Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing

Ryo Yoshida, Mike West; 11(May):1771−1798, 2010.

Abstract

We describe a class of sparse latent factor models, called graphical factor models (GFMs), and relevant sparse learning algorithms for posterior mode estimation. Linear, Gaussian GFMs have sparse, orthogonal factor loadings matrices, that, in addition to sparsity of the implied covariance matrices, also induce conditional independence structures via zeros in the implied precision matrices. We describe the models and their use for robust estimation of sparse latent factor structure and data/signal reconstruction. We develop computational algorithms for model exploration and posterior mode search, addressing the hard combinatorial optimization involved in the search over a huge space of potential sparse configurations. A mean-field variational technique coupled with annealing is developed to successively generate "artificial" posterior distributions that, at the limiting temperature in the annealing schedule, define required posterior modes in the GFM parameter space. Several detailed empirical studies and comparisons to related approaches are discussed, including analyses of handwritten digit image and cancer gene expression data.

[abs][pdf]




Home Page

Papers

Submissions

News

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Statistics

Login

Contact Us



RSS Feed