MISEP -- Linear and Nonlinear ICA Based on Mutual Information

Luís B. Almeida; 4(Dec):1297-1318, 2003.

Abstract

Linear Independent Components Analysis (ICA) has become an important signal processing and data analysis technique, the typical application being blind source separation in a wide range of signals, such as biomedical, acoustical and astrophysical ones. Nonlinear ICA is less developed, but has the potential to become at least as powerful.

This paper presents MISEP, an ICA technique for linear and nonlinear mixtures, which is based on the minimization of the mutual information of the estimated components. MISEP is a generalization of the popular INFOMAX technique, which is extended in two ways: (1) to deal with nonlinear mixtures, and (2) to be able to adapt to the actual statistical distributions of the sources, by dynamically estimating the nonlinearities to be used at the outputs. The resulting MISEP method optimizes a network with a specialized architecture, with a single objective function: the output entropy.

The paper also briefly discusses the issue of nonlinear source separation. Examples of linear and nonlinear source separation performed by MISEP are presented.

[abs][pdf][ps.gz][ps]




Home Page

Papers

Submissions

News

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Statistics

Login

Contact Us



RSS Feed