High-dimensional Covariance Estimation Based On Gaussian Graphical Models

Shuheng Zhou, Philipp Rütimann, Min Xu, Peter Bühlmann; 12(Oct):2975−3026, 2011.

Abstract

Undirected graphs are often used to describe high dimensional distributions. Under sparsity conditions, the graph can be estimated using l1-penalization methods. We propose and study the following method. We combine a multiple regression approach with ideas of thresholding and refitting: first we infer a sparse undirected graphical model structure via thresholding of each among many l1-norm penalized regression functions; we then estimate the covariance matrix and its inverse using the maximum likelihood estimator. We show that under suitable conditions, this approach yields consistent estimation in terms of graphical structure and fast convergence rates with respect to the operator and Frobenius norm for the covariance matrix and its inverse. We also derive an explicit bound for the Kullback Leibler divergence.

[abs][pdf]




Home Page

Papers

Submissions

News

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Statistics

Login

Contact Us



RSS Feed