: the fitness metricf and the advanced behavioral appropriateness metrica

′

B:

• fitness f : Fitness is a metric that is obtained by trying whether each (grouped) sequence in
the event log can be reproduced by the generative model. This procedure is calledsequence
replay. The metric assumes the generative model to be a Petri net. At the start of thesequence
replay, f has an initial value of one. During replay, the transitions in the Petri net will produce
and consume tokens to reflect the state transitions. However, the proportion of tokens that
must additionally be created in the marked Petri net, so as toforce a transition to fire, is
subtracted from this initial value. Likewise, the fitness measuref punishes for extra behavior
by subtracting the proportion of remaining tokens relative to the total number of produced
tokens from this initial value. Letk represent the number of grouped sequences,ni the number
of process instances,ci the number of tokens consumed,mi the number of missing tokens,pi

the number of produced tokens, andr i the number of remaining tokens for each grouped
sequencei (1 ≤ i ≤ k). The fitness metric can be defined as follows (Rozinat and van der
Aalst, 2008):

f =
1
2

(

1−
∑k

i=1nimi

∑k
i=1nici

)

+
1
2

(

1−
∑k

i=1nir i

∑k
i=1ni pi

)

.

• behavioral appropriatenessa
′

B: Behavioral appropriateness is a metric that is obtained by
an exploration of the state space of a Petri net and by comparing the different types offollows
andprecedesrelationships that occur in the state space with the different types offollowsand
precedesrelationships that occur in the event log. The metric is defined as the proportion of
number offollowsandprecedesrelationships that the Petri net has in common with the event
log vis-̀a-vis the number of relationships allowed by the Petri net. LetSm

F be theSF relation
andSm

P be theSP relation for the process model, andSl
F theSF relation andSl

P theSP relation
for the event log. The advanced behavioral appropriateness metrica

′

B is defined as follows
(Rozinat and van der Aalst, 2008):

a
′

B =

(

|Sl
F ∩Sm

F |

2.|Sm
F |

+
|Sl

P∩Sm
P |

2.|Sm
P |

)

.

Rozinat and van der Aalst (2008) also report a solution to two non-trivial problems that are encoun-
tered when replaying Petri nets with silent steps and duplicate activities. In the presence of silent
steps (or invisible tasks) it is non-trivial to determine whether there exist a suitable firing sequence
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of invisible tasks such that the right activities become enabled for the Petri net to optimally replay a
given sequence of events. Likewise, in the presence of multiple enabled duplicate activities, it is a
non-trivial problem of determining the optimal firing, as the firing of one duplicate activity affects
the ability of the Petri net to replay the remaining events in a given sequence of events. Rozinat and
van der Aalst (2008) present two local approaches that are based on heuristics involving the next
activity event in the given sequence of events.

Fitness f and behavioral appropriatenessa
′

B are particularly useful measures to evaluate the
performance of a discovered process model. Moreover, these metrics have been implemented in
the ProM framework. However, the interpretation of the fitness measure requires some attention:
although it accounts for recall as it punishes for the number of missing tokens that had to be created,
it also punishes for the number of tokens that remain in a Petri net after log replay. The latter can be
consideredextrabehavior. Therefore, the fitness metricf also has a specificity semantics attached
to it. Furthermore, it is to be noted that the behavioral appropriatenessa

′

B metric is not guaranteed
to account for all non-local behavior in the event log (for instance, a non-local, non-free, history-
dependent choice construct that is part of a loop will not be detected bythe measure). In addition,
thea

′

B metric requires an analysis of the state space of the process model or a moreor less exhaustive
simulation to consider all allowable sequences by the model.

5.2 New Metrics

The availability of an event log supplemented with artificial negative events, allows for the definition
of a new specificity metric that does not require a state space analysis. Instead, specificity can be
calculated by parsing the (grouped) sequences, supplemented with negative events. We therefore
define:

• behavioral recall r p
B: The behavioral recallr p

B metric is obtained by parsing each grouped
event sequence. The values forTPandFN are initially zero. Starting from the initial marking,
each sequence is parsed. Whenever an enabled transitions fires, the value forTP is increased
by one. Whenever a transition is not enabled, but must be forced to fire the value forFN is
increased. As an optimization, identical sequences are only replayed once. Letk represent
the number of grouped sequences,ni the number of process instances,TPi number of events
that are correctly parsed, andFNi the number events for which a transition was forced to fire
for each grouped sequencei (1≤ i ≤ k). At the end of the sequence replay,r p

B is obtained as
follows:

r p
B =

(

∑k
i=1niTPi

∑k
i=1niTPi +∑k

i=1niFNi

)

.

In the case of multiple enabled duplicate transitions, sequence replay fires the transition of
which the succeeding transition is the next positive event (or makes a random choice). In
the case of multiple enabled silent transitions, log replay fires the transition of which the
succeeding transition is the next positive event (or makes a random choice). Unlike the fitness
metric f , r p

B does not punish for remaining tokens. Whenever after replaying a sequence
tokens remaining tokens causeadditional behaviorby enabling particular transitions, this is
punished by our behavioral specificity metricsn

B.

• behavioral specificity sn
B: The behavioral specificitysn

B metric can be obtained during the
same replay asr p

B. The values forTN andTP are initially zero. Whenever during replay,

1321



GOEDERTIER, MARTENS, VANTHIENEN AND BAESENS

a negative event is encountered for which no transitions are enabled, the value forTN is
increased by one. In contrast, whenever a negative event is encountered during sequence
replay for which there is a corresponding transition enabled in the Petri net, the value forFP
is increased by one. As an optimization, identical sequences only are to be replayed once. Let
k represent the number of grouped sequences,ni the number of process instances,TNi number
of negative events for which no transition was enabled, andFPi the number negative events
for which a transition was enabled during the replay of each grouped sequencei (1≤ i ≤ k).
At the end of the sequence replay,sn

B is obtained as follows:

sn
B =

(

∑k
i=1niTNi

∑k
i=1niTNi +∑k

i=1niFPi

)

.

Because the behavioral specificity metricsn
B checks whether the Petri net recalls negative event, it

is inherently dependent on the way in which these negative events are generated. For the moment,
the negative event generation procedure is configurable by the negative event injection probability
π, and whether or not it must account for the parallel variants of the given sequences of positive
events. For the purpose of uniformity, negative events are generated inthe test sets withπ equal to
1.0 and account for parallel variants = true.

6. Experimental Evaluation

AGNEs has been implemented in Prolog. In particular, the frequent temporal constraint induction,
the artificial negative event generation, the language bias constraints, and the pruning and graph
construction algorithms all have been written in Prolog. As mentioned before,AGNEs makes use
of TILDE, an existing multi-relational classifier (Blockeel and De Raedt, 1998), available in the
ACE-ilProlog data mining system (Blockeel et al., 2002). To be able to benefit from the facilities of
the ProM framework, a plugin was written that makes AGNEs accessible in ProM.1 Figure 3 depicts
a screen shot of AGNEs in ProM.

In this section the results of an experimental evaluation of AGNEs are presented. First we
will discuss the properties of the event logs and the parameter settings that have been used. Then,
in Section 6.1, we analyse the expressiveness of AGNEs and benchmarkthe ability of AGNEs
to generalize from incomplete event logs. In Section 6.2, we analyze the results of a number of
noise experiments with different types and levels of noise that have been carried out to test how the
learning algorithm behaves in the presence of noise.

In order to evaluate and compare the performance of AGNEs, a benchmark experiment with 34
event logs has been set up. These event logs have previously been used by Alves de Medeiros (2006)
and Alves de Medeiros et al. (2007) to evaluate the genetic miner algorithm. Table 1 describes the
properties of the underlying artificial process models of the event logs. The number of different
process instance sequences (column “6= process inst.”) gives an indication of the amount of different
behavior that is present in the event log. This number is to be compared with the total number of
process instances in the event logs. In general, the presence of loopsand parallelism exponentially
increases the amount of different behavior that can be produced by aprocess. Therefore, the number
of activity types that are pairwise parallel and the number and type of loopshave been reported in
Table 1. In correspondence with the naming conventions used by Alves deMedeiros, nfc stands for

1. The AGNEs plugin is available fromhttp://www.processintelligence.be/AGNEs.php.
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non-free-choice, l1l and l2l stands for the presence of a length-oneand length-two loop respectively,
and st and unst stands for structured and unstructured loops. Furthermore, the presences of special
structures such as skip activities and (parallel or serial) duplicate activities have been indicated. For
most of the event logs in the experiment, a reference model was available that can be assumed to
represent the behavior in the event log. Columns “r p

B reference model” and “sn
B reference model”

indicate the behavioral recall and specificity of the reference models with respect to the original
event logs.

In the experiments, the performance of AGNEs is compared to the performance of four state-
of-the-art process discovery algorithms:α+ (van der Aalst et al., 2004; Alves de Medeiros et al.,
2004),α++ (Wen et al., 2007), genetic miner (Alves de Medeiros et al., 2007) and heuristics miner
(Weijters et al., 2006). Being the first large-scale, comparative benchmark study in the literature
of process discovery, we have chosen to include algorithms that alreadyhave appeared as journal
publications (α+, α++, and genetic miner) or that are much referenced in the literature (heuristics
miner).

During all experiments, the algorithms were run with the same, standard parameter settings of
their ProM 4.2 implementation, as reported in Table 2. These parameter settings coincide with the
ones used to run similar experiments by the authors of the algorithms. To enablea comparison on
the same terms, AGNEs was not provided with prior knowledge regarding parallelism or locality
of activity types. In particular, the thresholds used to induce frequent temporal patterns have been
given the following values (tabsence= 0.9,tchain = 0.08,tsucc= 0.8,tordering = 0.08,ttriple = 0.10). In
practice, a good threshold depends on the amount of low-frequent behavior (noise) one is willing to
accept within the discovered process model. The negative event injectionprobabilityπ influences
the proportion of artificially generated negative events in an event log. A strong imbalance of this
proportion may bias a classification learner towards a majority class prediction, without deriving
any useful preconditions for a particular activity type. As a rule of thumb,it is a good idea to set
this parameter value as low as possible, without the learner making a majority class prediction. In
the experimentsπ has been given a default value of 0.08. Ex-post, AGNEs warns the user when too
low a value forπ has led to a majority-class prediction. TILDE’s C4.5 gain metric was used as a
heuristic for selecting the best branching criterion. In addition, TILDE’sC4.5 post pruning method
was used with a standard confidence level of 0.25. Furthermore, TILDEis forced to stop node
splitting when the number of process instances in a tree node drops below 5.The same parameter
settings have been used on all 34 data sets. Empirical validation has shown the parameter settings
to work well across all data sets.

The AGNEs technique, has run times in between 20 seconds and 2 hours for the data sets in the
experiments on a Pentium 4, 2.4 Ghz machine with 1GB internal memory. These processing times
are well in excess of the processing times ofα+, α++ and heuristics miner. In comparison to the run
times of the genetic miner algorithm, processing times are considerably shorter.Most of the time
is required by TILDE to learn the preconditions for each activity type. Thegeneration of negative
events also can take up some time. As process discovery generally is not a real-time data mining
application, less attention has been given to computation times.

6.1 Zero-noise, Cross Validation Experiment

To evaluate AGNEs’ expressiveness and ability to generalize, a 10-foldcross-validation experiment
has been set up. In the literature on process discovery, cross-validation has only been considered by
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a5 7 13 300 1.000 1.000 1 1 l1l
a6nfc 8 3 300 1.000 1.000 1 1
a7 9 14 300 1.000 1.000 4
a8 10 4 300 1.000 1.000 1
al1 9 98 300 1.000 0.996 n.a. 1 unst
al2 13 92 300 1.000 0.992 n.a. 2 unst
betaSimplified 13 4 300 1.000 1.000 0 1 1 2
bn1 42 4 300 1.000 1.000 0
bn2 42 25 300 1.000 1.000 0 1 st
bn3 42 150 300 1.000 0.999 0 2 st
choice 12 16 300 1.000 1.000 0
DriversLicense 9 2 300 1.000 1.000 0
DriversLincensel 11 87 350 1.000 0.986 1 1 st 1 1 1
herbstFig3p4 12 32 300 1.000 0.999 3 1 st
herbstFig5p19 8 6 300 1.000 1.000 1 1
herbstFig6p18 7 153 300 1.000 0.977 0 1 l1l, 1 l2l
herbstFig6p19 5 136 300 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
herbstFig6p31 9 4 300 1.000 1.000 0 1
herbstFig6p33 10 4 300 1.000 1.000 0 1
herbstFig6p36 12 2 300 1.000 1.000 0 1
herbstFig6p37 16 135 300 1.000 0.996 36
herbstFig6p38 7 5 300 1.000 1.000 3 1 par.
herbstFig6p39 7 12 300 1.000 1.000 1
herbstFig6p41 16 12 300 1.000 1.000 4
herbstFig6p45 8 12 300 1.000 1.000 5
l1l 6 69 300 1.000 0.988 1 2 l1l
l1lSkip 6 269 300 1.000 0.732 0 2 l1l
l2l 6 10 300 1.000 1.000 0 1 l2l
l2lOptional 6 9 300 1.000 1.000 0 1 l2l
l2lSkip 6 8 300 1.000 0.999 0 1 l2l
parallel5 10 109 300 1.000 1.000 10
repair2 8 48 1000 0.998 0.995 2 1 unst

Table 1: Event log properties

Goedertier et al. (2008) and Rozinat et al. (2007). The reason for the absence of cross-validation
experiments, is that process discovery is an inherentlydescriptivelearning task rather than apre-
dictiveone. The primary intent of process discovery is to produce a model that accurately describes
the event log at hand. Nonetheless, it is interesting to test thepredictiveability of process discovery
algorithms in an experimental setting. To apply cross-validation, a randomization routine has been
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Algorithm (Ref.) Parameter settings

α+

(Alves de Medeiros et al., 2004)

derive succession from partial order information = true
enforce causal dependencies within events of the same activity = false
enforce parallelism by overlapping events = false

α++

(Wen et al., 2007)
(no settings)

heuristics miner
Weijters et al. (2006)

relative to best threshold = 0.05
positive observations = 10
dependency threshold = 0.9
length-one-loops threshold = 0.9
length-two-loops threshold = 0.9
long-distance threshold = 0.9
dependency divisor = 1
and threshold = 0.1
use all-activities-connected heuristic = true
use long-distance dependency heuristic = false

genetic miner
(Alves de Medeiros et al., 2007)

population size = 100
max number generations = 1000
initial population type = possible duplicates
power value = 1
elitism rate = 0.2
selection type = tournament 5
extra behavior punishment withκ = 0.025
enhanced crossover type with crossover probability = 0.8
enhanced mutation type with mutation probability = 0.2

AGNEs

prior knowledge none
temporal constraints tabsence= 0.9,tchain = 0.08,tsucc= 0.8,

tordering = 0.08,ttriple = 0.1
negative event generation injection probabilityπ = 0.08

calculate parallel variants = true
include global sequences = true

language bias: include occurrence count = false
data conditions = none

TILDE splitting heuristic: gain
minimal cases in tree nodes = 5
C4.5 pruning with confidence level = 0.25

graph construction tconnect= 0.4

Table 2: Parameter settings

written in SWI-Prolog that groups similar sequences, randomly partitions the grouped event log in
n = 10 uniform subgroups, and producesn pairs of training and test event logs. Training event
logs are used for the purpose of process discovery. Test event logs are used for evaluation, this is
for calculating the specificity and recall metrics. For the purpose of this experiment, no noise was
added to the event logs.

Specificity metrics must be calculated based on the combination of training and test event logs,
the entire event log. Although this might seem unintuitive, specificity and specificity metrics make
a completeness assumption as well, as they account for the amount ofextrabehavior in a process
model vis-̀a-vis the event log (Rozinat and van der Aalst, 2008). To correctly evaluate the proposed
learning technique, it is important that the negative events in the test set accurately indicate the state
transitions that are not present in the event log. For this reason, the negative events in the test log are
created with information from the entire event log. Should the negative event generation be based
on training set instances only, it is possible that additional, erroneous negative events are injected
because it is possible that some behavior is not present in the test set. In short, the experiment applies
the above-described partitioning, after having generated negative events for each grouped process
instance. Intended to be used by the evaluation metric, the negative events have been generated with

1325



GOEDERTIER, MARTENS, VANTHIENEN AND BAESENS

an injection probabilityπ equal to 1, an infinite window size, and by considering parallel variants.
Evidently, the thus generated negative events were not retained in the training set. For training
purposes, negative events have been calculated based on the information in the training set only.
For the same reasons, the behavioral appropriateness metrica

′

B has also been calculated based on
the whole of training and test set data.

In the experiment, only 19 out of the 34 event logs were retained, as the other event logs have
less than 10 different sequences. Table 3 shows the aggregated, average results of the 10-fold cross
validation experiment over 190 event logs. Thebest average performance over the 34 event logs
is underlined and denoted in bold face for each metric. We then use a pairedt-test to test the
significance of the performance differences (Van Gestel et al., 2004). Performances that arenot
significantly different at the 5% level from the top-ranking performance with respect to a one-
tailed paired t-test are tabulated in bold face. Statisticallysignificant underperformances at the 1%
level are emphasized in italics. Performances significantly different at the 5% level but not at the
1% level are reported in normal font. For thePM measure, no paired t-tests could be performed,
because the metric could not be calculated on some of the process models discovered byα+ and
α++. The latter is the case when the discovered process models have disconnected elements.

From the results for the parsing measurePM, the fitness measuref , and behavioral recall mea-
suresr p

B, it can be concluded that genetic miner scores slightly better on the recall requirement.
Moreover, the behavioral specificity metricsn

B shows genetic miner and heuristics miner to produce
slightly more specific models.

PM f a
′

B acc r p
B sn

B accpn
B

zeronoise α+ 0.72 0.96 0.96 0.96 0.97 0.83 0.90

α++ 0.77 0.97 0.81 0.88 0.97 0.90 0.93

AGNEs 0.80 0.98 0.81 0.89 0.98 0.91 0.94

genetic 0.83 0.99 0.84 0.91 0.98 0.93 0.95

heuristics 0.79 0.97 0.85 0.91 0.97 0.93 0.95

Table 3: 10-fold cross validation experiment - aggregated results

From the cross-validation experiment, we conclude that AGNEs portrays similar generalization
behavior to other process discovery algorithms. The reason that it is notsensitive to incomplete
event logs can be attributed to the following. Given an incomplete event log, AGNEs is likely
to generate a proportion of incorrect negative events. However, this proportion of negative events
is relatively small, as the negative event injection parameterπ is not required to be excessively
large. More importantly, the coarse-grained language bias that combinesNSconstructs into larger
structures, prevents TILDE from overfitting the incomplete event log and allows it to generalize,
to some extent, beyond the observed behavior. The additional incorporation of process knowledge
expressed by a domain expert would only add to this benefit. Finally, the negative event injection
procedure takes into account parallelism and window size. Concurrentand recurrent behavior are
the root causes of incomplete event logs. The ability to include information about parallel variants
and window size, gives our learning technique a configurable inductivebias, with different strategies
to account for incompleteness.
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Figure 2: herbstFig6p33: AGNEs detects the duplicate activityA

The metricsr p
B andsn

B do not indicate a large or significant difference for the performance of
α++, AGNEs, genetic miner, and heuristics miner. Only by looking at the individual process mod-
els, the expressiveness of AGNEs with respect to the detection of non-local, non-free choice con-
structs or the discovery of duplicate tasks becomes apparent. Example 3, discussed in Section 4.3,
shows how AGNEs is capable of detecting non-local, non-free choice constructs, even within the
loop of the DriversLicensel reference problem. AGNEs is also particularly suited for the detection
of duplicate activities. In the herbstFig6p33 event log, the activityA occurs in three different con-
texts and AGNEs draws three different, identically labeled transitions correspondingly. Figure 2
compares the results of heuristics miner and AGNEs on this event log.

The goal of process discovery is to give an idea of how the processesrecorded in the event log
actually have taken place. This goal makes process discovery an inherentlydescriptivelearning
task. To evaluate the accuracy of the discovered process model, it is therefore justified to compare
the learned process models on the same sequence the process models are learned from. In the
process discovery literature, this training-log-based evaluation has been the dominant evaluation
paradigm (Alves de Medeiros et al., 2007; Weijters et al., 2006). Consequently, the remaining
experiments of this paper use training-log-based evaluation.

6.2 Training-log-based Noise Experiment

In these experiments we have stirred up the 34 event logs with artificial noise. In the literature,
six artificial noise types have been described (Maruster, 2003; Alves de Medeiros et al., 2007): (1)
missing head: the removal of the head of a sequence, (2)missing body: the removal of the mid
section of a sequence, (3)missing tail: the removal of the end section of a sequence, (4)swap tasks:
the interchange of two random events in a sequence, (5)remove task: the removal of a random
event in a sequence, and (6)mix all: a combination of all of the above. The noise has been added
with the AddNoiseLogFilter event log filter available in the ProM framework. This filter has been
applied after ungrouping the 34 event logs. To keep the size of the experiment under control, we
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have limited the noise types used in our experiments tomix all andswap tasks. For both noise types,
the used noise levels of 5%, 10%, 20% and 50% are applied.

Table 4 reports the average results of the discovered process models over the all 34 correspond-
ing zero noise event logs. As is known from the literature, heuristics miner isresilient to noise,
whereas the formal approaches ofα+ andα++ and the genetic miner are known to overfit the noise
in event logs. On 11 event logs from the bn1, bn2, and bn3 processes, theα++ implementation was
incapable of producing an outcome. These missing values resulted in a score of 0 for each measure.
Furthermore, the state space analysis required to calculate the behavioralappropriateness measure
a
′

B produces invalid outcomes that occur 27 times for the results of the genetic miner algorithm out
of a total of 272 (34 x 8) experiments, the reported results for the genetic miner are less suitable
for comparison. For this reason, we only indicate the significance of ther p

B andsn
B outcomes with

respect to the top ranking performance. For thePM, f , anda
′

B metrics, the algorithm that has ob-
tained thebest average score, is underlined. For every noise level, AGNEs obtains accuracy results
that are robust and not significantly different from the results obtainedby heuristics miner. This is a
remarkable result, as AGNEs is a more expressive algorithm than heuristicsminer, also capable of
detecting more complex structures such as non-local dependencies and duplicate activities.

To calibrate the metrics, we also report their evaluation of the so-called flower model for the
zero-noise case. Because the flower model parses every possible sequence, it has a perfect recall but
zero specificity. These properties are to some extent reflected in the metricsin Table 4. The fitness
measuref and the behavioral recall measurer p

B are both 1.0, whereas the behavioral specificity
metricsn

B amounts to 0. The behavioral appropriateness measurea
′

B does not really seem to quantify
the lack of specificity of the flower model.

The reasons why AGNEs is robust to noise can be put down to the following. First of all, the
generation of negative events is not invalidated by the presence of noise. Noise isadditional low-
frequent behavior that will result in less negative events being generated by AGNEs. However, the
presence of noisy positive events does not lead to the generation of noisy negative ones. Another
property that adds to robustness, is that the constraints in AGNEs ’ language bias allows it to come
up with structured patterns and to some extent prevents the construction of arbitrary connections
between transitions, while remaining expressive with regard to short loops, duplicate tasks and
non-local behavior. Finally, the formulation of process discovery as a classification allows for the
application of an already robust classification algorithm (TILDE). Like many classification learners,
TILDE takes into account the frequency of an anomaly, when constructing the preconditions for
each activity type. Moreover, TILDE applies the same tree-level pruningmethod as C4.5 (Quinlan,
1993).

7. A Case Study

This section shows the result of the AGNEs process discovery algorithm applied to an event log of
customer-initiated processes, recorded by a European telecom provider. The goal of the case study
was to investigate whether AGNEs can be usefully applied to map the routing choices that are made
between queues of a workflow management system (WfMS). With 18721 process instances and 127
queues, the obtained log file has a size of over 130 megabytes in the form ofa comma-separated
text file. The case study gives an idea of the scalability of the algorithm towards large event logs
and the usefulness of the AGNEs process discovery algorithm on realistic, real-life processes.
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PM f a
′

B acc r p
B sn

B accpn
B

zero-noise α+ 0.72 0.96 0.92 0.94 0.96 0.85 0.91
α++ 0.82 0.98 0.87 0.92 0.98 0.93 0.96
AGNEs 0.90 0.99 0.87 0.93 0.99 0.96 0.98
genetic 0.91 1.00 0.83 0.91 0.99 0.95 0.97
heuristics 0.88 0.99 0.86 0.92 0.99 0.95 0.97
flower 1.00 1.00 0.23 0.61 1.00 0.00 0.50

mix all0.05 α+ 0.11 0.83 0.85 0.84 0.87 0.62 0.74
α++ 0.00 0.79 0.65 0.72 0.75 0.63 0.69
AGNEs 0.89 0.99 0.87 0.93 0.99 0.95 0.97
genetic 0.74 0.99 0.63 0.81 0.98 0.91 0.95
heuristics 0.88 0.98 0.87 0.93 0.98 0.94 0.96

mix all0.1 α+ 0.08 0.80 0.84 0.82 0.84 0.59 0.72
α++ 0.00 0.73 0.80 0.76 0.64 0.64 0.64
AGNEs 0.83 0.99 0.89 0.94 0.99 0.96 0.97
genetic 0.51 0.97 0.59 0.78 0.94 0.78 0.86
heuristics 0.88 0.99 0.86 0.92 0.99 0.95 0.97

mix all0.2 α+ 0.00 0.77 0.91 0.84 0.82 0.51 0.67
α++ 0.00 0.65 0.65 0.65 0.49 0.63 0.55
AGNEs 0.79 0.97 0.87 0.92 0.97 0.94 0.96
genetic 0.47 0.96 0.53 0.74 0.93 0.73 0.83
heuristics 0.86 0.98 0.85 0.92 0.98 0.94 0.96

mix all0.5 α+ 0.00 0.63 0.75 0.69 0.67 0.46 0.56
α++ 0.00 0.51 0.61 0.58 0.26 0.70 0.48
AGNEs 0.54 0.96 0.77 0.87 0.97 0.90 0.93
genetic 0.20 0.95 0.43 0.69 0.86 0.53 0.69
heuristics 0.66 0.97 0.74 0.85 0.96 0.88 0.92

swaptasks0.05 α+ 0.00 0.65 0.85 0.75 0.76 0.45 0.60
α++ 0.00 0.59 0.67 0.63 0.52 0.61 0.56
AGNEs 0.90 0.99 0.87 0.93 0.99 0.96 0.97
genetic 0.44 0.95 0.61 0.78 0.90 0.74 0.82
heuristics 0.88 0.99 0.85 0.92 0.99 0.95 0.97

swaptasks0.1 α+ 0.00 0.58 0.86 0.72 0.69 0.48 0.58
α++ 0.00 0.53 0.66 0.59 0.38 0.61 0.49
AGNEs 0.78 0.98 0.87 0.93 0.98 0.94 0.96
genetic 0.38 0.94 0.53 0.74 0.89 0.65 0.77
heuristics 0.80 0.97 0.86 0.92 0.98 0.94 0.96

swaptasks0.2 α+ 0.00 0.54 0.77 0.66 0.59 0.52 0.55
α++ 0.00 0.45 0.65 0.55 0.27 0.67 0.47
AGNEs 0.73 0.97 0.86 0.92 0.98 0.93 0.95
genetic 0.19 0.93 0.62 0.77 0.84 0.52 0.68
heuristics 0.69 0.96 0.87 0.92 0.96 0.88 0.92

swaptasks0.5 α+ 0.00 0.41 0.61 0.51 0.40 0.63 0.51
α++ 0.00 0.36 0.61 0.48 0.16 0.77 0.46
AGNEs 0.32 0.91 0.72 0.81 0.95 0.82 0.89
genetic 0.07 0.93 0.77 0.85 0.79 0.40 0.59
heuristics 0.45 0.94 0.66 0.80 0.94 0.83 0.89

Table 4: noise experiments - average, zero-noise training-log-based results

The event log consists of events about customer-initiated processes thatare handled at three
different locations by the employees of the telecom provider. The handlingof cases is organized in a
first line and a second line. First-line operators are junior operators thatdeal with frequent customer
requests for which standardized procedures have been put in place.When a first-line operator cannot
process a case, it is routed to a queue of the second line. Second-line case handling is operated by
senior experts who have the authority to make decisions to solve the more involved cases. The
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Figure 3: AGNEs in ProM 4.2

second-line processes are coordinated and supported by means of a workflow management system
(WfMS). The obtained event log consists of these second-line case handling events. The second-
line WfMS is organized as a system of 127 logical queues. Each queue corresponds to a number
of similar types of activities that are to be carried out. At any given moment each active case
resides in exactly one queue. Employees can process a case by taking it out of the queue into their
personal work bin. Every evolution of a case is documented by adding notes. Moreover, employees
can classify the nature of the case according to a number of data fields. Inaddition, a worker or
dispatcher has the ability to reroute cases to different queues wheneverthis is necessary. The system
imposes no restrictions with regard to the routing of cases. Queues represent a work distribution
system and are akin to roles in WfMS. For the purpose of this analysis, queues are considered to
be activity types. The 40 most frequently occurring queues were retained for further analysis. Nine
process instances that did not involve at least one of these 40 queues were retained from the event
log.

We compare the mining results of AGNEs, genetic miner, and heuristics miner. Some parameter
settings that are different from the experimental evaluation in the previoussection. In particular,
AGNEs was provided with the prior knowledge that no activity can occur concurrently:∀a,b∈ A :
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PM f a
′

B acc r p
B sn

B accpn
B

AGNEs 0.06 0.94 0.67 0.80 0.93 0.67 0.80

genetic 0.03 x.xx x.xx x.xx 0.83 0.62 0.73

heuristics 0.80 0.97 0.72 0.85 0.96 0.88 0.92

flower model 0.00 1.00 0.76 0.88 1.00 0.00 0.50

Table 5: telecom—training-log-based results

PriorSerial(a,b). This prior knowledge is justifiable, as no case can be routed to or reside inseveral
queues at the same time. Genetic miner has been running for 5000 generations, with a population
size of 10. These parameter settings correspond to the parameter settings inthe case study described
by Alves de Medeiros et al. (2007). To account for the prior knowledge that no concurrent behavior
is contained in the event log, heuristics miner needs to have an infinite AND threshold. In general
AGNEs allows to provide a-priori locality and parallelism information for individual pairs of activity
types. This fine-grained a-priori knowledge cannot be provided by fine-tuning the AND threshold
with heuristics miner. Currently, it is not possible to constrain the search space of genetic miner
with this a-priori knowledge.

The results of applying these process discovery algorithms on the filtered event log are displayed
in Figure 4. Table 5 gives an overview of the metrics that compare the discovered process models to
the original event log. As the purpose of the case study is to provide the most accurate description
of the event log, the use of training data for evaluation is justified. To calibrate the metrics, we also
report their evaluation of the so-called flower model. Because the flower model represents random
behavior, it has a perfect recall of the all behavior in the event log butit also has muchadditional
behavior compared to the event log. Because of the latter fact, the flower model has zero specificity.
These properties are to some extent reflected in the metrics in Table 5. The fitness measuref and the
behavioral recall measurer p

B are both 1.0, whereas the behavioral specificity metricsn
B amounts to 0.

The table also indicates the usefulness of the metrics proposed in this paper.The parsing measure
PM does not reflect the recall of the flower model. Furthermore, the behavioral appropriateness
measurea

′

B does not really seem to quantify the lack of specificity of the flower model. For the
genetic miner mining result, the ProM implementations off , anda

′

B did not produce an outcome. To
calculate these metrics, a conversion of the heuristics nets into Petri nets is required. The resulting
Petri nets, which have many invisible transitions, are seemingly too complex to calculate the metric.
These results are an indication of the usefulness of the new specificity metricproposed in this paper.

Comparing the availabler p
B andsn

B outcomes, it can be observed that AGNEs performs better
than genetic miner, but worse than heuristics miner on the obtained event log.The discovered pro-
cess model by AGNEs has an accuracy of 80%, whereas the models discovered by genetic miner
and heuristics miner have an accuracy of 73% and 92% respectively. This case study brings forward
that human-centric processes contained in the event log can take place in aless structured fashion
than often is assumed by process discovery algorithms. In this particular case, for instance, it seems
that OR-splits and OR-joins can involve a rather high number of outgoing or incoming activities. In
the current implementation, the language bias of TILDE is limited to conjunctions and disjunctions
of NSconstructs of length two and three. This imposes limitations on the hypotheses that can be
learned by AGNEs. As indicated in Section 4.3, solving this language bias issue, requires construct-
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Figure 4: telecom—mining results

ing a proprietary ILP classification algorithm that during each refinement step allows considering
conjunctions ofNSconstructs of variable lengths. In this regard, the language bias of Heuristics
Miner seems to be less limiting, although Heuristics Miner does not have many of the declarative
properties of AGNEs. Another outcome of the case study, is that the proposed measures for behav-
ioral recallr p

B and behavioral specificitysn
B in practice turn out to be valuable metrics for assessing

the accuracy of a discovered process model.

8. Related Work

Process discovery can be seen as an application of the machine learning of grammars from posi-
tive data, of which Angluin and Smith (1983) provide an overview. Gold (1967) has shown that
important classes of recursively enumerable languages cannot beidentified in the limitfrom a finite
number of positive examples only. Instead, both positive and negative examples are required for
grammar learning to distinguish the right hypothesis among an infinite number of grammars that fit
the positive examples. Whereas Gold’s negative learnability result appliesto the learning of gram-
mars with perfect accuracy, process discovery is more concerned withthe ability to discover process
models that haveonlya good recall and specificity. Learning grammars from only positive examples
requires a tradeoff between overly general and overly specific hypotheses. Muggleton (1996) shows
that in a Bayesian framework, logic programs are learnable with arbitrarily low error from positive
examples only. Bayes’ theorem allows to formulate this tradeoff as a tradeoff between size and
generality of the hypotheses and learning can be considered to maximization the posterior proba-
bility over all hypotheses. In this paper, a new approach for making the tradeoff between generality
and specificity is proposed, by inducing artificial negative events using a(highly configurable) as-
sumption about the completeness of the behavior displayed by the positive examples in the event
log. Another difference with grammar learning is that in grammar learning, the hypothesis space
is often expressed as production rules, automata or regular expressions, whereas process discovery
uses formalisms that can represent the concurrency and synchronization concerns of processes more
elegantly.
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Process models are in general deterministic. In the literature, there are manyformalisms to
represent and learn the probability distributions ofstochastic, generative grammars over sequences
of observed characters and unobserved state variables. Historically,techniques like Markov mod-
els, hidden Markov models, factorial hidden Markov models, and dynamic Bayesian networks have
been first applied to speech recognition, and bio-informatics (Durbin et al., 1998). Each representa-
tion has its own particular modeling features that makes it more or less suited forrepresenting the
human-centric behavior of business processes. Factorial hidden Markov models, for instance, have
a distributed state representation that allows for the modeling of concurrentbehavior (Ghahramani
and Jordan, 1997). Hidden Markov models have furthermore been provided with a first-order, ex-
tension that allows for the representation of sequences of logical atoms rather than alphabets of flat
characters (Kersting et al., 2006). Other authors describe learning mixture models to identify mean-
ingful clusters of (hidden) Markov models (Smyth, 1997; Cadez et al., 2003). Whereas stochastic
models provide useful information, their probabilistic nature tends to compromise the comprehen-
sibility of discovered process models. Business processes have well-defined start, end, split, and
synchronization nodes. The network structure of stochastic models doesnot visualize this. For
instance, although hidden states could be useful in representing duplicateactivities—the same ac-
tivity label is logged in different contexts—a hidden Markov model is unlikelyto be capable of
comprehensively representing its different usage contexts.

In contrast, Mannila and Meek (2000) describe a technique to learn two-component mixture
models of global partial orders that provide an understandable, globalview of the sequential data.
The authors assume the presence of one dominant, global partial order and consider a generic par-
tial order with random behavior to deal with low-frequent variations (noise) from the former model.
Silva et al. (2005) describe a probabilistic model and algorithm for process discovery that discov-
ers so-called and/or graphs in polynomial time. These and/or graphs are comprehensible, directed
acyclic graphs that have the advantage over global partial order representations that they can dif-
ferentiate between parallel and serial split and join points. Pei et al. (2006) describe a scalable
technique for discovering the complete set of frequent, closed partial orders from sequential data.
The three aforementioned techniques assume each item to occur only once within a sequence, and
do not consider recurrent behavior (cycles), nor duplicate activities.

The term process discovery was coined by Cook and Wolf (1998), whoapply it in the field
of software engineering. Their Markov algorithm can only discover sequential patterns as Markov
chains cannot elegantly represent concurrent behavior. The idea of applying process discovery in
the context of workflow management systems stems from Agrawal et al. (1998) and Lyytinen et al.
(1998). The value of process discovery for the general purpose of process mining (van der Aalst
et al., 2007) is well illustrated by the plugins within the ProM framework. In analogy with the
WEKA toolset for data mining (Witten and Frank, 2000), the ProM Frameworkconsists of a large
number of plugins for the analysis of event logs (Process Mining Group,TU/Eindhoven, 2008). The
Conformance Checkerplugin (Rozinat and van der Aalst, 2008), for instance, allows identifyingthe
discrepancies between an idealized process model and an event log. Moreover, with a model that
accurately describes the event log, it becomes possible to use the time-information in an event log
for the purpose of performance analysis, using, for instance, thePerformance Analysis with Petri
netsplugin.

Table 6 provides a chronological overview of process discovery algorithms that have been ap-
plied to the context of workflow management systems. Theα algorithm can be considered to be a
theoretical learner for which van der Aalst et al. (2004) prove that it can learn an important class
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of workflow nets, called structured workflow nets, from complete event logs. Theα algorithm as-
sumes event logs to be complete with respect to all allowable binary sequences and assumes that
the event log does not contain any noise. Therefore, theα algorithm is sensitive to noise and in-
completeness of event logs. Moreover, the originalα algorithm was incapable of discovering short
loops or non-local, non-free choice constructs. Alves de Medeiros etal. (2004) have extended theα
algorithm to mine short loops and called itα+. Wen et al. (2007) made an extension for detecting
implicit dependencies, for detecting non-local, non-free choice constructs. None of the algorithms
can detect duplicate activities. The main reason why theα algorithms are sensitive to noise, is that
they does not take into account the frequency of binary sequences that occur in event logs. Weijters
and van der Aalst (2003) and Weijters et al. (2006) have developed a robust, heuristic-based method
for process discovery, called heuristics miner, that is known to be noise resilient. Heuristics miner
can discover short loops, and non-local, non-free choice as it can consider non-local dependencies
within an event log. However, heuristics miner cannot detect duplicate activities.

Algorithm (Ref.) Summary

global partial orders
(Mannila and Meek, 2000)

Learns a two-component mixture model of a dominant series-parallel partial order and
a trivial partial order by searching for the dominant partialorder that yields the highest
probability for generating the observed sequence database.

little thumb , heuristics miner
(Weijters and van der Aalst, 2003)
(Weijters et al., 2006)

Extends theα algorithm by taking into account the frequency of the follows relation-
ship, to calculate dependency/frequency tables from the event log and uses heuristics to
convert this information into a heuristics net.

α,α+

(van der Aalst et al., 2004)
(Alves de Medeiros et al., 2004)

Derives a Petri net from local, binary ordering relations detected within an event log.

splitpar—InWoLvE
(Herbst and Karagiannis, 2004)

Derives a so-called stochastic activity graph and convertsit into a structured process
model in the Adonis Modeling language.

multi-phase miner
(van Dongen and van der Aalst, 2005b)

Constructs a process model for every sequence in the log and aggregates the model into
an event-driven process chain.

α++

(Wen et al., 2007)
Extends theα algorithm to discover non-local, non-free choice constructs.

–
(Silva et al., 2005)

A probabilistic approach to process discovery.

frecpo
(Pei et al., 2006)

A scalable technique for discovering the complete set of frequent, closed partial orders
from sequential data.

FSM/Petrify miner
(van der Aalst et al., 2006)

Derives a highly configurable finite state machine from the event log and folds the finite
state machine into regions using the theory of regions.

–
(Ferreira and Ferreira, 2006)

Learns the case data preconditions and effects of activities with ILP classification tech-
niques and user-supplied negative events.

genetic miner
(Alves de Medeiros et al., 2007)

A genetic algorithm that selects the more complete and preciseheuristics nets over gen-
erations of nets.

DecMiner
(Lamma et al., 2007)

A classification technique that learns the preconditions ofactivities with the ICL ILP
learner from event logs with user-supplied negative sequences.

fuzzy miner
(Günther and van der Aalst, 2007)

An adaptive simplification and visualization technique based on significance and corre-
lation measures to visualize unstructured processes.

Table 6: Chronological overview of process discovery algorithms

van Dongen and van der Aalst (2005b) present a multi-phase approach to process mining that
starts from the individual process sequences, constructs so-called instance graphs for each sequence
that account for parallelism, and then aggregates these instance graphsaccording to previously
detected binary relationships between activity types. Interestingly, the aggregation ensures that
every discovered process model has a perfect recall, but generallyscores less on specificity. Herbst
and Karagiannis (2004) describe the working of the splitpar algorithm thatis part of the InWoLvE
framework for process analysis. This algorithm derives a so-called stochastic activity graph and
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converts it into a structured process model. The splitpar algorithm is capableof detecting duplicate
activities, but it is not able to discover non-local dependencies.

Alves de Medeiros et al. (2007) describe a genetic algorithm for process discovery. The fitness
function of this genetic algorithm incorporates both a recall and a specificitymeasure that drives
the genetic algorithm towards suitable models. The genetic miner is capable of detecting non-local
patterns in the event log and is described to be fairly robust to noise. In her PhD, Alves de Medeiros
(2006) describes an extension to this algorithm for the discovery of duplicate tasks.

van der Aalst et al. (2006) present a two-phase approach to process discovery that allows to
configure when states or state transitions are considered to be similar. The ability to manipulate
similarity is a good approach to deal with incomplete event logs. In particular, several criteria can
be considered for defining similarity of behavior and states: the inclusion offuture or past events,
the maximum horizon, the activities that determine state, whether ordering matters, the activities
that visibly can bring about state changes, etcetera. Using these criteria,a configurable finite state
machine can be constructed from the event log. In a second phase, the finite state machine is folded
into regions using the existing theory of regions (Cortadella et al., 1998). For the moment, the
second phase of the algorithm still poses difficulties with respect to constructing suitable process
models. The approach presented in this paper considers window size (maximum horizon) and par-
allel variants as similarity criteria when generating artificial negative events.

Günther and van der Aalst (2007) present an adaptive simplification and visualization technique
based on significance and correlation measures to visualize the behavior inevent logs at various
levels of abstraction. The contribution of this approach is that it can also beapplied to less structured,
or unstructured processes of which the event logs cannot easily be summarized in concise, structured
process models.

Several authors have used classification techniques for the purpose of process discovery. Maruster
et al. (2006), for instance, were among the first to investigate the use of rule-induction to predict
dependency relationships between activities from a corpus of reference logs that portray various
levels of noise and imbalance. To this end, the authors use a propositional rule induction technique,
the uni-relational classification learner RIPPER (Cohen, 1995), on a table of direct metrics for each
process task in relation to each other process task, which is generated in apre-processing step.

Ferreira and Ferreira (2006) apply a combination of ILP learning and partial-order planning
techniques to process mining. Rather than generating artificial negative events, negative examples
are collected from the users who indicate whether a proposed execution plan is feasible or not. By
iteratively combining planning and learning, a process model is discoveredthat is represented in
terms of the case data preconditions and effects of its activities. In addition tothis new process
mining technique, the contribution of this work is in the truly integrated BPM life cycle of process
generation, execution, re-planning and learning. Lamma et al. (2007) also describe the use of ILP
to process mining. The authors assume the presence of negative sequences to guide the search
algorithm. Unlike the approach of Ferreira and Ferreira, who use partial-order planning to present
the user with an execution plan to accept or reject (a negative example), this approach does not
provide an immediate answer to the origin of the negative events. Contrary to our approach, the
latter two approaches are not concerned with the construction of a graphical, control-flow based
process model and do not consider the generation of artificial negativeevents.
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9. Conclusion

Process discovery aims at accurately summarizing an event log in a structured process model. So
far, the discovery of structured processes by supplementing event logs withartificial negative events
has not been considered in the literature. The advantage is that it allows representing process dis-
covery as a multi-relational classification problem to which existing classification learners can be
applied. In this paper, the generation of artificial negative events givesrise to a new process dis-
covery algorithm and to new metrics for quantifying the recall and specificityof a process model
vis-à-vis an event log.

Process discovery algorithms must deal with challenges such as expressiveness, noise, incom-
plete event logs and the inclusion of prior knowledge. Dealing with one challenge sometimes leads
to poor performance with respect to another. The technique presented inthis paper, simultaneously
addresses many of these challenges. This can be concluded from the results of a large benchmark
study applied to AGNEs and four state-of-the art process discovery algorithms. A comparative
benchmark study of this scale is the first in the field of process discovery.The benchmark exper-
iments indicate that our technique can discover complex structures such as short loops, duplicate
activities, and non-free choice constructs, while remaining robust to noise. In addition, our tech-
nique has a new, declarative way of dealing with incomplete event logs that diminishes the effects
of concurrent and recurrent behavior on the generation of artificialnegative events. Finally, our
technique is capable of having prior knowledge constrain the hypothesis space during process dis-
covery. These declarative aspects—the inclusion of prior knowledge,the configurability of the
negative event generation procedure and the language bias—potentiallymake it very useful in prac-
tical applications. Another outcome of the benchmark study is the usefulnessof the new specificity
metric, which in contrast to existing metrics can always be calculated and produces intuitive results.
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