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Abstract

Kernel-based tests provide a simple yet effective framework that uses the theory of repro-
ducing kernel Hilbert spaces to design non-parametric testing procedures. In this paper,
we propose new theoretical tools that can be used to study the asymptotic behaviour of
kernel-based tests in various data scenarios and in different testing problems. Unlike current
approaches, our methods avoid working with U and V-statistics expansions that usually
lead to lengthy and tedious computations and asymptotic approximations. Instead, we work
directly with random functionals on the Hilbert space to analyse kernel-based tests. By
harnessing the use of random functionals, our framework leads to much cleaner analyses,
involving less tedious computations. Additionally, it offers the advantage of accommo-
dating pre-existing knowledge regarding test-statistics as many of the random functionals
considered in applications are known statistics that have been studied comprehensively. To
demonstrate the efficacy of our approach, we thoroughly examine two categories of kernel
tests, along with three specific examples of kernel tests, including a novel kernel test for
conditional independence testing.
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1. Introduction

The aim of this paper is to introduce new general tools for the analysis of kernel-based meth-
ods in the context of hypothesis testing. For this purpose, consider the following general
framework. Let X1, . . . , Xn be a collection of data points and consider a null hypothesis
of interest, which we denote by H0. Suppose that to assess the validity of H0 we have
access to a test-statistic Sn(ω) that depends (implicitly) on our data and on a deterministic
real-valued weight function ω : X → R where X is a space related to the observed data
points. Furthermore, assume that Sn(ω) satisfies Sn(ω) ≈ 0 for any fixed ω under the null
hypothesis. A testing procedure based on Sn(ω) works as follows. Choose a function ω and
compute Sn(ω). If we observe Sn(ω) ≈ 0 then we do not reject the null hypothesis, but if
we observe that Sn(ω) is far away from zero, then we use this as evidence to reject the null
hypothesis. Of course, we might still have Sn(ω) ≈ 0 under the alternative hypothesis for
some functions ω, and in such a case the test-statistic Sn(ω) will perform poorly.

In the previous setting, we need to carefully choose the weight function ω in order
to have a robust test that is able to distinguish between null and alternative hypotheses.
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Arguably, there are two approaches that can be followed to tackle the problem of choosing
an appropriate weight function: we can learn the weight function ω from our data, i.e.,
an adaptive weight approach, or we can combine several weight functions into a single
test-statistic, which is the path that motivates this work.

Following the idea of combining several weight functions into a single test, a simple
proposal is to consider as test-statistic the random variable

Ψn = sup
ω∈H:‖ω‖H=1

Sn(ω)2, (1)

where H is a separable reproducing kernel Hilbert space (RKHS). While in principle we
could have taken supremum over an arbitrary space of functions, we choose the unit ball
of an RKHSs since the favourable structural properties of RKHSs, coupled with certain
regularity conditions imposed over the general test-statistic Sn(ω), will guarantee good
properties of Ψn, which will be fundamental to construct rejection regions and thus the
testing procedure. In particular, we will assume that Sn(ω) is linear in its argument ω,
that is, Sn(aω1 + bω2) = aSn(ω1) + bSn(ω2) for any a, b ∈ R and ω1, ω2 ∈ H. Then it will
follow that Ψn can be evaluated exactly via a closed-form expression, i.e., the optimisation
problem can be solved explicitly, although the resulting expression may not be particularly
pleasant. In the previous case, we say that Sn(ω) is a linear test-statistic, and we refer
to Ψn to as the kernelisation of Sn. This simple idea is the basis for what is known as a
kernel-based test (Gretton et al., 2006), and has been applied implicitly and explicitly in
many contexts. In the literature, testing procedures based on test-statistics of the form of
Eq. (1) are generally called kernel test-statistics, and the whole testing procedure derived
from it is referred to as a kernel test.

Standard examples in the literature of kernelised tests, as defined in Eq. (1), include
those based on the maximum mean discrepancy (MMD) introduced in the seminal work
of Gretton et al. (2006). These tests are commonly used for the two-sample problem, which
involves testing the null hypothesis H0 : F0 = F1 using independent samples from F0 and
F1. Since the development of the MMD test, extensive research has been conducted in
the field of kernel-based tests. In the context of Goodness-of-Fit, a commonly employed
approach is to kernelise a Stein’s operator, resulting in tests known as Kernel Stein Dis-
crepancy (KSD) tests. These tests have been proposed for various data domains such as
Rd (Chwialkowski et al., 2016; Liu et al., 2016), point processes (Yang et al., 2019), and
random graph models (Xu and Reinert, 2021), among others. Kernel methods have also
been applied to address the problem of independence testing, where the main objective has
been the analysis of the Hilbert-Schmidt independence criterion (HSIC) (Gretton et al.,
2005, 2007; Smola et al., 2007). Furthermore, kernel methods have found applications
in other testing problems, including conditional independence (Zhang et al., 2011; Doran
et al., 2014), composite goodness-of-fit (Key et al., 2021), and various testing problems in
survival analysis (Fernández et al., 2020; Fernández and Rivera, 2021; Fernández et al.,
2023; Ditzhaus et al., 2022). One of the advantages of kernel methods is their versatility in
handling different types of data structures, such as graphs, strings, and sets. This enables
the design of testing procedures for a wide range of data types. For an introductory review
of kernel-based tests, we refer the reader to Chen and Markatou (2020). For a comprehen-
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sive overview of kernel methods and their applications in Statistics and Machine Learning,
we recommend Hofmann et al. (2008) and Muandet et al. (2017).

Despite the vast literature on kernel-based methods, to the best of our knowledge, there
are no works aiming to find a unified framework to analyse kernel-based tests. Thus, most
of the existing tests and results are derived and analysed using first principles on a case-
by-case basis, even though many similarities are present in the analyses. These similarities
include: i) Most previous works focused on a random variable of the form Ψn, which arises
implicitly or explicitly from a linear test statistic Sn(ω). ii) Most works base their analysis
on expressing Ψn explicitly in the form of a V-statistic or a related object (e.g. a V-statistic
with random kernel or dependent data). iii) The limit distribution of Ψn can be expressed as
an (infinite) linear combination of independent chi-squared random variables, and is usually
derived from limit theorems for V -statistics. iv) In most works the same resample schemes
are used, with the wild bootstrap being a highly prevalent choice.

For certain specific but simple scenarios, kernel-based tests can be expressed as standard
U and V-statistics, allowing for their analysis within this framework (see Section 4.1).
However, this is not always the case and additional difficulties arise. In the latter scenario,
the analyses of kernel-based tests require extra steps that often involve finding asymptotic
approximations of the kernel test as a proper U or V-statistic (without random kernels or
other type of complications), so the standard theory of V-statistics applies (for example, see
Fernández et al. (2023) for an analysis following this path). Due to such approximations,
the analysis becomes quite tedious and overly complicated; moreover, it is not guaranteed
that such an approximation can be achieved in every case. The same can be said about the
bootstrap versions of Ψn. In contrast, many of these computations are much simpler when
we work directly with Sn(ω), and, furthermore, asymptotic results for Sn(ω) may already
have been proven in the literature.

The goals of this work are to provide new ways to study kernel tests. We expect to i)
avoid lengthy computations that usually arise by expressing the kernelised test statistic Ψn

as an object that resembles a U or V-statistic and ii) be able to use already known results
for Sn(ω) in the analysis of Ψn (which are usually much easier to obtain).

Our main idea to achieve our goals is to completely avoid writing Ψn as a U or V-statistic,
and to work directly with Sn as a random functional on the Hilbert space H, looking for
conditions that allow us to extrapolate limiting results of Sn(ω), for fixed ω ∈ H, to Ψn.
Working with random functionals is much simpler, and indeed our analysis is based on first
principles of Hilbert space-valued random variables. At a high level we show that

i) Under the null hypothesis, some regularity conditions, and appropriate scaling it holds

that if for all ω ∈ H, Sn(ω)
D→ N(0, σ2

ω), then

Ψn
D→
∞∑
i=1

λiZ
2
i ,

when the number of data points n tends to infinity. The variables Zi are i.i.d. standard
normal random variables and λ1, λ2, . . . are non-negative constants. More details are
given in Theorems 1 and 2.

ii) Under the alternative hypothesis, some regularity conditions, and appropriate scaling
it holds that if for all ω ∈ H, Sn(ω)→c(ω) almost surely, then almost surely we have

3



Fernández and Rivera

that

Ψn→c2
∗ := sup

ω∈H:‖ω‖H=1
c(ω)2.

More details are given in Theorem 3.

We show that our conditions are not only sufficient but also necessary. We also provide
additional sufficient conditions expressed in terms of integral conditions (see Propositions 4
and 6), which are not only more practical but also easier to verify. Consequently, these
conditions might be of greater relevance to practitioners. We will also see that our conditions
are useful not only to analyse test statistics but also bootstrap procedures such as wild
bootstrap, allowing us to analyse the whole testing procedure.

To illustrate how to use our results, we analyse two general classes of tests: the first
class considers statistics Sn(ω) that can be written as a sum of i.i.d. random variables, and
the second one considers Sn(ω) as a U-statistic of degree 2 or more (i.e., we take supre-
mum over U-statistics). These classes are rather important, as they include statistics such
as the kernelised Stein discrepancy and the HSIC measure of independence, respectively.
Additionally, due to their broad generality, these classes can also serve as readily applicable
(or condensed) results for practitioners who need to kernelise a test-statistic falling within
these categories. In these classes, we will see that our approach reduces the problem of
showing the asymptotic correctness of the kernelised testing procedure to the verification of
a few simple conditions (see Theorems 7 and 8), showing the effectiveness of our approach
in practical problems.

Finally, we apply our ideas to specific testing problems. In particular, we analyse kernel
tests for the problems of independence testing, the two-sample problem with right-censored
data, and conditional independence testing. The last application is a novel test for condi-
tional independence testing that kernelises the very recently proposed Weighted Generalised
Covariance Measure (Scheidegger et al., 2022) which is a weighted generalisation of the Gen-
eralised Covariance Measure (Shah and Peters, 2020).

Notation. For the remainder of the paper, we adopt standard notation. In partic-

ular, we write
a.s→,

P→, and
D→ to denote convergence almost surely, in probability, and in

distribution (in law), respectively. All limits are taken when n, (usually the number of
data points), tends to infinity, unless explicitly stated otherwise. We denote by PX and EX
conditional probability and expectation on the random variable, event, or sigma-algebra X.
For a positive integer k, we denote by [k] the set {1, . . . , k}.

2. Background

2.1 Hilbert Spaces and Random Linear Functionals

In this work, we are interested in Hilbert spaces of functions. The letters H and G usually
denote spaces of functions from X to R and from Y to R, respectively, with the respective
inner products 〈·, ·〉H and 〈·, ·〉G . We always assume that X and Y are Polish spaces (e.g.
Rd), and that Hilbert spaces are always separable.

In later applications to Hypothesis Testing, we will further consider Reproducing Kernel
Hilbert Spaces (RKHS). We say that H is an RKHS if the evaluation functional Ex :
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ω → ω(x) ∈ R is bounded for each x ∈ X . According to Riesz’s representation theorem,
there exists a unique Kx ∈ H such that Exω = 〈Kx, ω〉H. For x, y ∈ X , we denote by
K(x, y) = 〈Kx,Ky〉H the so-called reproducing kernel of H, which is a symmetric and
positive definite function X × X → R. The kernel function K characterises H, and, in
fact, given a symmetric positive definite function K there is a unique RKHS with such a
function as reproducing kernel. In practice, we do not choose H, but rather the kernel K.
Standard kernel functions are the squared-exponential, the Ornstein–Uhlenbeck, and the
rational quadratic kernels; see Chapter 2 in the work of Duvenaud (2014) for a compendium
of kernel functions. Finally, since we are interested only in separable Hilbert spaces, it
is worth mentioning that if X is separable and the kernel function K : X × X → R is
continuous, then the RKHS H is separable.

We are interested in random variables taking values in H or in the space of bounded
linear functionals H∗ (with the standard operator norm ‖·‖H→R). We assume an underlying
probability space (Ω,F ,P) and consider random variables Ω → H or Ω → H∗ that are
measurable with respect to the corresponding Borel sigma-algebra. Other standard forms
of measurability, such as the cylindrical sigma-algebra, are equivalent in the setting of
separable Hilbert spaces. Due to the isometry between H and H∗, we can define a random
variable in one space and transfer its representation to the dual space without concerns
about measurability issues. In particular, given a random bounded functional S, the random
variable ‖S‖H→R = supω∈H:‖ω‖H=1 S(ω) is measurable. Similarly, for a random variable
ξ ∈ H, its norm ‖ξ‖H is also measurable.

Considering the aforementioned notation, our main interest is to study sequences (Sn)n∈N
of random functionals in H∗. In particular, we are interested in the random variable

Ψn := ‖Sn‖2H→R = sup
ω∈H:‖ω‖H=1

Sn(ω)2. (2)

In order to maintain the statistical motivation in our presentation, from now on we refer
to random variables in H∗ as bounded linear test-statistics.

2.2 Stable Convergence

In some settings, such as bootstrap or other resampling schemes, we want to extend the
definition of convergence in distribution to allow convergence conditional on a sub-algebra,
e.g. to obtain a limit distribution given the observed data. This idea is formalised by the
concept of stable convergence (Häusler and Luschgy, 2015, Definition 3.15).

Consider a sub sigma-algebra F ′ ⊆ F . We say that the sequence of real random variables

(Zn)n≥1 converges F ′-stably to Z, denoted Zn
DF′→ Z, if and only if

E(XE(f(Zn)|F ′))→ E(XE(f(Z)|F ′))

for all X ∈ L1(Ω,P,F) and f : R → R continuous and bounded. Note that by taking
X = 1, stable convergence implies the usual convergence in distribution. In this work, our
limiting random variables will be independent of F ′, thus E(f(Z)|F ′) = f(Z).

An equivalent definition is that Zn
DF′→ Z, if and only if Zn converges to Z with respect

to the conditional measure P(·|F ) for every F ⊆ F ′ with P(F ) > 0, i.e., EF (f(Zn)) →
EF (f(Z)), for all bounded and continuous f .
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In practice, most of the usual limit theorems, such as Linderberg’s CLT, hold in the
setting of stable convergence, but all conditions involving probabilities/expectation need to
be replaced by the corresponding conditional probability/expectation on F (e.g. Theorem
6.1 of Häusler and Luschgy (2015)).

In data-driven problems involving bootstrap and resampling methods, we denote all
data by D, and write DD as a shortcut for Dσ(D) to represent σ(D)-stable convergence,
where σ(D) is the sigma-algebra represented by the data D.

3. Convergence of Kernelised Linear Test-statistics

As discussed in Section 1, in practical scenarios of hypothesis testing, Sn(ω) represents a
test statistic that depends on the weight ω. Randomness is typically introduced by the
observed data, which consists of n data points denoted as X1, . . . , Xn. The subscript n
corresponds to the number of data points. There are two cases of particular interest in this
context. The first case occurs when Sn(ω) is properly scaled and converges to a normal
distribution with a mean of 0 and a variance of σ(ω, ω) for each function ω. This scenario
is typically encountered under the null hypothesis. The other case is when Sn(ω) converges
(assuming proper scaling) to a constant c(ω) that depends on ω (and hopefully c(ω) 6= 0),
which usually holds under the alternative hypothesis.

Let us start by analysing the first case, as it is the most interesting. In this case,
we assume that the sequence of linear statistics (Sn)n≥1 satisfies the following condition,
referred to as Condition G0, where G stands for Gaussian as in the Gaussian distribution.

Condition G0 For each ω ∈ H we have Sn(ω)
D→ S(ω) with S(ω) ∼ N (0, σ(ω, ω)) as n

grows to infinity.

Condition G0 is a rather natural and common behaviour for test-statistics under the null
hypothesis, so it can be seen as a framework rather than just a condition. Note that accord-
ing to Condition G0, σ(ω, ω) is defined only on the diagonal. However, it can be extended
to a bilinear operator by defining σ(ω, ω′) := 1

2 (σ(ω + ω′, ω + ω′)− σ(ω, ω)− σ(ω′, ω′)).
The bilinear operator σ : H × H → R plays a fundamental role in our work, as it char-
acterises the joint convergence of S(ω1), . . . , S(ωm) with ω1, . . . , ωm ∈ H to a multivariate
normal with mean 0 and covariance matrix Σij = σ(ωi, ωj) (see Lemma 13). Moreover,
σ also characterises the potential limit (in law) of Sn. If we assume that σ is bounded,
i.e., supω∈H:‖ω‖H=1 σ(ω, ω) <∞, then the Riesz representation theorem guarantees the ex-
istence of a unique linear transformation Tσ : H → H such that 〈ω, Tσω′〉H = σ(ω, ω′) (see
Proposition 14 in Appendix A.1). Furthermore, due to the symmetry of σ, Tσ is self-adjoint.

In the specific case where H is an RKHS with kernel K, then

(Tσω)(x) = σ(ω,Kx), ∀x ∈ X . (3)

Recall that Kx ∈ H is the (unique) element associated with the evaluation functional Ex via
the Riesz representation theorem. Assuming Condition G1 below we show in Proposition 14
that Tσ is self-adjoint and trace class.

Condition G1 For some orthonormal basis (φi)i≥1 of H we have
∑

i≥1 σ(φi, φi) <∞.
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It is well known that if the condition above holds for one orthonormal basis, then it holds
for every orthonormal basis (see, e.g., Corollary 18.2 of Conway (2000)).

By Condition G1 and since Tσ is self-adjoint, there exists an orthonormal basis of H
denoted as (φi)i≥1, satisfying Tσφi = λiφi for each i ≥ 1. Additionally, the sum of the
eigenvalues λi is bounded, and these eigenvalues are real since Tσ is self-adjoint and non-
negative since σ is a variance (except for the potential eigenvalues 0). This will play a
crucial role in defining the (potential) limit of Sn.

Finally, to ensure that Sn actually converges in distribution to a limiting functional, we
require the following tightness condition:

Condition G2 For some orthonormal basis (φi)i≥1 of H, and for any ε > 0, we have that

lim
i→∞

lim sup
n→∞

P

 ∞∑
j=i

Sn(φj)
2 ≥ ε

 = 0.

Similarly to Condition G1, we can show that if Condition G2 holds for one basis, then
it holds for any basis of H.

We continue by presenting the main theorems that allow us to study kernel statistics
through the random functional Sn. The first result allows us to derive a limit distribution
for Ψn based on the fact that Sn(ω) converges in distribution for every ω ∈ H.

Theorem 1 Let (Sn)n≥1 be a sequence of bounded linear test-statistics satisfying Condi-
tions G0 to G2. Define the random functional

S(·) =

∞∑
i=1

√
λi 〈φi, ·〉H Zi,

where (λi, φi)i≥1 are the eigenvalues and eigenvectors of the operator Tσ : H → H defined
in Eq. (3), and (Zi)i≥1 are a collection of i.i.d. standard normal random variables.

Then S exists almost surely, i.e., the sum converges almost surely in H∗, and

Sn
D→ S, and Ψn = ‖Sn‖2H→R

D→
∞∑
i=1

λiZ
2
i . (4)

Random variables of the form
∑∞

i=1 λiZ
2
i , where λi are the eigenvalues of an operator Tσ,

frequently appear in our applications. Therefore, we introduce the notation χ2(σ) to denote
the distribution of the aforementioned series. We write

Ψ ∼ χ2(σ) (5)

to indicate that the random variable Ψ has the same distribution as
∑∞

i=1 λiZ
2
i associated

with the bilinear form σ through the operator Tσ.

We also show that the conditions imposed in Theorem 1 are necessary. This result is
stated in the following theorem.
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Theorem 2 Let (Sn)n≥1 be a sequence of bounded linear test-statistics in H∗, and define
S(·) =

∑∞
i=1

√
λiZi 〈φi, ·〉H, where (λi)i≥0 are positive constants, and (φi)i≥1 is an or-

thonormal basis of H. Suppose that S converges almost surely in H∗ (i.e., almost surely the

truncated sums are a Cauchy sequence in H∗). Then, if Sn
D→ S, we have that Conditions G0

to G2 hold.

Now, we present our second main tool to analyse kernel statistics, which pertains to the
analysis of the second case of interest. This case arises when Sn(ω) converges almost surely
or in probability to a constant value c(ω) for every ω ∈ H. Such a situation is often observed
under the alternative hypothesis and can be described relatively straightforwardly. The
following condition, which is essentially the almost surely version of Condition G2, features
our analysis.

Condition G3 For some orthonormal basis (φi)i≥1 of H, it holds that

lim
i→∞

lim sup
n→∞

∞∑
j=i

Sn(φj)
2 = 0, a.s.

Theorem 3 Consider a sequence (Sn)n≥1 of linear test-statistics, and suppose that for

each ω ∈ H we have Sn(ω)
a.s.→ c(ω), where c : H → R is a deterministic functional. Define

c2
∗ := supω∈H:‖ω‖H=1 c(ω)2, and suppose c∗ <∞. Then

lim
n→∞

Ψn = c2
∗, a.s.

if and only if Condition G3 holds.

Furthermore, if for every ω ∈ H we have Sn(ω)
P→ c(ω) as n grows to infinity, then

Ψn
P→ c2
∗ if and only if Condition G2 holds.

The proofs of Theorems 1 to 3 are deferred to Appendix B.

3.1 Integrability Conditions

Verifying the conditions stated in Conditions G1 and G2 can be challenging in practical
examples due to their algebraic nature. To address this, in this section, we introduce
integrability conditions that imply Conditions G1 and G2 and that may be easier to verify
in practical problems.

In the upcoming discussion, we consider Polish spaces X and Y, along with the (sep-
arable) Hilbert Space H of functions from X to R and a Hilbert Space G of functions
from Y to R, as well as the Borel measures µ and ν over X and Y, respectively. Ad-
ditionally, we assume that H and G are subspaces of L2(X , µ) and L2(Y, ν), respectively
(considering the equivalence class of functions). It is worth noting that if H is a separa-
ble RKHS with kernel K, a sufficient condition for H to be a subset of L2(X , µ) is that∫
X K(x, x)µ(dx) <∞ (the analogous condition holds for G). This condition holds because∫
X f(x)2µ(dx) ≤ ‖f‖2H

∫
X K(x, x)µ(dx) by the Cauchy-Schwarz inequality.

The integrability conditions we are going to introduce are based on the existence of a
linear transformation Q : H → G ⊆ L2(Y, ν) such that E(Sn(ω)2) ≤ C ‖Qω‖2L2(ν) for all
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sufficiently large n and for all ω ∈ H. By introducing Q and integrating with respect to ν,
we can express Conditions G1 and G2 in a more natural form for practical applications.

Note that if G is an RKHS associated with the kernel L, we have (Qω)(y) = 〈Qω,Ly〉G =
〈ω,Q∗Ly〉H for any y ∈ Y, where Q∗ is the adjoint operator of Q. Then, for any y, y′ ∈ Y,
we define the kernel LQ : Y × Y → R as follows:

LQ(y, y′) = 〈Q∗Ly, Q∗Ly′〉H, (6)

which is clearly symmetric and definite positive. Note that LQ can be understood as the
kernel Q∗1Q

∗
2L, where Q∗i represents the application of Q∗ to the i-th component of L. The

kernel LQ plays a significant role in various applications; however, its shape may not be
very pleasant in some settings.

Proposition 4 Suppose that there exists a linear transformation Q : H → G ⊆ L2(Y, ν)
and a constant C > 0, satisfying:

E(Sn(ω)2) ≤ C
∫
Y

(Qω)(y)2ν(dy) (7)

for all ω ∈ H and for sufficiently large n. Moreover, consider the following conditions:

a) H is a RKHS with kernel K and it exists a measure µ on X such that(
sup

ω∈H:‖ω‖L2(µ)
=1

∫
Y

(Qω)(y)2ν(dy)

)(∫
X
K(x, x)µ(dx)

)
<∞, (8)

b) G is a RKHS with kernel L, and∫
Y
LQ(y, y)ν(dy) <∞. (9)

If a) or b) holds, then Condition G2 holds. Furthermore, if Condition G0 holds and a) or
b) holds, then Condition G1 holds.

Remark 5 If both H and G are RKHSs, then Eq. (8) implies Eq. (9).

In a setting that involves bootstrap estimator or almost sure convergence of Ψn, we need
to be able to use our convergence results to establish F ′-stable convergence for some appro-
priate sub-sigma F ′ ⊆ F (recall the definition of stable convergence in Section 2.2). In this
setting, we say that Condition G0 holds F ′-stably if and only if for every ω ∈ H there exists

a random variable S(ω) ∼ N(0, σ(ω, ω)), independent of F ′, such that Sn(ω)
DF′→ S(ω).

Also, we say that Condition G2 holds F ′-stably if it holds when replacing the probability
P by the conditional probability on PF for all F ⊆ F ′ with P(F ) > 0. Note that other
conditions do not involve probabilities. Therefore, Theorem 1 shows stable convergence if
Conditions G0 to G2 hold F ′-stably (the same applies to Theorem 3). Within this context,
the following extension of Proposition 4 helps us to prove F ′-stable convergence:
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Proposition 6 Let F ′ be a sub sigma-algebra of F . Suppose there exists a linear operator
Q : H → G ⊆ L2(Y, ν), a constant C > 0, and a (potentially random) sequence of sigma-
finite measures νn on Y, such that for every n ≥ 1, it holds that

E(Sn(ω)2|F ′) ≤ C
∫
Y

(Qω)2(y)νn(dy), a.s. (10)

Moreover, suppose that for each g ∈ L1(Y, ν) we have
∫
Y g(y)νn(dy)→

∫
Y g(y)ν(dy) almost

surely.
Consider the following conditions:

a) H is a RKHS, and it exists a measure µ on X such that(
sup

ω∈H:‖ω‖L2(µ)
=1

∫
Y

(Qω)(y)2ν(dy)

)(∫
X
K(x, x)µ(dx)

)
<∞ (11)

b) G is a RKHS with kernel L, and
∫
Y L

Q(y, y)ν(dy) <∞,

If a) or b) is satisfied, then Condition G2 holds F ′-stably. Additionally, if Condition G0

holds F ′-stably and a) or b) is satisfied, then Condition G1 holds F ′-stably. Finally, in the
special case that F ′ = F and a) or b) is satisfied, then Condition G3 holds.

Applications of the previous results are found in the next section. The proofs of Propo-
sitions 4 and 6 are deferred to Appendix B.

4. Application to Hypothesis Testing

In this section, we provide applications of the previous results in the context of hypothesis
testing.

4.1 Sn(ω) as a U-statistic of Degree 1

In this section, we investigate the behaviour of Sn(ω) and the kernelised estimator Ψn when
Sn(ω) is a U -statistic of degree 1, meaning that Sn(ω) is the sum of i.i.d. random variables.
This is arguably the simplest case of a kernelised test-statistic that we can consider, yet it
gives rise to several important statistics that appear in practical applications, including the
so-called maximum mean discrepancy and kernelised Stein discrepancy. Since Sn(ω) is very
simple, we can find a straightforward expression for Ψn. In fact, it can be represented as a
V -statistic of order 2. Although this type of representation is common in the literature of
kernel tests, it is important to clarify that not all kernel test-statistics can be written as a
standard V -statistic.

To fix our ideas, let us consider data Y1, . . . , Yn
i.i.d.∼ F taking values in a space Y.

Consider a separable Hilbert space H of functions from X → R, and a subspace G of
L2(Y, F ). In this context, X and Y may not necessarily be identical. Although they are often
equal in various applications, our approach accommodates the possibility of them being
distinct. This flexibility proves advantageous in certain practical scenarios; for example, in
Section 4.3.3 we consider survival analysis data (Xi,∆,gi) thus Y = R× {0, 1} × {0, 1} but
X will be chosen as R since the weight functions will only consider the time Xi.

10
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Let U : H → G be a linear map and define the linear test-statistic Sn as:

Sn(ω) =
1√
n

n∑
i=1

(Uω)(Yi). (12)

If G is an RKHS with kernel L, then (Uω)(y) = 〈Uω,Ly〉G = 〈ω,U∗Ly〉H where U∗

is the adjoint operator of U , and recall the definition of LU from Eq. (6). Then, we can
express the kernelised statistic Ψn as a V-statistic with kernel LU , indeed:

Ψn = sup
ω∈H:‖ω‖H=1

Sn(ω)2 =
1

n

n∑
i=1

n∑
j=1

LU (Yi, Yj) (13)

which holds by noting that Sn(ω)2 = 〈ω, 1√
n

∑n
i=1 U

∗LYi〉2H, thus the supremum over the

unit ball equals the square of the norm of 1√
n

∑n
i=1 U

∗LYi in H.

We note that although the definition of LU seems rather technical, it is not difficult
to obtain this kernel in practice. In fact, a common approach in the literature, although
informal, is to assume that H is an RKHS with kernel K, and then to obtain LU we simply
apply the transformation U to each coordinate of K.

The previous procedure can be formalised. Assume that ω → (Uω)(y) is a bounded
linear functional for each y ∈ Y, and let N = {ω : (Uω)(y) = 0 for all y ∈ Y}, and define
G := {Uω : ω ∈ N⊥} = {Uω : ω ∈ H}. Now, for every g ∈ G, there exists ω ∈ N⊥ such that
g = Uω, then define the inner product in G by 〈Uω,Uω′〉G = 〈ω, ω′〉H with ω, ω′ ∈ N⊥.
Then U is an isometry between N⊥ and G. We claim that G with this inner product is an
RKHS. Indeed, since ω → (Uω)(y) is a bounded functional in N⊥, there exists ξy ∈ N⊥
such that 〈ω, ξy〉H = (Uω)(y) for ω ∈ N⊥, then we claim that Uξx ∈ G evaluates functions
of G, indeed for g = (Uω), we have 〈Uξy, g〉G = 〈ξy, ω〉H = (Uω)(y) = g(y). Denote by
Ly = Uξy and the kernel L(y, y′) = 〈Ly, Ly′〉G . Finally, since U is an isometry between N⊥

and G, UU∗ is the identity in G, and then

LU (y, y′) = 〈U∗Ly, U∗Ly′〉H = 〈Ly, UU∗Ly′〉G = L(y, y′).

Note that the above argument also shows that LU (y, y′) = 〈ξy, ξy′〉H, therefore, we just
need to find ξy ∈ N⊥ such that 〈ω, ξy〉H = (Uω)(y) for ω ∈ N⊥. Of course, finding N⊥

may be difficult, but in many examples N is trivial (only contains the zero function), thus
N⊥ = H. In this case, note that 〈Kx, ξy〉H = ξy(x) = (UKx)(y). Hence, we can find ξy(x)
applying U to the second coordinate of K(x, x′) and then evaluating at y. Finally, since
LU (y, y′) = (Uξy)(y

′), we are just applying U to the function x → (UKx)(y), explaining
the heuristic idea that LU is found by applying U to the first and second coordinate of K.

To illustrate the previous ideas, consider the following examples.

Example 1 (Maximum mean discrepancy for the goodness-of-fit) In this example,
we consider data (Yi)

n
i=1 in Rd generated independently according to a distribution F . We

want to test whether F is equal to a given distribution F0 or not. Let H be an RKHS of
functions Rd → R, and define (Uω)(y) = ω(y) − E0(ω(Y )), where E0 denotes expectation

w.r.t. F0. Then, informally, the statistic Ψn = supω∈H:‖ω‖H=1

∑n
i=1

(
1√
n

(Uω)(Yi)
)2

can be

11



Fernández and Rivera

written as the V -statistic 1
n

∑n
i=1

∑n
j=1 L

U (Yi, Yj) where

LU (y, y′) = (U1U2K)(y, y′) = K(y, y′)− E0(K(y, Y ′))− E0(K(Y, y′)) + E0(K(Y, Y ′)),

where U i is the application of U to the i-th coordinate of K.

Example 2 (Kernel Stein Discrepancy) In this example we want to test the null hy-
pothesis F = F0. We assume that F0 has density p0 in Rd with vanishing tails. Consider an
RKHS H of real functions and let K be its kernel function. Define the RKHS Hd of func-
tions R × {1, . . . , d} → R in terms of its kernel Kd given by Kd((x, i), (y, j)) = K(x, y)δij,
which is a kernel since it is the product of two kernels. Denote gi(x) = (∂/∂xi) log(p0(x)),
and consider the operator Ui acting on Hd, given by (Uiω)(x) = gi(x)ω(x, i) + ∂

∂xi
ω(x, i),

and (Uω)(x) =
∑d

i=1(Uiω)(x). For practical purposes, suppose that limh→0
Kx+h−Kx

h con-
verges in H. To ensure the existence of the previous limit, we shall assume that the kernel
K has continuous second-order partial derivatives. Then, we apply U to the first and second
coordinates of K to, informally, derive that

LU (x, y) =
d∑
i=1

gi(x)gi(x)K(x, y) + gi(x)
∂

∂yi
K(x, y) + gi(y)

∂

∂xi
K(x, y) +

∂

∂xi

∂

∂yi
K(x, y).

In general, V -statistics of order 2 can be categorised into two general classes, degenerate
and non-degenerate, which determine their asymptotic behaviour. A V-statistic is consid-
ered degenerate if the function y → E(LU (Y, y)) is almost surely a constant with respect
to y. On the other hand, if the function varies across different values of y, we say that the
V-statistic is non-degenerate.

For hypothesis testing applications, U is chosen so that under the null hypothesis
E((Uω)(Y )) = 0 for all ω ∈ H. Indeed, note that in our two previous examples this
property holds. In this case, LU is a degenerated V-statistic kernel since

E(LU (Y, y)) = E(〈U∗LY , U∗Ly〉H) = E(〈LY , UU∗Ly〉G) = E((UU∗Ly)(Y )) = 0,

for all y ∈ Y since U∗Ly ∈ H. On the other hand, under the alternative hypothesis, we
expect that there exists ω ∈ H such that E((Uω)(Y )) 6= 0. If the latter holds, we find that
LU is not a degenerate kernel.

Since our main interest lies in applications in hypothesis testing, it becomes crucial to be
able to bootstrap our test-statistics to approximate the rejection region. For this purpose,
we propose a wild bootstrap approach that can be used within this setting: Consider a
collection (Wi)

n
i=1 of i.i.d. Rademacher random variables, i.e., with equal probability they

take value 1 or -1 (in general, random variables with mean 0 and variance 1 are enough).
Then, the bootstrap statistics are defined as

SWn (ω) =
1√
n

n∑
i=1

Wi(Uω)(Yi), and ΨW
n = sup

ω∈H:‖ω‖H=1
SWn (ω)2 =

1

n

n∑
i,j=1

WiWjL
U (Yi, Yj).

The next result provides asymptotic results for Ψn and ΨW
n .

12
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Theorem 7 Let U : H → G ⊆ L2(Y, F ), and suppose that G is an RKHS with kernel L
and such that E(LU (Y, Y )) <∞ for Y ∼ F . Define the bilinear forms in H,

σ(ω, ω′) = Cov((Uω)(Y ), (Uω′)(Y )) and σW (ω, ω′) = E((Uω)(Y )(Uω′)(Y )),

then

1. If E((Uω)(Y )) = 0 for all ω ∈ H, then Ψn
D→ Ψ ∼ χ2(σ).

2. ΨW
n
DD→ ΨW ∼ χ2(σW ). Moreover, if E((Uω)(Y )) = 0 for all ω ∈ H, then ΨW has the

same distribution as Ψ.

3. Let c2
∗ = supω∈H:‖ω‖H=1 E((Uω)(Y ))2, then n−1Ψn

a.s.→ c2
∗.

We note that the previous result includes all the necessary elements that allow us to
prove the correctness of the testing procedure based on Ψn and the wild bootstrap estimator
ΨW
n to approximate the rejection region.

The proof of Theorem 7 can be carried out using results of the theory of U and V statis-
tics. For example, Item 1. is a standard convergence result for degenerated V -statistics,
e.g. Theorem 4.3.2 of Koroljuk and Borovskich (1994) establishes that Ψn converges in
distribution to a weighted linear combination of independent chi-square random variables
with one degree of freedom if E(LU (Y, Y )) < ∞ and E(LU (Y, Y ′)2) < ∞, where Y ′ is an
independent copy of Y . It is important to note that the condition E(LU (Y, Y ′)2) < ∞ is
implied by E(LU (Y, Y )) < ∞ since LU is a positive-definite function. The wild bootstrap
estimator ΨW

n was studied by Dehling and Mikosch (1994). Their Theorem 3.1 shows that

ΨW
n
DD→ ΨW under the same moment conditions mentioned above, and that the limit distri-

butions coincide if E(Uω)(Y )) = 0 for all ω ∈ H, leading to Item 2. Finally, Item 3 is the
standard law of large numbers for V-statistics.

For completeness, we provide an alternative proof of Theorem 7 using our tools, ignoring
all previous developments in the theory of U-statistics and wild bootstrap.

Proof Observe that E
(

supω∈H:‖ω‖H=1(Uω)(Y )2
)
<∞ since

E

(
sup

ω∈B1(H)
(Uω)(Y )2

)
= E

(
sup

ω∈B1(H)
〈Uω,LY 〉2G

)
= E

(
sup

ω∈B1(H)
〈ω,U∗LY 〉2H

)
= E (〈U∗LY , U∗LY 〉H) = E(LU (Y, Y )) <∞.

For item 1, we apply Theorem 1 to the operator Sn. Clearly Sn(ω) = 1√
n

∑n
i=1(Uω)(Yi)

converges to a centred normal with variance Var((Uω)(Yi)) by the CLT, thus Condition G0

holds. To verify Conditions G1 and G2 we use Proposition 4. Note that since E((Uω)(Yi)) =
0 for all ω, it holds that

E
(
Sn(ω)2

)
≤
∫
Y

(Uω)(y)2dF (y), (14)

thus, Conditions G1 and G2 follows by taking Q = U , C = 1 and ν = F in Item b) of
Proposition 4.

13
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For item 2, we apply Theorem 1 to the operator SWn but conditional on the data
D = (Yi)i≥1. Condition G0 holds σ(D)-stably since SWn (ω) has conditional mean 0 and con-
ditional variance given by

∑n
i=1

1
n(Uω)(Yi)

2 → E((Uω)(Yi)
2) by the law of large numbers.

An application of the Linderberg CLT (see Lemma 16 and Corollary 17 in Appendix A)

shows that SWn (ω)
DD→ N(0, σ(ω, ω)) with σ(ω, ω′) = E((Uω)(Y1)(Uω′)(Y1)). To verify

Conditions G1 and G2 we again use Proposition 6 with Q = U , C = 1, νn =
∑n

i=1 δYi ,
ν = F , and F ′ = σ(D) the sigma algebra generated by the data. In this case, note that∫
Y g(y)νn(dy)→

∫
Y g(y)ν(dy) by the Law of Large numbers whenever g ∈ L1(Y, ν). More-

over, note that Eq. (10) holds since

ED
(
SWn (ω)2

)
=

1

n

n∑
i=1

(Uω)(Yi)
2.

Therefore, since item b) of Proposition 6 holds, we have that ΨW
n converges in distribution.

Furthermore, note that if E((Uω)(Y1)) = 0 for all ω then the covariance operators of Ψ and
ΨW coincide.

Finally, for item 3, we apply Theorem 3 to the operator 1√
n
Sn. Clearly, 1√

n
Sn(ω) =

1
n

∑n
i=1(Uω)(Yi) converges almost surely to a constant due to the law of large numbers.

We only need to verify Condition G3, for which we employ Proposition 6. A direct calcu-

lation yields
(

1√
n
Sn(ω)

)2
=
(

1
n

∑n
i=1(Uω)(Yi)

)2 ≤ 1
n

∑n
i=1(Uω)(Yi)

2 so, in our application

of Proposition 6 we take Q = U , C = 1, F ′ = F , νn =
∑n

i=1 δYi and ν = F . By our
assumptions, condition b) of Proposition 6 holds, and thus Condition G3 holds, that is,
limi→∞ lim supn→∞

1
n

∑∞
j=i Sn(φj)

2 = 0 for some orthonormal basis φi of H.

4.2 Sn(ω) as U-statistic of Degree 2 or More.

A much more interesting class of statistics arises when we move beyond simple sums and
consider general U -statistics (with sums being U -statistics of degree 1). Let

(
[n]
r

)
denote

the family of subsets of [n] = {1, . . . , n} with r distinct elements. The elements of
(

[n]
r

)
represent a set of indices. For A ∈

(
[n]
r

)
we denote by A1, . . . , Ar the elements of the set

A in increasing order. In this context, consider i.i.d. data Xi ∼ F , and consider linear
statistics Sn in the following form:

Sn(ω) =

√
n

r
(
n
r

) ∑
A∈([n]r )

(Uω)(XA), (15)

where XA = (XA1 , . . . , XAr).
In this case, Sn(ω) represents a U -statistic of degree r (which is why we use the letter U

to denote the transformation). In this context, it is convenient to assume that H is a space
of functions that map X d to R. In particular, we can consider U as U : H → L2(X r, F×r),
with F×r denoting the product measure. Note that d may be different from r, leading to
a general enough setting for applications. It is important to assume that for every ω, the
function Uω is symmetric in its input (i.e., the output does not depend on the order of the
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input), so the ordering of the index set A is not important. For the Wild Bootstrap version
of Sn(ω), we propose the following:

SWn (ω) =

√
n

r
(
n
r

) ∑
A∈([n]r )

WA(Uw)(XA),

where WA = WA1 +WA2 + · · ·+WAr , and (Wi)
n
i=1 are i.i.d. Rademacher random variables

(however, other random variables with mean 0 and variance 1 can be considered). Note that
when r = 1, we recover the previous setting discussed in Section 4.1. We proceed to analyse
the kernel test-statistics Ψn and ΨW

n when r ≥ 2. Our approach is not an extension of the
case r = 1 since, while it is possible to expand Ψn and ΨW

n as V-statistics, the analyses
of such expressions are rather intricate, involving the dependent random variables (XA :
A ∈

(
[n]
r

)
). Hence, the usual roadmap for analysing V-statistics becomes very complicated.

We think that working with the random functional Sn is a better option in this setting,
particularly condition a) of Propositions 4 and 6 is not hard to apply.

The following theorem gives a general tool to analyse statistics Ψn as described above
(see Section 4.3.2 for an application).

Theorem 8 Let X1, X2, . . . , Xn
i.i.d.∼ F be random variables taking values in X , and for

r ≥ 1 define the bilinear forms in the RKHS H,

σ(ω, ω′) = Cov((Uω)(X1, X2, . . . , Xr), (Uω
′)(X1, X

′
2, . . . , X

′
r)) (16)

and

σW (ω, ω′) = E((Uω)(X1, X2, . . . , Xr)(Uω
′)(X1, X

′
2, . . . , X

′
r)) (17)

where X ′i have the same distribution than Xi for i ≥ 2, and X ′2, . . . , X
′
r are independent of

X1, X2, . . . , Xr (for r = 1 we recover the covariances of Theorem 7).
Suppose that there exists a sigma-finite measure µ in X d such that

sup
ω∈H:‖ω‖L2(µ)

=1
E
(
(Uω)(X1, X2, . . . , Xr)

2
)
<∞ and

∫
X d
K(x,x)µ(dx) <∞, (18)

where K is the kernel of H. Then the following statements hold

1. If E((Uω)(X1, . . . , Xr)) = 0 for all ω ∈ H, then Ψn
D→ Ψ ∼ χ2(σ).

2. ΨW
n
DD→ ΨW ∼ χ2(σW ), moreover, if E((Uω)(X1, . . . , Xr)) = 0 for all ω ∈ H, then

ΨW and Ψ have the same distribution.

3. There exists a constant c∗ ≥ 0 such that n−1Ψn
a.s.→ c2

∗.

Proof We provide an independent proof for each item.
Item 1. For this item, we use Theorem 1. Condition G0 holds immediately since Sn(ω)

is a U-statistic, so according to Theorem A in Section 5.5.1 of Serfling (1980), Sn(ω)
D→

N(0, σ(ω, ω)) where σ(ω, ω′) = E ((Uω)(X1, X2, . . . , Xr)(Uω
′)(X1, X

′
2, . . . , X

′
r)). To verify
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Condition G1 and Condition G2, we use Proposition 4 with Q = U and µ = ν = F×r. Note
that Eq. (18) implies that the right-hand side of the inequality in Eq. (8) is finite, so the
conclusion of Proposition 4 follows.

Item 2. We will verify the assumptions of Theorem 1, conditioned on the entire data
D = (Xi)i≥1. To use Theorem 1, we begin by claiming that Condition G0 is valid. This
follows from Linderberg’s CLT, in particular, Corollary 17 (in Appendix A) states that for
any U-statistic kernel Uω with finite second moment we have

SWn (ω) =

√
n

r
(
n
r

) ∑
A∈([n]r )

WA (Uω) (XA)
DD→ N(0, σW (ω, ω)). (19)

To verify Conditions G1 and G2, we use Proposition 6 with F ′ as the sigma-algebra gener-
ated by the data D. We proceed to verify the conditions of Proposition 6, and, in particular,
we will verify condition a) in this application. For i ∈ [n], let Ii denote the family of subsets
in
(

[n]
r

)
such that A ∈ Ii if and only if i ∈ A. Then, SWn (ω) can be written as follows:

SWn (ω) =

√
n

r
(
n
r

) ∑
A∈([n]r )

WA (Uω) (XA) =
1√
n

n∑
i=1

Wi
1(
n−1
r−1

) ∑
A∈Ii

(Uω)(XA). (20)

We define Yin = 1

(n−1
r−1)

∑
A∈Ii(Uω)(XA). Consequently, we have SWn (ω) = 1√

n

∑n
i=1WiYin.

We observe that ED(SWn (ω)2) = 1
n

∑n
i=1 Y

2
in, then the definition of Yin coupled with Jensen’s

inequality yields

Y 2
in =

 1(
n−1
r−1

) ∑
A∈Ii

(Uω)(XA)

2

≤ 1(
n−1
r−1

) ∑
A∈Ii

(Uω)(XA)2.

Thus, we obtain

ED
(
SWn (ω)2

)
≤ 1

n

n∑
i=1

1(
n−1
r−1

) ∑
A∈Ii

(Uω)(XA)2 =
r

n
(
n−1
r−1

) ∑
A∈([n]r )

(Uω)(XA)2

=
1(
n
r

) ∑
A∈([n]r )

((Uω)(XA))2 . (21)

This implies that Eq. (10) holds when we take Q = U and νn as the empirical mea-
sure on Rr given by νn(S) = 1

(nr)

∑
A∈([n]r ) δS(XA), where S ⊆ Rr is a Borel set. Note

that
∫
Rr(Uω)2νn = 1

(nr)

∑
A∈([n]r ) (U(ω)(XA))2. By the Law of Large Numbers for U-

statistics, if f : Rr → R is symmetric and such that E(|f(X1, . . . , Xr)|) < ∞, then∫
fµn → E(f(X1, . . . , Xr)), as required in the statement of Proposition 6. Finally, with our

choice of Q and νn, we see that Eq. (8) is immediately verified by Eq. (18). We conclude

that there exists a random variable ΨW such that ΨW
n
DD→ Ψ, and the covariance kernel is

given by σW (ω, ω)) by Eq. (19). Finally, note that when E((Uω)(X1, . . . , Xr)) = 0, then
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σW and σ are the same covariance, and thus the corresponding limit distributions ΨW and
Ψ are the same.

Item 3. Note that 1√
n
Sn(ω) converges almost surely to a constant c(ω) by the law of

large numbers for U -statistics. Then, to invoke Theorem 3 we have to verify that Condi-
tion G3 holds for 1√

n
Sn(ω). For this, we use Proposition 6 taking F ′ = F (i.e. we do not

take expectation in Eq. (10)). By Jensen’s inequality and following Eq. (20) and Eq. (21)
we get

(
1√
n
Sn(ω)

)2

=

 1

n

n∑
i=1

Wi
1(
n−1
r−1

) ∑
A∈Ii

(Uω)(XA)

2

≤ r

n

1(
n−1
r−1

) ∑
A∈([n]r )

(Uω)(XA)2

and note that the latter expression is the same as the right-hand side of equation Eq. (21),
hence by repeating the argument after Eq. (21) we get that the premises of Proposition 6
hold (particularly condition a)), implying that Condition G3 holds.

4.3 Examples

In this section, we apply our tools to specific testing problems.

4.3.1 A Kernel Test for Conditional Independence

We present a new kernel test to test conditional independence that, asymptotically, fits

within the framework of Section 4.1. Consider data points (Xi, Yi, Zi)
n
i=1

i.i.d.∼ P , where P
is a probability measure on R × R × Rd with d ≥ 1. We are interested in testing whether
X and Y are conditionally independent given Z, that is, we want to test H0 : X ⊥ Y |Z
against Ha : X 6⊥ Y |Z. In order to do this we use the Generalised Covariance Measure
(GCM) that was introduced by Shah and Peters (2020):

GCM(X,Y ;Z) = E(εX(Z)εY (Z)),

where the error terms above are obtained from the following decomposition:

X = f(Z) + εX(Z), and Y = g(Z) + εY (Z),

where f(z) = E(X|Z = z) and g(z) = E(Y |Z = z). Note that this decomposition always
exists for integrable X and Y .

Under the null hypothesis GCM(X,Y ;Z) = 0, so the GCM can be used as a param-
eter to test the null hypothesis. In Scheidegger et al. (2022), a weighted generalisation
of the GCM, denominated the weighted generalised covariance measure (wGCM), was
introduced. Given a weight function ω : Rd → R, the wGCM is defined as

wGCM(X,Y ;Z) = E(ω(Z)εX(Z)εY (Z)). (22)

Again, under the null hypothesis we have that wGCM(X,Y ;Z) = 0 for any ω ∈ H. The
motivation behind the weighted generalisation of the GCM is that under some alternatives,
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we may have GCM(X,Y ;Z) = 0. However, if we choose an appropriate weight, we will
get wGCM(X,Y ;Z) 6= 0, and so the weighted version should be more robust.

In order to use the GCM and the wGCM, we need to estimate εX and εY from the
data. This can be achieved by estimating the conditional expectation of X and Y given
Z using a regression estimator. Let f̂ and ĝ be the regression estimators of E(X|Z) and
E(Y |Z), respectively. Here, f̂ is estimated using (Xi, Zi)

n
i=1 while ĝ is estimated using

(Yi, Zi)
n
i=1. Then define

ε̂Xi(Zi) = Xi − f̂(Zi) and ε̂Yi(Zi) = Yi − ĝ(Yi), (23)

and note that we can estimate wGCM(X,Y ;Z) by computing 1
n

∑n
i=1 ω(Zi)ε̂Xi(Zi)ε̂Yi(Zi),

which should be close to 0 under the null hypothesis.
To kernelise the wGCM, we consider an RKHS H of functions Rd → R. Then, with a

convenient rescaling, we define the test-statistic Sn(ω) and its bootstrap version SWn (ω) by

Sn(ω) =
1√
n

n∑
i=1

ω(Zi)ε̂Xi(Zi)ε̂Yi(Zi), and SWn (ω) =
1√
n

n∑
i=1

Wiω(Zi)ε̂Xi(Zi)ε̂Yi(Zi),

respectively, whereWi are i.i.d. Rademacher random variables. Then, the kernelised versions
of Sn and SWn are given by

Ψn = sup
ω∈H:‖ω‖H=1

Sn(ω)2 and ΨW
n = sup

ω∈H:‖ω‖H=1
SWn (ω)2.

To analyse the kernelised GCM we need some conditions on the regression estimators f̂
and ĝ, in order to ensure that the estimation is good enough, as well as some other regularity
conditions.

Condition GCM Consider the following quantities:

Af =
1

n

n∑
i=1

(f(Zi)− f̂(Zi))
2, uf (z, y) = E(εX(Z)2|Z = z, Y = y)

Ag =
1

n

n∑
i=1

(g(Zi)− ĝ(Zi))
2, vg(z, x) = E(εY (Z)2|Z = z,X = x).

We assume that the following conditions hold.

i. Af = op(n
−1/2) and Ag = op(n

−1/2).

ii. uf (z, y) and vg(z, x) are uniformly bounded.

iii. 0 < E(ε2X(Z)ε2Y (Z)).

iv. There exists a constant C > 0 such that |K(z, z′)| ≤ C for all z, z′ ∈ Rd.

Remark 9 The conditions above are slightly stronger than the corresponding conditions of
Scheidegger et al. (2022), but they allow us to avoid splitting the data as Scheidegger et al.
(2022) (e.g. use half of the data to estimate f and g, and the other half in the testing
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procedure). Our conditions now require the conditional variances uf (z, y) and vg(z, x) to be
uniformly bounded, which implies E(ε2Xε

2
Y ) < ∞. This is not restrictive at all, and it is a

common assumption in practice. Moreover, the condition can easily be relaxed at the price
of having less clear statements and longer proofs.

We proceed to show that the kernelised testing procedure is correct. Furthermore, for com-
pleteness, we provide a small empirical evaluation of the testing procedure in Appendix C.

Corollary 10 Define the bilinear covariance operators in H, σ and σW , by

σ(ω, ω′) = Cov
(
ω(Z)εX(Z)εY (Z), ω′(Z)εX(Z)εY (Z)

)
and

σW (ω, ω′) = E
(
ω(Z)ω′(Z)εX(Z)2εY (Z)2

)
. (24)

Then, under Condition GCM it holds that:

1. Under the null hypothesis of conditional independence we have Ψn
D→ Ψ ∼ χ2(σ).

2. Under the null or alternative, ΨW
n
DD→ ΨW ∼ χ2(σW ). Furthermore, under the null

hypothesis, Ψ and ΨW have the same distribution.

3. Under the null or alternative, there exists c∗ ≥ 0 such that 1
nΨn

P→ c2
∗.

Proof Following the proof of Theorem 6 of Shah and Peters (2020), under Condition GCM,
it holds that

Sn(ω) = S̃n(ω) + op(1), where S̃n(ω) =
1√
n

n∑
i=1

εXi(Zi)εYi(Zi)ω(Zi),

where the op(1) term does not depend on ω (the argument of Theorem 6 of Shah and
Peters (2020) holds for ω as a constant function, but it can easily be adapted to bounded
functions). Therefore, any limit theorem for supω∈H:‖ω‖H=1 S̃n(ω)2 applies for Ψn.

The linear test-statistic S̃n(ω) falls within the framework of Section 4.1 by defining
U : H → L2(R × R × Rd, P ) as (Uω)(x, y, z) = εx(z)εy(z)ω(z). Therefore, we will invoke
Theorem 7 to prove the result. This task requires us to identify the codomain of U , say G,
the kernel LU (Z,Z), and to prove E(LU (Z,Z)) <∞.

Define the vector space G = {Uω : ω ∈ H}. Note that U is a bijection between H
and G. This bijection follows from noting that ω(z) = (Uω)(x,y,z)

εx(z)εy(z) when εx(z)εy(z) 6= 0.

Note that x → εx(z) and y → εy(z) take the value 0 if and only if x = E(X|Z = z) and
y = E(Y |Z = z), respectively. Thus, we can choose any other value of x and y such that
εx(z) 6= 0 and εy(z) 6= 0, and thus εx(z)εy(z) 6= 0.

Now, equip G with the inner product 〈Uω,Uω′〉G = 〈ω, ω′〉H, which is well-defined since
U is a bijection. We then see U as a linear operator H → G, and then U∗ = U−1 as U is
unitary. We can easily verify that L(x,y,z)(·) = εx(z)εy(z)(UKz)(·) ∈ G evaluates the func-
tions in G through the inner product. Indeed, 〈Uω,L(x,y,z)〉G = εx(z)εy(z)〈Uω,UKz〉G =
εx(z)εy(z)ω(z) = (Uω)(x, y, z), thus G is an RKHS.
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A simple computation allows us to find the kernel LU . By using that U∗U equals the
identity, it holds that

LU ((x, y, z), (x′, y′, z′)) = 〈U∗L(x,y,z), U
∗L(x′,y′,z′)〉H = εx(z)εy(z)εx′(z

′)εy′(z
′)K(z, z′).

Finally, note that LU ((X,Y, Z), (X,Y, Z)) <∞ by Condition GCM, therefore, we can apply
Theorem 7. To finish the proof, note that under the null hypothesis of conditional indepen-
dence, it holds E((Uω)(X,Y, Z)) = 0 for all ω ∈ H since E(εX(Z)εY (Z)ω(Z)) = 0 (which is
required by items 1 and 2 of Theorem 7).

We recall that Items 1 and 2 are enough to show that our testing procedure using
wild bootstrap will be calibrated (correct type-1 error); however, note that the value c2

∗
in item 3 is not necessarily different from 0, and thus we cannot ensure power under any
alternative. Showing that c2

∗ is different from 0 usually requires E(Sn(ω)) > 0 for at least
one function ω ∈ H, thus having a rich enough RKHS H, e.g. universal, ensures that
c2
∗ > 0. However, there are cases where E(Sn(ω)) = 0 for all weights ω. For example,

this happens when we consider the wGCM together with the following way of generating
data (X,Y, Z): Let (U, V ) be uniformly sampled on the unit disk of R2, which means that
U2 + V 2 ≤ 1. Note E(UV ) = 0 as they are uncorrelated with a symmetric distribution
around 0. Also, consider a non-negative random variable Z independent of (U, V ). Define
X = ZU and Y = ZV . It is clear that given Z, X and Y are dependent. In this case
E(X|Z) = E(Y |Z) = 0, therefore εX = X and εY = Y . Then, we have E(εXεY |Z) =
E(XY |Z) = Z2E(UV |Z) = 0, since E(UV |Z) = E(UV ) = 0. Therefore, for any weight ω,
it holds E(Sn(ω)) = E(ω(Z)εXεY ) = 0. This example shows that the weighted Generalised
Covariance Measure will fail to recognise that X and Y are not conditional independent
given Z. Since this holds for any weight, kernelising the statistic will not help to improve
the performance of the wGCM.

4.3.2 The HSIC Statistic and Independence Testing

One of the most popular kernelised estimators that can be expressed as the supremum
of U -statistics (as discussed in Section 4.2), is the HSIC. Consider n i.i.d. points Di =
(Xi, Yi) ∈ Rp × Rq. The HSIC estimator (Gretton et al., 2007) measures the independence
between Xi and Yi by comparing the joint distribution PX,Y with the product measure of
the marginals PX×PY . This comparison is carried out by embedding the difference between
these measures in a RKHS H of functions from Rp ×Rq to R. The HSIC estimator is then
given by

HSIC(X,Y ) = sup
ω∈H:‖ω‖H=1

 1

n

n∑
i=1

ω(Xi, Yi)−
1

n2

n∑
i=1

n∑
j=1

ω(Xi, Yj)

2

.

Define U : H → L2((Rp × Rq)2, PX,Y × PX,Y ) by

(Uω)(Di, Dj) = ω(Xi, Yi) + ω(Xj , Yj)− ω(Xi, Yj)− ω(Xj , Yi).

Then, the test-statistic Ψn defined as the HSIC scaled by n can be written as
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Ψn = nHSIC(X,Y ) = sup
ω∈H:‖ω‖H=1

 √
n

n(n− 1)

n∑
i=1

n∑
j=i+1

(Uω)(Di, Dj)

2

which has the same form of Eq. (15) and thus the right scaling limit. A wild bootstrap
version is given by

ΨW
n = sup

ω∈H:‖ω‖H=1

 √
n

n(n− 1)

n∑
i=1

n∑
j=i+1

(Wi +Wj)(Uω)(Di, Dj)

2

,

where (Wi)
n
i=1 are i.i.d. Rademacher random variables.

Corollary 11 Let σ and σW be defined as in Eq. (16) and Eq. (17) (writing Di instead of
Xi) respectively, and suppose that∫

K((x, y), (x, y))PX,Y (dx, dy) <∞, and

∫
K((x, y), (x, y))PX(dx)PY (dy) <∞.

Then

1. If PX,Y = PX×PY (i.e. under the null), then Ψn
D→ Ψ ∼ χ2(σ), where σ is as defined

in Eq. (16).

2. Under null or alternative, ΨW
n
DD→ ΨW ∼ χ2(σW ), where σW is defined in Eq. (17).

Moreover, under the null hypothesis it holds that ΨW and Ψ have the same distribution.

3. Under null or alternative, there exists a constant c∗ ≥ 0 such that 1
nΨn

a.s.→ c2
∗.

Proof Recall that the domain of the functions ω is Rp × Rq, while the domain of Uω is
(Rp ×Rq)2. Let µ be a measure on Rp ×Rq defined as µ = PX,Y + PXPY . We just need to
verify that µ satisfies Eq. (18) (we set X = Rp × Rq in the setup of 4.2)

For ω ∈ H with
∫
Rp×Rq ω(x, y)2dµ(x, y) = 1, it holds by symmetry that

E((Uω)(D1, D2)2) ≤ 8E(ω(X1, Y1)2 + ω(X1, Y2)2) = 8

∫
X×Y

ω(x, y)2µ(dx, dy) = 8

and note that
∫

(X×Y)K((x, y), (x, y))µ(dx, dy) < ∞, by the assumptions in the statement

about the kernel K. Then Eq. (18) is satisfied, and thus the conclusion of each item of
Theorem 8 holds. Note that for items 1 and 2 of Theorem 8 we have E((Uω)(Di, Dj)|Dj) = 0
for all ω ∈ H since, under the null hypothesis, PX,Y = PXPY , and thus (Xi, Yi), (Xj , Yj),
(Xi, Yj), and (Xj , Yi) have the same distribution.

We remark that the results of Corollary 11 are already known. For example, parts 1 and
3 were proven by Gretton et al. (2007), while the wild bootstrap resampling scheme was
studied by Chwialkowski et al. (2014). However, we highlight that, after our development,
the new analysis is very concise.
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4.3.3 Kernel Log-rank Test for the Two-sample Problem with
Right-censored Data

In our last example, we explore right-censored data in the context of Survival Analysis.
In the two-sample setting, we have i.i.d. triples (Xi,∆i, gi)

n
i=1, where Xi represents the

observed time obtained as Xi = min(Ti, Ci). Here, Ti is the time of interest, such as the
death time of patients in a clinical trial, and Ci is a nuisance time, for example, the time
when the patient leaves the study or the study ends. Our primary focus is on Ti, but we
cannot always observe this time due to the censoring time Ci. The censoring indicator,
∆i = 1{Ti≤Ci}, takes the value 1 when we observe Ti, 0 otherwise. The variable gi ∈ {0, 1}
denotes the group label (e.g., one group of patients receives a new drug and the other a
placebo).

Our goal is to compare the distributions F0 and F1, which generate the death times of
interest Ti for each group (0 and 1). However, a standard two-sample test is not suitable
here since we do not observe directly Ti, but rather Xi. Consequently, comparing F0 and
F1 using observed data Xi without including the information of the censoring indicator will
likely lead to false rejection of the null hypothesis. The challenge of incorporating censored
information led to the development and study of the so-called weighted log-rank test, which
is one of the pillars of survival analysis.

Within this context, we focus on the kernel log-rank test statistic Ψn, which is the
kernelisation of the weighted log-rank test, and it is defined as

Ψn = sup
ω∈H:‖ω‖H=1

Sn(ω)2,

where

Sn(ω) =

√
n

n0n1

∫ ∞
0

ω(x)
Y0(x)Y1(x)

Y (x)

(
dN0(x)

Y0(x)
− dN1(x)

Y1(x)

)
.

Here, Sn(ω) is the so-called weighted log-rank estimator with weight function ω, and H is
a RKHS of functions R → R. To understand Sn(ω), we need to introduce some standard
notation used in Survival Analysis. For ` ∈ {0, 1}, n` is the sample size of group `, N`(x) =∑n

i=1 ∆i1{Xi≤x,gi=`} is a counting process (which counts the number of observed events in
group ` up to time x), Y`(x) =

∑n
i=1 1{Xi≥x,gi=`} counts the number of patients in group `

who are still in the study by time x, Y (x) = Y0(x) + Y1(x) ≤ n. Note then that integration
in the definition of Sn(ω) is with respect to a counting process, i.e. it is just a sum.

We also consider a wild bootstrap version of Sn(ω) and Ψn. For that, consider Wi as
Rademacher i.i.d. random variables (or any random variable with mean 0 and variance 1),
and let ` ∈ {0, 1} define the bootstrap counting processes NW

` (x) =
∑n

i=1Wi∆i1{Xi≤x,gi=`}.

Also, define SWn as Sn but replacing N` by NW
` , i.e.

SWn (ω) =

√
n

n0n1

∫ ∞
0

ω(x)
Y0(x)Y1(x)

Y (x)

(
dNW

0 (x)

Y0(x)
− dNW

1 (x)

Y1(x)

)
In this case, the kernelised version of SWn (ω) is ΨW

n = supω∈H:‖ω‖H=1 S
W
n (ω)2.

Note also that the processes Y`(t) depend on all the data points, so it is not possible to
write Sn(ω) nor SWn (ω) as a sum of i.i.d. terms, and the usual way to deal with log-rank
tests is by the use of the theory of stochastic integration of continuous-time martingales,
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especially for limiting results (see, for example, Fernández and Rivera (2021)). Despite this
technical difficulty, our results can still be applied to understand the asymptotic distribution
of Ψn and ΨW

n under the null and alternative hypotheses. This is possible because all the
necessary components are already well-known results in Survival Analysis. As a result, we
do not need to delve into martingale theory or related concepts.

For our analysis, let’s define the covariance operators σ and σW in H by

σ(ω, ω′) =

∫ ∞
0

ω(x)ω′(x)
y0(x)y1(x)

ρ0y0(x) + ρ1y1(x)

dF0(x)

1− F0(x)
,

and

σW (ω, ω′) =

∫
ω(x)ω′(x)

y0(x)y1(x)

(ρ0y0(x) + ρ1y1(x))2

(
ρ1y1(x)

dF0(x)

1− F0(x)
+ ρ0y0(x)

dF1(x)

1− F1(x)

)
,

where y`(x) = (1 − G`(x))(1 − F`(x)) for ` ∈ {0, 1}. Note that under the null hypothesis
σW = σ. We remark that these covariance operators are well known in the theory of log-
rank tests in survival analysis, as they characterise joint convergence of log-rank statistics
with different weight functions.

During our analysis, we will make use of the following identities E(Y0(x)) = n0(1 −
F0(x))(1−G0(x)) and E(Y1(x)) = n1(1−F1(x))(1−G1(x)). Also, we will use the fact that the
law of large numbers applies, i.e., limn→∞

1
n`

∫∞
0 f(x)dN`(x) =

∫∞
0 f(x)(1−G`)dF`(x) a.s.

Finally, for theoretical and practical reasons it is necessary to assume that n0/n→ ρ0 > 0
and n1/n→ ρ1 > 0, i.e., that the proportions of both groups do not vanish.

Corollary 12 Suppose that
∫
X K(x, x)(dF0(x) + dF1(x)) <∞. Then

1. Under the null hypothesis (if F0 = F1). Then Ψn
D→ Ψ ∼ χ2(σ).

2. Under null or alternative, ΨW
n
DD→ ΨW ∼ χ2(σW ). Moreover, under the null hypothesis

it holds that ΨW and Ψ have the same distribution.

3. Under null or alternative, there exists a constant c∗ ≥ 0 such that 1
nΨn

a.s.→ c2
∗.

Proof We shall apply Theorem 1 in conjunction with Proposition 4 and Proposition 6.
Item 1. Under the null hypothesis that F0 = F1, we verify that Sn satisfies Con-

ditions G0 to G2 in order to apply Theorem 1. For Condition G0, we have Sn(ω)
D→

N(0, σ(ω, ω)), which is the standard convergence to a normal limit of the log-rank estima-
tor (see, for example, Lemma 1 of Brendel et al. (2014)). The other two conditions follow
from Proposition 4, by setting Q as the identity and µ and ν as F0, and by noting that

E(Sn(ω)2) = E
(

n

n0n1

∫ ∞
0

ω(x)2Y0(x)Y1(x)

Y (x)

dF0(x)

1− F0(x)

)
≤ n

n0n1

∫ ∞
0

ω(x)2E (Y0(x))
dF0(x)

1− F0(x)

=
n

n1

∫ ∞
0

ω(x)2(1−G0(x))dF0(x) ≤ C
∫ ∞

0
ω(x)2dF0(x) (25)
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where the first equality is from Lemma 4.1.2 of Gill (1980), then we use that for every x ≥ 0
it holds Y0(x) + Y1(x) = Y (x) thus Yi(x)/Y (x) ≤ 1, that E(Y0) = n0(1 − G0)(1 − F0),
and that n/n1 converges to a constant, so it is bounded for large enough n. Finally, by
the assumptions in the statement, Eq. (8) holds and thus the conclusion of Proposition 4
follows.

Item 2. We can assume that either the null hypothesis or the alternative hypothesis
holds. We verify the conditions of Theorem 1 for ΨW

n conditioned on D. Condition G0

follows from the proofs of Theorems 5 and 6 of Ditzhaus and Pauly (2019) where it is

shown that SWn (ω)
DD→ N(0, σW (ω, ω)).

To verify Conditions G1 and G2 we use Proposition 6. For that we set F ′ as the sigma-
algebra generated by the data D = (Xi,∆i, gi)i≥1. Then by Theorems 5 and 6 of Ditzhaus
and Pauly (2019) (or rather the proof of) we have

ED(SWn (ω)2) =
n

n0n1

∫ ∞
0

ω(x)2

(
Y0(x)Y1(x)

Y (x)

)2(dN0(x)

Y0(x)2
+
dN1(x)

Y1(x)2

)
. (26)

and thus by the definition of Y0, Y1 and Y , as well as the relation between n0, n1, and n,
from Eq. (26) we deduce that the following inequality holds for large enough n:

ED(SWn (ω)2) ≤ C
∫ ∞

0
ω(x)2

(
dN0(x)

n0
+
dN1(x)

n1

)
, (27)

for some C > 0.
Now, for our application of Proposition 6 we set νn(dx) =

(
dN0(x)
n0

+ dN1(x)
n1

)
, µ(dx) =

ν(dx) = ((1−G0(x)dF0(x) + (1−G1(x))dF1(x)), and the operator Q : H → L2(µ) as the
identity matrix. Recall that dN`(x)/n` satisfies the law of large numbers; thus

∫
fνn →∫

fν for every f such that the latter integral exists. Finally, note that condition a) of
Proposition 6 is satisfied, since the first term on the left-hand side term of Eq. (11) is
trivially finite since µ = ν and Q is the identity, the other term is

∫∞
0 K(x, x)µ(dx) which

is finite, as per the assumptions stated in the statement.
We conclude that all the conditions for invoking Proposition 6 (with condition a) are

satisfied, and thus the convergence of ΨW
n to ΨW ∼ χ2(σW ) follows. Furthermore, note

that under the null hypothesis the covariance σW is equal to σ, showing that ΨW and Ψ
have the same distribution when F0 = F1.

Item 3. We apply Theorem 3 to
√

n
n0n1

Sn(ω). First, we have (Fleming and Harrington,

1991, Section 7.3) that√
n

n0n1
Sn(ω)

a.s.→ c(ω) =

∫ ∞
0

ω(x)
y0(x)y1(x)

ρ0y0(x) + ρ1y1(x)

(
dF0(x)

1− F0(x)
− dF1(x)

1− F1(x)

)
,

where y`(x) = (1−G`(x))(1− F`(x)) for ` ∈ {0, 1}. It only remains to verify Condition G3

for which we invoke Proposition 6 with F ′ = F (i.e., we do not take expectation at all).
First, we claim that for n large enough there exists C > 0 such that∣∣∣√n/(n0n1)Sn(ω)

∣∣∣2 ≤ C ∫ ∞
0

ω(x)2

(
dN0(x)

n0
+
dN1(x)

n1

)
. (28)
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so we set νn(dx) = dN0(x)
n0

+ dN1(x)
n1

and Q as the identity in the application of Proposition 6.
Equation (28) follows by using that∣∣∣∣√ n

n0n1
Sn(ω)

∣∣∣∣ ≤ n

n0n1

∫ ∞
0
|ω(x)|Y0(x)Y1(x)

Y (x)
νn(dx),

and by noting that Y0(x)/n0 =
∑n

i=1 1{Xi≥x,gi=0}/n0 ≤ 1 and Y1(x)/Y (x) = Y1(x)/(Y0(x)+

Y1(x)) ≤ 1, we have n
n0n1

∫∞
0 |ω(x)|Y0(x)Y1(x)

Y (x) νn(dx) ≤ n
n1

∫∞
0 |ω(x)|νn(dx). Then, since n/n1

converges to a non-zero quantity, we conclude that for large enough n,∣∣∣∣√ n

n0n1
Sn(ω)

∣∣∣∣ ≤ C ′

n

∫ ∞
0
|ω(x)|νn(dx),

for some constant C ′ > 0. By squaring both sides of the previous equation, and by using
that

∫∞
0 dN`(x)/n` ≤ 1 together with Jensen’s inequality we get Eq. (28).

Now, the random measure νn(dx) =
(
dN0(x)
n0

+ dN1(x)
n1

)
satisfies the law of large numbers;

indeed,
∫
f(x)νn(dx) converges a.s. to

∫∞
0 f(x) ((1−G0(x)dF0(x) + (1−G1(x))dF1(x)) if

the latter integral exists. We now set µ(dx) = ν(dx) = (1−G0(x))dF0(x)+(1−G1(x))dF1(x)
in our application of Proposition 6. Finally, to use Proposition 6 we verify item a) of its
statement, and since Q is the identity, we just need to verify that

∫∞
0 K(x, x)µ(dx) < ∞,

but this holds by the assumptions stated.

5. Conclusion

We have introduced new tools to analyse the asymptotic behaviour of kernel-based tests.
These tools give us necessary and sufficient conditions to extend asymptotic results for
standard weighted test-statistics to kernelised test-statistics, making the analysis of the
kernel tests much simpler, cleaner, and shorter. The latter is a direct consequence of the fact
that our analysis is carried out directly on random functionals on the Hilbert space, avoiding
the intricate expansions that usually appear in the literature of kernel tests. Also, we provide
additional sufficient conditions that can be easy to apply in practice, e.g. Propositions 4
and 6, replacing the algebraic nature of Conditions G2 and G3 by integrability conditions.

To exemplify the wide range of application of our results and to offer readily applicable
results for practitioners, we analyse two general classes of kernel test: when the linear test
statistic is a sum of i.i.d. random variables and when the test-statistic is a U -statistic of
order r ≥ 2 (Theorems 7 and 8). These classes are very general and contain important
test statistics, such as the kernelised Stein discrepancy, the MMD for goodness-of-fit prob-
lems, and the HSIC measure. For a concrete example, we present a simple analysis of an
independence test based on the HSIC measure.

Beyond the analysis of general classes, we additionally study two specific kernelised
testing procedures: the kernel log-rank test for the two-sample problem with right-censored
data, and a new kernel test for conditional independence (testing whether X and Y are
independent given Z), showing that our techniques are effective in obtaining concise and
clean analysis of the testing procedures. The novel test for conditional independence is
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based on the recently introduced generalised covariance measure. For this test, we present
an asymptotic analysis using our developments and a few experimental results to show
how kernelisation is able to make simple tests more robust to different alternatives, having
better performance than tests based on the generalised covariance measure and its weighted
generalisation. We leave for future work a more detailed study of this new testing procedure,
especially in settings where the dimensions of X and Y are greater than 1.
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Appendix A. Auxiliary Results

We will now present essential supporting statements that will be used in the proofs of our
main results in Appendix B.

A.1 Auxiliary Results for Theorems 1 to 3

The next result allows us to deduce the joint convergence of Sn(ω1), . . . , Sn(ωn) from Con-
dition G0. This result is used in the proof of Theorem 1.

Lemma 13 Suppose that Condition G0 holds. Then the function σ : ω → σ(ω, ω) can be
extended to unique symmetric bilinear form σ : H ×H → R such that for any m ∈ N, the
linear test-statistic (Sn(ω1), . . . , Sn(ωm)) converges in distribution to a multivariate normal
random variable with mean 0 and covariance matrix given by Σij = σ(ωi, ωj).

The following result establishes important properties of the operator Tσ derived from
the bilinear form σ defined after Condition G0.

Proposition 14 Let H be a separable Hilbert Space, and let σ : H×H → R be a continuous
bilinear form satisfying Condition G1. Then, it exists a unique self-adjoint trace-class linear
operator Tσ such that 〈Tσf, ω〉H = σ(f, ω) for any f, ω ∈ H.

The next result is used in the proofs of Theorems 1 and 2.

Lemma 15 Let (λi)i≥1 be a sequence of non-negative real numbers and let (Zi)i≥1 be a
collection of i.i.d. standard normal random variables. Then

∑
i≥1 λi < ∞ if and only if∑

i≥1 λiZ
2
i converges almost surely to a random variable.

A.2 Auxiliary Results for Theorems 7 and 8

The following results are an application of Linderberg’s Central Limit theorem to settings
related to wild bootstrap estimators. They feature in the proofs of Theorems 7 and 8
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Lemma 16 Consider a triangular array of real random variables D = (Yin : i ∈ [n], n ≥ 1)
such that (Y 2

in : i ∈ [n], n ≥ 1) is uniformly integrable and 1
n

∑n
i=1 Y

2
in

a.s.→ c2 for some c > 0.
Let (Wi) be i.i.d. Rademacher random variables. Then, we have

Zn :=
1√
n

n∑
i=1

WiYin
DD→ N(0, c2).

The next result establishes the asymptotic normality of the wild bootstrap version of a
U-statistic, conditioned on the data.

Corollary 17 Let (Uω) be a U-statistic kernel of degree r ≥ 1 on data D = (Xi)i≥1,
and assume that E((Uω)(X1, . . . , Xr)

2) < ∞. Let (Wi)
n
i=1 be i.i.d. Rademacher random

variables, and independent of the data D, then

√
n

r
(
n
r

) ∑
A∈([n]r )

(WA1 +WA2 + . . .+WAr) (Uω) (XA1 , XA2 , . . . , XAr)
DD→ N(0, σW (ω, ω)),

where σW (ω, ω) = E(ω(X1, X2, . . . , Xr)ω(X1, X
′
2, . . . , X

′
r)), and X ′2, . . . X

′
r are independent

copies of X2, . . . , Xr, and are independent of everything else.

A.3 Proofs of Auxiliary results

Proof of Lemma 13. We start by claiming that if ω1, ω2, ω3 ∈ H, then the random
vector Sn = (Sn(ω1), Sn(ω2), Sn(ω3)) converges in distribution. To see this, observe that
Sn(ωi) converges in distribution for each i ∈ {1, 2, 3} and thus Sn is a tight random variable
in R3, therefore a subsequence of it converges in distribution to a random vector Z. We
shall verify that the entire sequence Sn converges in distribution to Z. For that, consider
a = (a1, a2, a3) ∈ R3, and define ωa = a1ω1 + a2ω2 + a3ω3 ∈ H. Then, a>Sn = Sn(ωa)
converges in distribution to a Normal random variable with mean 0 and variance σ(ωa, ωa)
due to Condition G0. Note that such a limit coincides with a>Z, and thus Sn converges
to Z, proving the claim. Note that we also conclude that σ(ωa, ωa) = E((a>Z)2) for any
a ∈ R3.

We continue with the proof of the lemma. We first extend σ to σ : H×H → R by:

2σ(ω, ω′) = σ(ω + ω′, ω + ω′)− σ(ω, ω)− σ(ω′, ω′).

Let b ∈ R3, then by the definition of the extension of σ, it holds

2σ(ωa, ωb) = E
((

a>Z + b>Z
)2
)
− E

((
a>Z

)2
)
− E

((
b>Z

)2
)

= 2E
(

(a>Z)(b>Z)
)
,

showing that σ is bilinear in the subspace generated by ω1, ω2, ω3 as (a, b)→ E((a>Z)(b>Z))
is a bilinear form, and since the ωi’s are arbitrary, σ is bilinear in H. Recall that a symmet-
ric bilinear form is characterised by its diagonal values; therefore, the symmetric bilinear
extension of σ is unique.
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Finally, given ω1, . . . , ωm ∈ H and a1, . . . , am ∈ R, we have, by hypothesis, that
Sn(
∑m

i=1 aiωi) converges in distribution to a Normal random variable. Since σ is bilin-
ear, the variance of the previous limit is

σ

(
m∑
i=1

aiωi,

m∑
i=1

aiωi

)
=

m∑
i=1

m∑
j=1

aiajσ(ωi, ωj),

showing that (Sn(ω1), . . . , Sn(ωm)) converges jointly to a multivariate normal with mean 0
and covariance matrix Σij = σ(ωi, ωj).

Proof of Proposition 14. Let’s show that Tσ exists. For any f ∈ H, define Af : H → R
by Afω = σ(f, ω) for all ω ∈ H. Clearly Af is linear since σ is bilinear. Moreover, by the
continuity of σ, we have that supω∈H:‖ω‖H=1 σ(ω, ω) <∞, which implies that Af is bounded
by an application of the Cauchy-Schwarz inequality, indeed:

sup
ω∈H:‖ω‖H=1

|Afω|2 = sup
ω∈H:‖ω‖H=1

|σ(f, ω)|2 ≤ sup
ω∈H:‖ω‖H=1

σ(ω, ω)σ(f, f) <∞.

Then, by Riesz’s representation theorem, for all f ∈ H there exists a unique element ξf ∈ H
such that for all ω ∈ H, Afω = 〈ξf , ω〉H. We define Tσ : H → H as Tσf = ξf , which we can
easily verify is linear and bounded. Also, note that

〈Tσf, ω〉H = 〈ξf , ω〉H = Af (ω) = σ(f, ω). (29)

The uniqueness of Tσ follows from the linearity of σ. To see that Tσ is self-adjoint note that

〈Tσf, ω〉H = σ(f, ω) = σ(ω, f) = 〈Tσω, f〉H = 〈f, Tσω〉H .

Finally, we claim that Tσ is trace class. For that consider an orthonormal basis (φi)i≥1

of H, and observe that Trace(Tσ) =
∑∞

i=1 〈φi, Tσφi〉H =
∑∞

i=1 σ(φi, φi) < ∞, where the
inequality is due to Condition G1.

Proof of Lemma 15. (=⇒) We will prove that
∑

i=1 λi < ∞ implies that the series∑n
i=1 λiZ

2
i converges almost surely. To do this, we verify the two conditions of Kolmogorov’s

two-series theorem. We first need to verify that
∑∞

i=1 E(λiZ
2
i ) < ∞, but this follows

immediately since E(Z2
i ) = 1. We also need to verify that

∑∞
i=1 Var(λiZ2

i ) < ∞, which
holds since Var(Z2

i ) = 2, and since
∑∞

i=1 λi <∞, it implies that
∑∞

i=1 λ
2
i <∞.

(⇐=) We proceed to prove that if
∑∞

i=1 λiZ
2
i converges almost surely, then

∑∞
i=1 λi <∞.

Note that since
∑∞

i=1 λiZ
2
i converges almost surely, Kolmogorov’s three series theorem yields

that for any A > 0 it holds that

i)
∞∑
i=1

P(λiZ
2
i ≥ A) <∞, and ii)

∞∑
i=1

λiE
(
Z2
i 1{λiZ2

i ≤A}

)
<∞.

We use i) to deduce that the sequence (λi)
∞
i=1 is bounded: Consider A = 1, and suppose,

for a contradiction, that there exists a subsequence (λnk)∞k=1 such that λnk →∞ as k →∞.
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Then, there exists N ∈ N large enough such that P(λnkZ
2
nk
≥ 1) ≥ 1/2 for all k ≥ N , and

thus
∑∞

k=1 P(λnkZ
2
nk
≥ 1)→∞ which contradicts i). We conclude that supk λk is bounded

by some constant.

Let C = E
(
Z2
i 1{(supk λk)Z2

i ≤1}

)
> 0 which is independent of i, then by ii) with A = 1,

we get

∞∑
i=1

λi =
1

C

∞∑
i=1

λiE
(
Z2
i 1{(supk λk)Z2

i ≤1}

)
≤ 1

C

∞∑
i=1

λiE
(
Z2
i 1{λiZ2

i ≤1}

)
<∞.

Proof of Lemma 16. SinceW 2
i = 1, the result is equivalent to prove that

∑m
i=1WiYim/sm

converges σ(D)-stably to a standard normal whenm tends to infinity, where s2
m =

∑m
i=1 Y

2
im.

Denote Zim = WiYim
sm

which has mean 0 conditioned on D. By Theorem 6.1 of Häusler and
Luschgy (2015), which extends Linderberg’s CLT to stable convergence, the result follows
by proving that

E

(
m∑
i=1

Z2
im

∣∣∣∣∣D
)

P→ 1 and E

(
m∑
i=1

Z2
im1{Z2

im≥ε2}

∣∣∣∣∣D
)

P→ 0 for all ε > 0.

The first limit is trivial since
∑m

i=1 Z
2
im = 1. For the second one, let ε > 0, and note that

E

(
m∑
i=1

Z2
im1{Z2

im≥ε2}

∣∣∣∣∣D
)

=

∑m
i=1 Y

2
im1{Y 2

im≥εs2m}

s2
m

.

Now, recall that s2
m/m→ c2, then by considering the cases s2

m/m ≥ c2/2 and s2
m/m < c2/2,

we get∑m
i=1 Y

2
im1{Y 2

im≥εs2m}

s2
m

=
m∑
i=1

Y 2
im

s2
m

1{Y 2
im≥s2mε2}

1{s2m/m≥c2/2} +

m∑
i=1

Y 2
im

s2
m

1{Y 2
im≥s2mε2}

1{s2m/m<c2/2}

≤
m∑
i=1

2
Y 2
im

c2m
1{Y 2

im≥mc2ε2/2}
+ 1{s2m/m<c2/2}

m∑
i=1

Y 2
im

s2
m

=
2

c2

∑m
i=1 Y

2
im1{Y 2

im≥mcε2/2}

m
+ 1{s2m/m<c2/2} := Qm.

Then, it is enough to show that Qm
P→ 0. We prove such a limit in expectation, and thus

in probability. Clearly P(s2
m/m < c2/2) → 0 since s2

m/m → c2. For the other term, recall
that D is a uniformly integrable set of random variables, for every δ > 0 there exists K > 0
such that E(Y 2

im1{Y 2
im>K}

) ≤ c2δ/2. Therefore, for large enough m, we have E(Qm) ≤ δ,
and since δ is arbitrary, the result holds.
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Proof of Corollary 17. For A ∈
(

[n]
r

)
, denote αA = (Uω)(XA). For i ∈ [n], define

Ii = {A ∈
(

[n]
r

)
: i ∈ A}, and define Yin = 1

(n−1
r−1)

∑
A∈Ii αA. Then

√
n

r
(
n
r

) ∑
A∈([n]r )

WA · (Uω)(XA) =

√
n

r
(
n
r

) ∑
A∈([n]r )

r∑
k=1

WAkαA =

√
n

r
(
n
r

) ∑
A∈([n]r )

r∑
k=1

n∑
i=1

Wi1{Ak=i}αA

=

√
n

r
(
n
r

) n∑
i=1

Wi

∑
A∈([n]r )

r∑
k=1

1{Ak=i}αA =

√
n

r
(
n
r

) n∑
i=1

Wi

∑
A∈([n]r )

1{i∈A}αA =
1√
n

n∑
i=1

WiYin

The convergence in distribution follows from Lemma 16 which requires the following
properties:

1. limn→∞
1
n

∑n
i=1 Y

2
in → σW (ω, ω) almost surely.

2. (Y 2
in : i ∈ [n], n ≥ 1) is uniformly integrable.

We begin by verifying property 1. Start by noting that

1

n

n∑
i=1

Y 2
in =

1

n
(
n−1
r−1

)2 n∑
i=1

∑
A∈Ii

∑
B∈Ii

αAαB =
1

n
(
n−1
r−1

)2 ∑
A∈([n]r )

∑
B∈([n]r )

|A ∩B|αAαB.

Let Jk ⊆
(

[n]
r

)
×
(

[n]
r

)
be such that (A,B) ∈ Jk if and only if |A ∩B| = k. Then

1

n

∑
i=1

Y 2
in =

1

n
(
n−1
r−1

)2 ∑
(A,B)∈J1

αAαB +
1

n
(
n−1
r−1

)2 r∑
k=2

k
∑

(A,B)∈Jk

αAαB.

We shall verify that the second term converges to 0 (assuming that the degree r is greater
than or equal to 2, otherwise, there is nothing to prove). For k ≥ 2, we have

1

n
(
n−1
r−1

)2
∣∣∣∣∣∣
∑

(A,B)∈Jk

αAαB

∣∣∣∣∣∣ ≤ 1

n
(
n−1
r−1

)2 ∑
(A,B)∈Jk

α2
A + α2

B

2
=

1

n
(
n−1
r−1

)2 ∑
(A,B)∈Jk

α2
A

=
1

n
(
n−1
r−1

)2 ∑
A∈([n]r )

α2
A

(
r

k

)(
n− r
r − k

)
≤ c

n−k+1
(
n
r

) ∑
A∈([n]r )

α2
A

where the last inequality follows from the standard bound (n/`)` ≤
(
n
`

)
≤ (en/`)` for any

` ∈ [n], and note that c > 0 does not depend on n.
By the law of large numbers for U-statistics (Theorem A in Section 5.4 of Serfling (1980)),

we have that
(
n
r

)−1∑
A∈([n]r ) α

2
A
a.s.→ E((Uω)(X1, . . . , Xr)

2) <∞, and thus we conclude that

for k ≥ 2, limn→∞
1

n(n−1
r−1)

2

∣∣∣∑(A,B)∈Jk αAαB

∣∣∣ = 0, almost surely, and thus

1

n

n∑
i=1

Y 2
in =

1

n
(
n−1
r−1

)2
 ∑

(A,B)∈J1

αAαB

+ o(1).
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To deal with the last summation, we partition J1. Let C ∈
(

[n]
2r−1

)
and define JC1 = {(A,B) ∈

J1 : A ∪B = C}. Then

1

n
(
n−1
r−1

)2 ∑
(A,B)∈J1

αAαB =
1

n
(
n−1
r−1

)2 ∑
C∈( [n]

2r−1)

∑
(A,B)∈JC1

αAαB =
1

n
(
n−1
r−1

)2 ∑
C∈( [n]

2r−1)

βC ,

where βC is defined as
∑

(A,B)∈JC1
αAαB. Note

(
n

2r−1

)−1∑
C∈( [n]

2r−1)
βC → E(β[2r−1]) by the

Law of Large Numbers for U-statistics. Recall that [2r− 1] = {1, . . . , 2r− 1} and note that

E(βC) is not dependent on C ∈
(

[n]
2r−1

)
. By noting that limn→∞

( n
2r−1)

n(n−1
r−1)

2 = 1
(2r−1)

(
2r−2
r−1

)−1

and that E(β[2r−1]) = (2r − 1)
(

2r−2
r−1

)
σW (ω, ω), we conclude

1

n
(
n−1
r−1

)2 ∑
C∈( [n]

2r−1)

βC
a.s.→ σW (ω, ω).

For the second property, first note that the variables (Yin)ni=1 have the same distribution
for a fixed value n, thus it is enough to verify that (Y 2

1n : n ≥ 1) is uniformly integrable. We
will prove that limn→∞ Y1n exists in L2, which implies that (Y1n : n ≥ 1) is uniformly inte-
grable. We claim that as n → ∞, Var

(
Y1n − E(α[k]|X1)

)
→ 0, i.e. Y1n converges in L2 to

E(α[k]|X1). To prove this, recall that by definition Y1n =
(
n−1
r−1

)−1∑
A∈I1 αA is a U -statistic

of order r−1 on variables X2, . . . , Xn conditioned on X1. Then E(Y1n|X1) = E(α[r]|X1) and

Var(Y1n|X1) ≤ r−1
n−1Var(α[r]|X1) by Lemma A of Section 5.2.1 of Serfling (1980). Now, the

claim follows by noting that E(Var(Y1n|X1))→ 0 since E(Var(α[r]|X1)) ≤ Var(α[r]) <∞.

Appendix B. Proofs of Convergence Results

In this section, we prove Theorems 1 to 3, as well as Propositions 4 and 6 that give alternative
conditions to apply the convergence results.

Proof of Theorem 1. By Proposition 14 we have that Tσ : H × H → R defined in
Eq. (3) is self-adjoint and trace class in H. Then, by the spectral theorem, there exists
an orthonormal basis (φi)i≥1 of H such that Tσφi = λiφi for all i ≥ 0. Recall that the
basis is countable since H is separable, and that the eigenvalues are all non-negative since
λi = 〈Tσφi, φi〉H = σ(φi, φi) ≥ 0, by Proposition 14 (recall that σ(φi, φi) is a variance, so it
is non-negative). Also, note that

∑∞
i=1 λi <∞ as Tσ is a trace class operator.

Note that Sn(ω) =
∑∞

i=1 〈φi, ω〉H Sn(φi), and recall that the functional S is defined
by S(ω) =

∑∞
i=1 〈φi, ω〉H

√
λiZi, where Zi are i.i.d. standard normal random variables.

Observe that S is well-defined, since
∑∞

i=1 λiZ
2
i converges a.s. due to Lemma 15 (in Ap-

pendix A) since we have
∑∞

i=1 λi < ∞. Our proof also requires the definition of a partial
version of Sn and S, given by

Smn :=

m∑
i=1

〈φi, ·〉H Sn(φi) and Sm(ω) =

m∑
i=1

〈φi, ω〉H
√
λiZi, m ≥ 1

31



Fernández and Rivera

We will show that Sn
D→ S via an application of Theorem 3.2 of Billingsley (2013), which

requires the following properties:

i. Smn
D→ Sm as n→∞

ii. Sm
D→ S as m→∞

iii. for all ε > 0, limm→∞ lim supn→∞ P (‖Sn − Smn ‖H→R > ε) = 0.

For the first property, Condition G0 together with Lemma 13 tells us that the random vector

Smn = (Sn(φ1), . . . , Sn(φm)) in Rm is such that Smn
D→ N(0,Σ), where Σij = σ(φi, φj) for

any i, j ∈ [m]. Moreover, by Proposition 14, it holds that

Σij = σ(φi, φj) = 〈Tσφi, φj〉H = λi 〈φi, φj〉H = λiδij

where δij = 1 if i = j, otherwise it is 0. Then Σ = diag(λ1, . . . , λm), and thus Smn
converges in distribution to the vector (

√
λ1Z1, . . . ,

√
λmZm), where Z1, . . . , Zm are inde-

pendent and identically distributed standard normal random variables. Consequently, the
continuous mapping theorem and the continuity of the transformation Rm → H∗ given
by x →

∑m
i=1 xi 〈φi, ·〉H yield property i. The second property follows immediately from

the definition of Sm. Finally, note that ‖Sn − Smn ‖2H =
∑∞

i=m+1 Sn(φi)
2, thus property iii.

follows directly from Condition G2.

We can now apply Theorem 3.2 in Billingsley (2013) to deduce that Sn
D→ S, and by

the continuous mapping theorem we get ‖Sn‖2H→R
D→ ‖S‖2H→R =

∑∞
i=1 λiZ

2
i .

Proof of Theorem 2. Since S converges almost surely in H∗, we get that ‖S‖2H→R =∑
i≥1 λiZ

2
i converges a.s., in R, and by Lemma 15 we have

∑
i≥1 λi <∞.

Let’s verify Condition G0. Let ω ∈ H and note that the mapH∗ → R given by S → S(ω)

is continuous in H∗. Then, since Sn
D→ S, the continuous mapping theorem yields

Sn(ω)
D→
∞∑
i=1

√
λi 〈φi, ω〉H Zi.

The sum on the right-hand side term converges almost surely by Doob’s martingale con-
vergence theorem: indeed, for any ω ∈ H, Mt =

∑t
i=1

√
λiZi 〈φi, ω〉H is a 0 mean martingale

with second moment
∑t

i=1 λi 〈φi, ω〉
2
H ≤ ‖ω‖2

∑
i≥1 λi, i.e. uniformly bounded second mo-

ment, so the sum converges almost surely. Since Zi has standard Normal distribution, Sn(ω)
converges to a Normal with mean 0 and variance σ(ω, ω) given by

∑∞
i=1 λi 〈φi, ω〉

2
H.

To verify Condition G1 just observe that σ(φi, φi) = λi, and recall that
∑

i≥1 λi < ∞.
Finally, to prove Condition G2 note that for any subspace V of H, the transformation
H∗ → R given by U → ‖U ◦ PV ‖H→R is continuous, where PV is the orthogonal pro-

jection onto V . Now, let Vi be the span of φ1, . . . , φi, then since Sn
D→ S, the continu-

ous mapping theorem gives ‖Sn ◦ PV ⊥i ‖H→R
D→ ‖S ◦ PV ⊥i ‖H→R. This implies that for any

ε > 0 we have lim supn→∞ P
(
‖Sn ◦ PV ⊥i ‖H→R ≥ ε

)
= P

(
‖S ◦ PV ⊥i ‖H→R ≥ ε

)
. Finally,

since ‖S ◦ PV ⊥i ‖
2 =

∑∞
j=i+1 λjZ

2
j → 0 when i→∞, we deduce that Condition G2 holds.
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Proof of Theorem 3. Let’s assume that limu→∞ lim supn→∞
∑∞

i=u+1 Sn(ψi)
2 = 0 holds

for some basis (ψi)i≥1, we will prove that Ψn → c2
∗ a.s.

Start by noting that the limiting functional c : H → R given by c(ω) = limn→∞ Sn(ω)
is linear since Sn is linear, and by the hypothesis it is also bounded. Then, by the Riesz
representation theorem, there exists ξ ∈ H such that c(ω) = 〈ξ, ω〉H. Let φ1 = ξ/ ‖ξ‖H,
and complete an orthonormal basis φ1, φ2, . . . of H. Then note that

c(φ1)2 = ‖ξ‖2H = c2
∗ and c(φi) = ‖ξ‖H 〈φ1, φi〉H = 0, for all i ≥ 2.

Now, since Sn : H → R is linear and bounded, there exists ξn ∈ H such that

sup
ω∈H:‖ω‖H=1

Sn(ω)2 = ‖ξn‖2H =
∞∑
i=1

〈ξn, φi〉2H =
∞∑
i=1

Sn(φi)
2.

Note that Sn(φ1)2 → c(φ1)2, and that Sn(φi)
2 → c(φi)

2 = 0 a.s. for all i ≥ 2. Then, we
only need to show that limn→∞

∑∞
i=2 Sn(φi)

2 = 0, a.s. The latter follows from a simple
computation. Indeed, let u be a positive integer and write

∑∞
i=2 Sn(φi)

2 =
∑u

i=2 Sn(φi)
2 +∑∞

i=u+1 Sn(φi)
2, so

lim sup
n→∞

∞∑
i=2

Sn(φi)
2 = lim sup

n→∞

u∑
i=2

Sn(φi)
2 + lim sup

n→∞

∞∑
i=u+1

Sn(φi)
2 = 0 + lim sup

n→∞

∞∑
i=u+1

Sn(φi)
2.

The previous holds for arbitrary u, then by taking the limit when u tends to infinity, we get
lim supn→∞

∑∞
i=2 Sn(φi)

2 = 0 since we assumed that limu→∞ lim supn→∞
∑∞

i=u+1 Sn(ψi)
2 =

0.
Now, we prove the converse. Suppose that Ψn → c2

∗, almost surely. Consider the or-
thonormal basis (φi)i≥1 as above. Then, note that since almost surely limn→∞

∑∞
i=1 Sn(φi)

2 =
c2
∗ and limn→∞ Sn(φ1)2 = c2

∗, it holds limn→∞
∑∞

i=2 Sn(φi)
2 → 0, a.s., and thus we get that

limu→∞ limn→∞
∑∞

i=u+1 Sn(φi)
2 = 0 a.s.

The result for convergence in probability follows by using the same arguments.

Proof of Proposition 4. Let (φk)k≥1 be an orthonormal base of H. We start by claiming
that fi(y) :=

∑
k≥iQφk(y)2 ∈ L1(Y, ν) for all i ≥ 1. To verify such a claim, it is clear that

0 ≤ fi(y) ≤ f1(y) for all y ∈ Y, so we simply prove the claim for f1. First, suppose that
item a) holds. Then∫

Y
|f1(y)|ν(dy) =

∑
k≥1

∫
Y

(Qφk)(y)2ν(dy) =
∑
k≥1

(∫
Y

(Qφk)(y)2

‖φk‖2L2(µ)

ν(dy)

)
‖φk‖2L2(µ)

≤ sup
ω∈H:‖ω‖L2(µ)

=1

∫
Y

(Qω)2 (y)ν(dy)

∫
K(x, x)µ(dx) <∞.

where the first inequality holds since
∑

k≥1 ‖φk‖2L2(µ) =
∫
X K(x, x)µ(dx), and the last

inequality holds by a). Now, if item b) holds, i.e. G is an RKHS with kernel L and∫
Y L

Q(y, y)ν(dy) < ∞, then
∫
Y
∑

k≥1(Qφk)(y)2ν(dy) =
∑

k≥1〈φk, Q∗Ly〉2H = ‖Q∗Ly‖2H =

LQ(y, y), and thus f1 ∈ L1(Y, ν).
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In either case, we have fi ∈ L1(ν) for all i ≥ 1. Note that the previous computations
also show limi→∞ ‖fi‖L1(ν) = 0, which will be used later in the proof.

We proceed to verify Condition G1 assuming that Condition G0 is true. In such a case

we have for any ω ∈ H that Sn(ω)
D→ S(ω) ∼ N(0, σ(ω, ω)). Now, by considering the

function x → x2 ∧M , we have E(S2 ∧M) = lim infn→∞ E(S2
n ∧M) ≤ lim infn→∞ E(S2

n),
and by the dominated convergence theorem we have limM→∞ E(S2 ∧M) = E(S2). Then,∑

i≥1

σ(φi, φi) ≤
∑
i≥1

lim inf
n→∞

E(Sn(φi)
2) ≤

∑
i≥1

C

∫
Y

(Qφi)
2(y)ν(dy) =

∫
Y
f1(y)ν(dy) <∞

Now, let us prove Condition G2. For that, we need to verify that for any ε > 0,
limi→∞ lim supn→∞ P

(∑
k>i Sn(φk)

2 ≥ ε
)

= 0. By Markov’s inequality and Eq. (7)

lim
i→∞

lim sup
n→∞

P

(∑
k>i

Sn(φk)
2 ≥ ε

)
≤ lim

i→∞
lim sup
n→∞

1

ε

∑
k>i

E
(
Sn(φk)

2
)

≤ C

ε
lim
i→∞

∑
k>i

∫
Y

(Qφk)
2(y)ν(dy) =

C

ε
lim
i→∞

∫
Y
fi(y)ν(dy) = 0,

where the last equality holds since limi→∞ ‖fi‖L1(ν) = 0.

Proof of Proposition 6. Following the same argument as in the proof of Proposition 4,
we consider an orthonormal basis (φk)k≥1 of G, and fi :=

∑
k≥iQφ

2
k ∈ L1(ν) for all i ≥ 1

and, moreover, limi→∞ ‖fi‖L1(ν) = 0.

Let us verify Condition G1. Since for each ω ∈ H it holds that Sn(ω)
DF′→ S(ω) ∼

N (0, σ(ω, ω)), then by definition of F ′-stable convergence, E(Sn(ω)2 ∧ M) converges to
E(S(ω)2 ∧M) for M > 0, then by taking M tending to infinity, we have

σ(ω, ω) = E(E(S(ω)2|F ′)) ≤ E
(

lim inf
n→∞

E(Sn(ω)2|F ′)
)

≤ E
(

lim inf
n→∞

C

∫
Y
f1(y)νn(dy)

)
= C

∫
Y
f1(y)ν(dy) <∞,

where the first inequality is due to Fatou’s Lemma, the second inequality follows from
Eq. (10), and the limit holds by our assumptions in νn and ν and the fact that f1 ∈ L1(ν).

We continue by showing that Condition G2 holds F ′-stably. Let Yin =
∑

k≥i Sn(φk)
2,

then by the Markov inequality,

P
(
Yin ≥ ε

∣∣F ′) ≤ 1

ε
E
(
Yin
∣∣F ′) ≤ 1

ε

∑
k≥i

∫
Y

(Qφk)
2(y)νn(dy) =

1

ε

∫
Y
fi(y)νn(dy).

Therefore, lim supn→∞ P (Yin ≥ ε|F ′) ≤ lim supn→∞
∫
Y fi(y)νn(dy) =

∫
Y fi(y)ν(dy) a.s.

By combining this inequality with the reverse Fatou’s inequality, we have for every F ∈
F ′ with P(F ) > 0 that lim supn→∞ P(Yin ≥ ε|F ) = E (lim supn→∞ P (Yin ≥ ε|F ′)|F ) ≤
1
ε

∫
Y fi(y)ν(dy). Finally, following the same argument as in the proof of Proposition 4, we

have limi→∞
1
ε

∫
Y fi(y)ν(dy) = 0, concluding that Condition G2 holds F ′-stably.
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Appendix C. Experiments

For completeness, we include two experiments with simulated data to evaluate the empirical
performance of the kernelised GCM, hereafter referred to as KGCM, as introduced in
Section 4.3.1. For comparison purposes, we also implement tests based on the wGCM and
the GCM.

Regarding the details of implementation, for the KGCM we choose the kernels as
the squared exponential kernel K`(z, z

′) : Rd × Rd → R, which is given by K`(z, z
′) =

exp{− 1
`2
‖z−z′‖2}, where ` > 0 is the length-scale parameter. The length-scale parameter `

controls the fluctuations of the functions of H. A larger length-scale parameter is associated
with flatter curves, whilst a smaller one is associated with functions with more fluctuations.
Thus, a smaller length-scale parameter should be preferred for problems involving nonlinear
structures. In our experiments, we take ` ∈ {0.1, 0.5, 1,mh} where mh denotes the median
heuristic, a well-known heuristic for choosing the length-scale parameter, which takes `
as the median of all pairwise differences ‖Zi − Zj‖ for i, j ∈ [n]. Although we do not
pursue the goal of finding the best length-scale in our experiments, we remark that the
problem of choosing an appropriate length-scale is currently a very active research topic
in Statistics and Machine Learning (for recent results, see Albert et al. (2022); Schrab
et al. (2023, 2022a,b)). To find rejection regions, we use wild bootstrap with Rademacher
weights and obtain M = 1000 bootstrap samples to approximate the rejection regions. In
our experiments, we choose α = 0.05 as the level of the test. Since the test-statistic Ψ2

n

is non-negative, the rejection region for KGCM is chosen as (qM1−α,∞) where qM1−α is the
value at position (1− α)M of the M bootstrap samples (when sorted in increasing order).
To obtain power estimations, we repeat the experiment 1000 times. In our results below,
we write KGCM(`) to represent the kernel test with length-scale parameter `.

We also implement the weighted generalised covariance measure wGCM. We follow the
setup of Scheidegger et al. (2022) and consider fixed weight functions of the form ωa(z) =
sign(z − a) where a ∈ R (a similar construction is used for z ∈ Rd). Our implementation
combines k weight functions of the form ωa with the constant weight function ω(z) = 1 in a
single test-statistic. We choose k ∈ {0, 1, 4, 7}, and we remark that when k = 0 we recover
the GCM. In our results, we denote by wGCM(k) the test with k + 1 weights functions.
We use the same number of weight functions as in the experiments of Scheidegger et al.
(2022), so the setups of the experiments are the same. We refer the reader to Scheidegger
et al. (2022), particularly Section 2.3, for more details. In our experiments, we use the
code provided by the authors1, which automatically chooses the k weight functions ωa, and
performs the test.

Recall that the GCM and variations require the estimation of conditional means E(X|Z)
and E(Y |Z). For this task, we employ polynomial regression with a degree of 3 in our first
experiment and a degree of 1 in the second, as it performs well enough on our data. This
allows us to focus on the testing part of the problem rather than on the estimation part of
the problem. However, we highlight that GCM, wGCM and KGCM rely on selecting a
good regression procedure satisfying Condition GCM, and thus for complex data sets, we
might require more sophisticated regression methods.

We describe our data sets and the results obtained.

1. https://cran.r-project.org/web/packages/weightedGCM/index.html
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Figure 1: Scatter plots for γ = 1. The bottom-right figure shows the power of the different
tests for different values of γ. The null hypothesis is recovered when γ = 0.

Data 1. Let U1 ∼ N(0, 1) and U2 ∼ N(0, 1) be independent. Given a parameter γ ∈ [0, 1],
we generate data as Z ∼ N(0, 1), X = Z + U1 sin(5Z) and Y = Z2 + γU1 + (1− γ)U2.

In this experiment, we vary the parameter γ, so we compute rejection rates for each
of them (in a grid). Our experiments consider n = 100 data points, and we repeat the
experiment 1000 times to estimate the rejection rate. The results are shown in Figure 1.

On the one hand, it is not difficult to see that if γ = 0, then the null hypothesis
holds. Thus, in this case, the rejection rate should not be greater than the level of the
test given by α = 0.05. In Figure 1 (bottom right), we observe that all tests show a
rejection rate close to α = 0.05 (black dashed line) when γ = 0, which shows a correct
Type-I error. On the other hand, when γ increases, the conditional dependence of X and
Y given Z starts to be more noticeable. In fact, we expect that the rejection rate (power)
starts to increase as γ approaches 1 for all tests. However, note that this will not happen
for the GCM (wGCM(0) in our experiments) as for any value of γ ∈ [0, 1], we have
E(εX(Z)εY (Z)) = E((X−E(X|Z))(Y −E(Y |Z))) = γE(sin(5Z)) = 0, because E(X|Z) = Z
and E(Y |Z) = Z2. As a consequence of the previous result, we expect that the GCM
fails to reject the null hypothesis when the null is false. This behaviour can be observed in
Figure 1.

Our experiments show promising results for the KGCM when the length-scale param-
eter is small. This good result can be explained by the fact that a smaller length-scale
parameter is associated with functions with more fluctuations and thus it can be a good
candidate as our data are generated by the function z → sin(5z). Finally, we observe that
the wGCM(k) with k ≥ 1 is able to detect some dependence, but the results are not opti-
mal.
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Figure 2: Test power attained by the tests for different values of the dimension d. The null
hypothesis is recovered when d→∞.

Data 2. Let d ≥ 2, and let Id be the d× d identity matrix. Then we generate data

Z = (Z1, . . . , Zd) ∼ N(0, Id), X = Z1 +
1√
d

d∑
i=1

UiZi, and Y = Z2 +
1√
d

d∑
i=1

Ui,

where U = (U1, . . . , Ud) ∼ N(0, Id) is independent of Z.

In this experiment, we now consider a multivariate Z having d dimensions (we use
bold letters to remark the fact that we have a vector in Rd). The goal of this experiment
is to test whether X and Y are independent given the random vector Z. Note that in
this case, X is not independent of Y given Z as both X and Y depend on the vector
U . Also, observe that E(X|Z) = Z1 and E(Y |Z) = Z2, from which it can easily be
deduced that E(εXεY ) = 0. Lastly, observe that by the Central Limit Theorem, it holds

that εX = 1√
d

∑d
i=1 UiZi

D→ N(0, 1) and εY = 1√
d

∑d
i=1 Ui

D→ N(0, 1), when d grows to

infinity. Then, since E(εX(Z)εY (Z)) = 0, we can deduce that (εX , εY ) actually converges in
distribution to a pair of independent standard normal random variables. Thus, we expect
to observe a loss of power for all of our tests as the parameter d increases.

The results obtained by the implemented tests are shown in Figure 2. As expected,
it shows that the power of all tests decreases as the dimension d increases. Also, we can
observe that the GCM - denoted by wGCM(0) in Figure 2 - fails to reject the alternative
for any d ≥ 2, which is justified by the fact that E(εX(Z)εY (Z)) = 0 for any d ≥ 2. In this
example both the wGCM and its kernelised version perform rather well, and they do not
tend to lose power very fast when d increases, except when the length-scale is 0.1, in which
case the kernel test is rather weak.
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