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Abstract

We prove existence, minimax, and complementary slackness theorems for adversarial surro-
gate risks in binary classification. These results extend recent work of Pydi and Jog (2021),
who established analogous minimax and existence theorems for the adversarial classification
risk. We show that their conclusions continue to hold for a very general class of surrogate
losses; moreover, we remove some of the technical restrictions present in prior work. Our
results provide an explanation for the phenomenon of transfer attacks and inform new
directions in algorithm development.
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1. Introduction

Neural networks are state-of-the-art methods for a variety of machine learning tasks includ-
ing image classification and speech recognition. However, a concerning problem with these
models is their susceptibility to adversarial attacks: small perturbations to inputs can cause
incorrect classification by the network (Szegedy et al., 2013; Biggio et al., 2013). This issue
has security implications; for instance, Gu et al. (2017) show that a yellow sticker can cause
a neural net to misclassify a stop sign. Furthermore, one can find adversarial examples that
generalize to other neural nets; these sort of attacks are called transfer attacks. In other
words, an adversarial example generated for one neural net will sometimes be an adversarial
example for a different neural net trained for the same classification problem (Tramèr et al.,
2017; Demontis et al., 2018; Kurakin et al., 2017; Rozsa et al., 2016; Papernot et al., 2016).
This phenomenon shows that access to a specific neural net is not necessary for generating
adversarial examples. One method for defending against such adversarial perturbations is
adversarial training, in which a neural net is trained on adversarially perturbed data points
(Kurakin et al., 2017; Madry et al., 2019; Wang et al., 2021). However, adversarial training
is not well understood from a theoretical perspective.
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From a theoretical standpoint, the most fundamental question is whether it is possible
to design models which are robust to such attacks, and what the properties of such robust
models might be. In contrast to the classical, non-adversarial setting, much is still unknown
about the basic properties of optimal robust models. In the context of binary classification,
several prior works study properties of the adversarial classification risk—the expected
number of classification errors under adversarial perturbations. Recently, Awasthi et al.
(2023), Bungert et al. (2021), and Pydi and Jog (2021) all showed existence of a minimizer
to the adversarial classification risk under suitable assumptions, and characterized some of
its properties. A crucial observation, emphasized by Pydi and Jog (2021), is that minimiz-
ing the adversarial classification risk is equivalent to a dual robust classification problem
involving uncertainty sets with respect to the∞-Wasserstein metric. This observation gives
rise to a game-theoretic interpretation of robustness, which takes the form of a zero-sum
game between a classifier and an adversary who is allowed to perturb the data by a certain
amount. As noted by Pydi and Jog (2021), this interpretation has implications for algo-
rithm design by suggesting that robust classifiers can be constructed by jointly optimizing
over classification rules and adversarial perturbations.

This recent progress on adversarial binary classification lays the groundwork for a the-
oretical understanding of adversarial robustness, but it is limited insofar as it focuses only
on minimizers of the adversarial classification risk. In practice, minimizing the empirical
adversarial classification risk is computationally intractable; as a consequence; the adver-
sarial training procedure typically minimizes an objective called a surrogate risk, which is
chosen to be easier to optimize. In the non-adversarial setting, the properties of surrogate
risks are well known (see, e.g. Bartlett et al., 2006), but in the adversarial scenario, ex-
isting results for the adversarial classification risk fail to carry over to surrogate risks. In
particular, the existence and minimax results described above are not known to hold. We
close this gap by developing an analogous theory for adversarial surrogate risks. Our main
theorems (Theorems 7–9) establish that strong duality holds for the adversarial surrogate
risk minimization problem, that solutions to the primal and dual problems exist, and that
these optimizers satisfy a complementary slackness condition.

These results suggest explanations for empirical observations, such as the existence of
transfer attacks. Specifically, our analysis suggests that adversarial examples are a property
of the data distribution rather than a specific model. In fact, the complimentary slackness
theorem presented in this paper states that certain attacks are the strongest possible ad-
versary against any minimizer of the adversarial surrogate risk, which might explain why
adversarial examples tend to transfer between trained neural nets. Furthermore, our the-
orems suggest that a training algorithm should optimize over neural nets and adversarial
perturbations simultaneously. Adversarial training, the current state of the art method
for finding adversarially robust networks, does not follow this procedure. The adversarial
training algorithm tracks an estimate of the optimal function f̃ . To update f̃ , the algorithm
first finds optimal adversarial examples at the current estimate f̃ , and then performs a gra-
dient descent step. See the papers (Kurakin et al., 2017; Madry et al., 2019; Goodfellow
et al., 2014) for more details on adversarial training. Finding these adversarial examples
is a computationally intensive procedure. On the other hand, algorithms for optimizing
minimax problems in the finite dimensional setting alternate between primal and dual steps
(Mokhtari et al., 2019). This observation suggests that designing an algorithm that opti-
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mizes over model parameters and adversarial perturbations simultaneously is a promising
research direction. Trillos and Trillos (2023); Wang and Chizat (2023); Domingo-Enrich
et al. (2021) adopt this approach, and one can view the minimax results of this paper as a
mathematical justification for the use of surrogate losses in such algorithms.

Lastly, our theorems are an important first step in understating statistical properties of
surrogate losses. Recall that one minimizes a surrogate risk because minimizing the original
risk is computationally intractable. If a sequence of functions which minimizes the surrogate
risk also minimizes the classification risk, then that surrogate is referred to as a consistent
risk. Similarly, if a sequence of functions which minimizes the adversarial surrogate risk
also minimizes the adversarial classification risk, then that surrogate is referred to as an
adversarially consistent risk. Much prior work studies the consistency of surrogate risks
(Bartlett et al., 2006; Lin, 2004; Steinwart, 2007; Philip M. Long, 2013; Mingyuan Zhang,
2020; Zhang, 2004). Alarmingly, Meunier et al. (2022) show that a family of surrogates
used in applications is not adversarially consistent. In follow-up work, we show that our
results can be used to characterize adversarially consistent supremum-based risks for binary
classification (Frank and Niles-Weed, 2023), strengthening results on calibration in the
adversarial setting Bao et al. (2021); Meunier et al. (2022); Awasthi et al. (2021).

2. Related Works

This paper extends prior work on the adversarial Bayes classifier. Pydi and Jog (2021)
first proved multiple minimax theorems for the adversarial classification risk using opti-
mal transport and Choquet capacities, showing an intimate connection between adversarial
learning and optimal transport. Later, follow-up work used optimal transport minimax
reformulations of the adversarial learning problem to derive new algorithms for adversarial
learning. Trillos et al. (2022) reformulate adversarial learning in terms of a multi-marginal
optimal transport problem and then apply existing techniques from optimal transport to
find a new algorithm. Trillos and Trillos (2023); Wang and Chizat (2023); Domingo-Enrich
et al. (2021) propose ascent-descent algorithms based on optimal transport and use mean-
field dynamics to analyze convergence. These approaches leverage the minimax view of the
adversarial training problem to optimize over model parameters and optimal attacks simul-
taneously. Gao et al. (2022) use an optimal transport reformulation to find regularizers
that encourage robustness. Wong et al. (2019); Wu et al. (2020) use Wasserstein metrics to
formulate adversarial attacks on neural networks.

Further work analyzes properties of the adversarial Bayes classifier. Awasthi et al.
(2023), Bhagoji et al. (2019), and Bungert et al. (2021) all prove the existence of the adver-
sarial Bayes classifier, using different techniques. Yang et al. (2020) studied the adversarial
Bayes classifier in the context of non-parametric methods. Pydi and Jog (2019) and Bhagoji
et al. (2019) further introduced methods from optimal transport to study adversarial learn-
ing. Lastly, (Trillos and Murray, 2020) give necessary and sufficient conditions describing
the boundary of the adversarial Bayes classifier. Simultaneous work (Li and Telgarsky, 2023)
also proves the existence of minimizers to adversarial surrogate risks using prior results on
the adversarial Bayes classifier.

The adversarial training algorithm is also well studied from an empirical perspective.
Demontis et al. (2018) discussed an explanation of transfer attacks on neural nets trained
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using standard methods, but did not extend their analysis to the adversarial training setting.
(Wang et al., 2021; Kurakin et al., 2017; Madry et al., 2019) study the adversarial training
algorithm and improving the runtime. Two particularly popular attacks used in adversarial
training are the FGSM attack (Goodfellow et al., 2014) and the PGD attack (Madry et al.,
2019). More recent popular variants of this algorithm include (Shafahi et al., 2019; Xie
et al., 2018; Kannan et al., 2018; Wong et al., 2020).

3. Background and Notation

3.1 Adversarial Classification

This paper studies binary classification on Rd with two classes encoded as −1 and +1. Data
is distributed according to a distribution D on Rd × {−1,+1}. We denote the marginals
according to the class labels as P0(S) = D(S×{−1}) and P1(S) = D(S×{+1}). Throughout
the paper, we assume P0(Rd) and P1(Rd) are finite but not necessarily that P0(Rd) +
P1(Rd) = 1.

To classify points in Rd, algorithms typically learn a real-valued function f and then
classify points x according to the sign of f (arbitrarily assigning the sign of 0 to be −1).
The classification error, also known as the classification risk, of a function f is

R(f) =

∫
1f(x)≤0dP1 +

∫
1f(x)>0dP0. (1)

Notice that finding minimizers to R is straightforward: define the measure P = P0 +P1 and
let η = dP1/dP. Then the risk R can be re-written as

R(f) =

∫
η(x)1f(x)≤0 + (1− η(x))1f(x)>0dP.

Hence a minimizer of R must minimize the function C(η(x), α) = η(x)1α≤0 +(1−η(x))1α>0

at each x P-a.e. The optimal Bayes risk is then

inf
f
R(f) =

∫
C∗(η)dP

where C∗(η) = infαC(η, α) = min(η, 1− η).
This paper analyzes the evasion attack, in which an adversary knows both the function

f and the true label of the data point, and can perturb each input before it is evaluated by
the function f . To constrain the adversary, we assume that perturbations are bounded by
ε in a norm ‖ · ‖. Thus a point x with label +1 is misclassified if there is a perturbation
h with ‖h‖ ≤ ε for which f(x + h) ≤ 0 and a point x with label −1 is misclassified if
there is a perturbation h with ‖h‖ ≤ ε for which f(x + h) > 0. Therefore, the adversarial
classification risk is

Rε(f) =

∫
sup
‖h‖≤ε

1f(x+h)≤0dP1 +

∫
sup
‖h‖≤ε

1f(x+h)>0dP0 (2)

which is the expected proportion of errors subject to the adversarial evasion attack. The
expression sup‖h‖≤ε 1f(x+h)≤0 evaluates to 1 at a point x iff x can be moved into the set

4



Existence and Minimax Theorems for Adversarial Surrogate Risks

[f ≤ 0] by a perturbation of size at most ε. Equivalently, this set is the Minkowski sum ⊕
of [f ≤ 0] and Bε(0). For any set A, let Aε denote

Aε = {x : ∃h with ‖h‖ ≤ ε and x + h ∈ A} = A⊕Bε(0) =
⋃
a∈A

Bε(a). (3)

This operation ‘thickens’ the boundary of a set by ε. With this notation, (2) can be expressed
as Rε(f) =

∫
1{f≤0}εdP1 +

∫
1{f>0}εdP0.

Unlike the classification risk R, finding minimizers to Rε is nontrivial. One can re-write
Rε in terms of P and η but the resulting integrand cannot be minimized in a pointwise
fashion. Nevertheless, it can be shown that minimizers of Rε exist (Awasthi et al., 2023;
Bungert et al., 2021; Pydi and Jog, 2021; Frank and Niles-Weed, 2023).

3.2 Surrogate Risks

As minimizing the empirical version of risk in (1) is computationally intractable, typical
machine learning algorithms minimize a proxy to the classification risk called a surrogate
risk. In fact, Ben-David et al. (2003) show that minimizing the empirical classification risk
is NP-hard in general. A popular surrogate is

Rφ(f) =

∫
φ(f)dP1 +

∫
φ(−f)dP0 (4)

where φ is a decreasing function.1 To define a classifier, one then threshholds f at zero.
There are many reasonable choices for φ—one typically chooses an upper bound on the
zero-one loss which is easy to optimize. We make the following assumption on φ:

Assumption 1 The loss φ is non-increasing, non-negative, lower semi-continuous, and
limα→∞ φ(α) = 0.

A particularly important example, which plays a large role in our proofs, is the exponential
loss ψ(α) = e−α, which will be denoted by ψ in the remainder of this paper. Assumption 1
includes many but not all all surrogate risks used in practice. Notably, some multiclass
surrogate risks with two classes are of a somewhat different form, see for instance (Tewari
and Bartlett, 2007) for more details.

In order to find minimizers of Rφ, we rewrite the risk in terms of P and η as

Rφ(f) =

∫
η(x)φ(f(x)) + (1− η(x))φ(−f(x))dP (5)

Hence the minimizer of Rφ must minimize Cφ(η, ·) pointwise P-a.e., where

Cφ(η, α) = ηφ(α) + (1− η)φ(−α).

In other words, if one defines C∗φ(η) = infαCφ(η, α), then a function f∗ is optimal if and
only if

η(x)φ(f∗(x)) + (1− η(x))φ(−f∗(x)) = C∗φ(η(x)) P-a.e. (6)

1. Notice that due to the asymmetry of the sign function at 0 in (1), Rφ is not quite a generalization of R.
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Thus one can write the minimum value of Rφ as

inf
f
Rφ(f) =

∫
C∗φ(η)dP. (7)

To guarantee the existence of a function satisfying (6), we must allow our functions to take
values in the extended real numbers R = R ∪ {−∞,+∞}. Allowing the value α = +∞ is
necessary, for instance, for the exponential loss ψ(α) = e−α: when η = 1, the minimum of
Cψ(1, α) = e−α is achieved at α = +∞. In fact, one can express a minimizer as a function
of the conditional probability η(x) using (6). For a loss φ, define αφ : [0, 1]→ R by

αφ(η) = inf{α : α is a minimizer of Cφ(η, ·)}. (8)

Lemma 25 in Appendix C shows that the function αφ is montonic and αφ(η) is in fact a
minimizer of Cφ(η, ·). Thus

f∗(x) = αφ(η(x)) (9)

is measurable and satisfies (6). Therefore, the function f∗ must be a minimizer of the risk
Rφ.

Similarly, rather directly minimizing the adversarial classification risk, practical algo-
rithms minimize an adversarial surrogate. The adversarial counterpart to (4) is

Rεφ(f) =

∫
sup
‖h‖≤ε

φ(f(x + h))dP1 +

∫
sup
‖h‖≤ε

φ(−f(x + h))dP0. (10)

Due to the definitions of the adversarial risks (2) and (10), the operation of finding the
supremum of a function over ε-balls is central to our subsequent analysis. For a function g,
we define

Sε(g)(x) = sup
‖h‖≤ε

g(x + h) (11)

Using this notation, one can re-write the risk Rεφ as

Rεφ(f) =

∫
Sε(φ ◦ f)dP1 +

∫
Sε(φ ◦ −f)dP0

By analogy to (5), we equivalently write the risk Rεφ in terms of P and η:

Rεφ(f) =

∫
η(x)Sε(φ ◦ f)(x) + (1− η(x))Sε(φ ◦ −f)(x)dP. (12)

However, unlike (5), because the integrand of Rεφ cannot be minimized in a pointwise man-
ner, proving the existence of minimizers to Rεφ is non-trivial. In fact, unlike the adversarial
classification risk Rε, there is little theoretical understanding of the properties of Rεφ.

3.3 Measurability

In order to define the adversarial risks Rε and Rεφ, one must show that Sε(1A), Sε(φ ◦ f)
are measurable. To illustrate this concern, Pydi and Jog (2021) show that for every ε > 0
and d > 1, there is a Borel set C for which the function Sε(1C)(x) is not Borel measurable.
However, if g is Borel, then Sε(g) is always measurable with respect to a larger σ-algebra
called the universal σ-algebra U (Rd). Such a function is called universally measurable. We
prove the following theorem and formally define the universal σ-algebra in Appendix A.
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Theorem 1 If f is universally measurable, then Sε(f) is also universally measurable.

In fact, in Appendix A, we show that a function defined by a supremum of a universally
measurable function over a compact set is universally measurable—a result of independent
interest. The universal σ-algebra is smaller than the completion of B(Rd) with respect
to any Borel measure. Thus, in the remainder of the paper, unless otherwise noted, all
measures will be Borel measures and the expression

∫
Sε(f)dQ will be interpreted as the

integral of Sε(f) with respect to the completion of Q.

3.4 The W∞ Metric

In this section, we explain how the integral of a supremum
∫
Sε(f)dQ can be expressed in

terms of a supremum of integrals. We start by defining the Wasserstein-∞ metric.

Definition 2 Let P,Q be two finite measures with P(Rd) = Q(Rd). A coupling is a positive
measure on the product space Rd×Rd with marginals P,Q. We denote the set of all couplings
with marginals P, Q by Π(P,Q). The ∞-Wasserstein distance with respect to a norm ‖ · ‖
is defined as

W∞(P,Q) = inf
γ∈Π(P,Q)

ess sup
(x,x′)∼γ

‖x− x′‖

Jylhä (2014, Theorem 2.6) proves that the infimum is always attained. Therefore, P, Q are
within a Wasserstein-∞ distance of ε if there is a coupling γ for P and Q for which supp γ
is contained in the set ∆ε = {(x,x′) : ‖x− x′‖ ≤ ε}. This optimal coupling will be a useful
tool in proving theorems throughout this paper.

The ∞-Wasserstein metric is closely related to the to the operation Sε. First, we show
that Sε can be expressed as a supremum of integrals over a Wasserstein-∞ ball. For a
measure Q, we write

B∞ε (Q) = {Q′ Borel : W∞(Q,Q′) ≤ ε}.

Lemma 3 Let Q be a finite positive Borel measure and let f : Rd → R ∪ {∞} be a Borel
measurable function. Then ∫

Sε(f)dQ = sup
Q′∈B∞ε (Q)

∫
fdQ′ (13)

Lemma 5.1 of Pydi and Jog (2021) proves an analogous statement for sets, namely that
Q(Aε) = supQ′∈B∞ε (Q) Q(A), under suitable assumptions on Q and Q′.

Conversely, the W∞ distance between two probability measures can be expressed in
terms of the integrals of f and Sε(f). Let Cb(X) be the set of continuous bounded functions
on the topological space X.

Lemma 4 Let P,Q be two finite positive Borel measures with P(Rd) = Q(Rd). Then

W∞(P,Q) = inf
ε
{ε ≥ 0:

∫
hdQ ≤

∫
Sε(h)dP ∀h ∈ Cb(Rd)}

This observation will be central to proving a duality result. See Appendix B for proofs
of Lemmas 3 and 4.
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4. Main Results and Outline of the Paper

4.1 Summary of Main Results

Our goal in this paper is to understand properties of the surrogate risk minimization problem
inff R

ε
φ. The starting point for our results is Lemma 3, which implies that inff R

ε
φ actually

involves a inf followed by a sup:

inf
f Borel

Rεφ(f) = inf
f Borel

sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

∫
φ ◦ fdP′1 +

∫
φ ◦ −fdP′0.

We therefore obtain a lower bound on inff R
ε
φ by swapping the sup and inf and recalling

the definition of C∗φ(η) = infαCφ(η, α):

inf
f Borel

Rεφ(f) ≥ sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

inf
f Borel

∫
φ ◦ fdP′1 +

∫
φ ◦ −fdP′0

= sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

inf
f Borel

∫
dP′1

d(P′0 + P′1)
φ(f) +

(
1− dP′1

d(P′0 + P′1)

)
φ(−f)d(P′0 + P′1)

≥ sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

∫
C∗φ

(
dP′1

d(P′0 + P′1)

)
d(P′0 + P′1). (14)

If we define

R̄φ(P′0,P′1) =

∫
C∗φ

(
dP′1

d(P′0 + P′1)

)
d(P′0 + P′1), (15)

then we have shown
inf

f Borel
Rεφ(f) ≥ sup

P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

R̄φ(P′0,P′1). (16)

This statement is a form of weak duality.
When the surrogate adversarial risk is replaced by the standard adversarial classification

risk, Pydi and Jog (2021) proved that the analogue of (16) is actually an equality, so that
strong duality holds for the adversarial classification problem. Concretely, by analogy to
(15), consider

R̄(P′0,P′1) =

∫
C∗
(

dP′1
d(P′0 + P′1)

)
d(P′0 + P′1).

Let µ be the Lebesgue measure and let Lµ(Rd) be the Lebesgue σ-algebra. Then define

B̃∞ε (Q) = {Q′ : W∞(Q,Q′) ≤ ε,Q′ a measure on (Rd,Lµ(Rd))}. (17)

Pydi and Jog (2021) show the following.

Theorem 5 (Pydi and Jog, 2021, Theorem 7.1) Assume that P0,P1 are absolutely con-
tinuous with respect to the Lebesgue measure µ. Then

inf
f Lebesgue

Rε(f) = sup
P′0∈B̃∞ε (P0)

P′1∈B̃∞ε (P1)

R̄(P′0,P′1) (18)
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and furthermore equality is attained at some Lebesgue measurable f̂ and P̂1, P̂0.
Additionally, P̂i = Pi ◦ ϕ−1

i for some universally measurable ϕi with ‖ϕi(x) − x‖ ≤ ε,
sup‖y−x‖≤ε 1f̂(y)≤0 = 1f̂(ϕ1(x))≤0 P1-a.e., and sup‖y−x‖≤ε 1f̂(y)>0 = 1f̂(ϕ0(x))>0 P0-a.e.

This is a foundational result in the theory of adversarial classification, but it leaves an
open question crucial in applications: Does the strong duality relation extend to surrogate
risks and to general measures? In this work, we answer this question in the affirmative.

We start by proving the following:

Theorem 6 (Strong Duality) Let P0,P1 be finite Borel measures. Then

inf
f Borel

Rεφ(f) = sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

R̄φ(P′0,P′1). (19)

When ε = 0, we recover the fundamental characterization of the minimum risk for
standard (non-adversarial) classification in (7). Theorem 6 can be rephrased as

inf
f Borel

sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

R̂φ(f,P′0,P′1) = sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

inf
f Borel

R̂φ(f,P′0,P′1) (20)

where

R̂φ(f,P′0,P′1) =

∫
φ(f)dP′1 +

∫
φ(−f)dP′0

As discussed in Pydi and Jog (2021), this result has an appealing game theoretic inter-
pretation: adversarial learning with a surrogate risk can be though of as a zero-sum game
between the learner who selects a function f and the adversary who chooses perturbations
through P′0 and P′1. Furthermore, the player to pick first does not have an advantage.

Additionally, (20) suggest that training adversarially robust classifiers could be accom-
plished by optimizing over primal functions f and dual distributions P′0,P′1 simultaneously.

A consequence of Theorem 6 is the following complementary slackness conditions for
optimizers f∗,P∗0,P∗1:

Theorem 7 (Complimentary Slackness) The function f∗ is a minimizer of Rεφ and

(P∗0,P∗1) is a maximizer of R̄φ over the W∞ balls around P0 and P1 iff the following hold:

1) ∫
φ ◦ f∗dP∗1 =

∫
Sε(φ(f∗))dP1 and

∫
φ ◦ −f∗dP∗0 =

∫
Sε(φ(f∗))dP0 (21)

2) If we define P∗ = P∗0 + P∗1 and η∗ = dP∗1/dP∗, then

η∗(x)φ(f∗(x)) + (1− η∗(x))φ(−f∗(x)) = C∗φ(η∗(x)) P∗-a.e. (22)

This theorem implies that every minimizer f∗ of Rεφ and every maximizer (P∗0,P∗1) of

R̄φ forms a primal-dual pair. The condition (21) states that every maximizer of R̄φ is
an optimal adversarial attack on f∗ while the condition (22) states that every minimizer
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f∗ of Rεφ also minimizes the conditional risk Cφ(η∗, ·) under the distribution of optimal
adversarial attacks. Explicitly: (22) implies that every minimizer f∗ minimizes the loss
R̂φ(f,P∗0,P∗1) =

∫
C(η∗(x), f(x))dP∗ in a pointwise manner P∗-a.e., or n other words, the

function f∗ minimizes the standard surrogate risk with respect to the optimal adversarially
perturbed distributions. This fact is the relation (6) with respect to the measures P∗0,P∗1
that maximize the dual R̄φ.

This interpretation of Theorems 6 and 7 shed light on the phenomenon of transfer
attacks. These theorems suggests that adversarial examples are a property of the data
distribution rather than a specific model. Later results in the paper even show that there
are maximizers of R̄φ that are independent of the choice of loss function φ (see Lemma 26).
Theorem 7 specifically states that every maximizer of R̄φ is actually an optimal adversarial
attack on every minimizer of Rεφ. Notably, this statement is indepent of the choice of
minimizer of Rεφ. Because neural networks are highly expressive model classes, one would
hope that some neural net could achieve adversarial error close to inff R

ε
φ(f). If f∗ is a

minimizer of Rεφ and g is a neural net with Rεφ(g) ≈ Rεφ(f∗), one would expect that an
optimal adversarial attack against f∗ would be a successful attack on g as well. Notice that
in this discussion, the adversarial attack is independent of the neural net g. A method for
calculating these optimal adversarial attacks is an open problem.

Finally, to demonstrate that Theorem 7 and the preceding discussion is non-vacuous,
we prove the existence of primal and dual optimizers along with results that elaborate on
their structure.

Theorem 8 Let φ be a lower-semicontinuous loss function. Then there exists a maximizer
(P∗0,P∗1) to R̄φ over the set B∞ε (P0)× B∞ε (P1).

Theorem 3.5 of (Jylhä, 2014) implies that when the norm ‖ · ‖ is strictly convex and
P0,P1 are absolutely continuous with respect to Lebesgue measure, the optimal P∗0,P∗1 of
Theorem 8 are induced by a transport map. Corollary 3.11 of (Jylhä, 2014) further implies
that these transport maps are continuous a.e. with respect to the Lebesgue measure µ. As
the `∞ metric is commonly used in practice, whether there exist maximizers of the dual of
this type for non-strictly convex norms remains an attractive open problem.

In analogy with (6) and (9) one would hope that due to the complimentary slackness
condition (22), one could define a minimizer in terms of the conditional η∗(x). Notice,
however, that as this quantity is only defined P∗-a.e., verifying the other complimentary
slackness condition (21) would be a challenge. To circumvent this issue, we construct a
function η̂ : Rd → [0, 1], defined on all of Rd, to which we can apply (9). Concretely, we
show that αφ(η̂(x)) is always a minimizer of Rεφ, with αφ as defined in (8).

Theorem 9 There exists a Borel function η̂ : (suppP)ε → [0, 1] for which f∗(x) = αφ(η̂(x))
is a minimizer of Rεφ for any φ with αφ as in defined in (8). In particular, there exists a
Borel minimizer of Rεφ.

In fact, we show that η̂ is a version of the conditional derivative dP∗1/dP∗, where P∗0,P∗1
are the measures which maximize R̄φ independently of the choice of φ (see Lemma 24), as
described in the discussion preceding Theorem 8. The fact that the function η̂ is independent
of the choice of loss φ suggests that the minimizer of Rεφ encodes some fundamental quality
of the distribution P0,P1.

10
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Simultaneous work (Li and Telgarsky, 2023) also proves the existence of a minimizer to
the primal Rεφ along with a statement on the structure of this minimizer. Their approach
leverages prior results on the adversarial Bayes classifier to construct a minimizer to the
adversarial surrogate risk.

4.2 Outline of Main Argument

The central proof strategy of this paper is to apply the Fenchel-Rockafellar duality theorem.
This classical result relates the infimum of a convex functional with the supremum of a
concave functional. One can argue that R̄φ is concave (Lemma 12 below); however, the
primal Rεφ is not convex for non-convex φ. Thus the Fenchel-Rockafellar theorem is applied
to a convex relaxation Θ of the primal Rεφ.

The remainder of the paper then argues that minimizing Θ is equivalent to minimizing
Rεφ. Notice that the Fenchel-Rockafellar theorem actually implies the existence of dual

maximizers. We show that that dual maximizers of R̄ψ for ψ(α) = e−α satisfy certain nice
properties that are independent of the loss ψ. These properties then allow us to construct
the function η̂ present in Theorem 9 in addition to minimizers of Θ from the dual maximizers
of R̄ψ, for any loss φ. The construction of these minimizers guarantee that they minimize
Rεφ in addition to Θ.

4.3 Paper Outline

Section 5 proves strong duality and complimentary slackness theorems for R̄φ and Θ, the
convex relaxation of Rεφ. Next, in Section 6, a version of the complimentary slackness
result is used to prove the existence of minimizers to Θ. Subsequently, Section 7 shows the
equivalence between Θ and Rεφ.

Appendix A proves Theorem 1 and further discusses universal measurability. Next,
Appendix B proves all the results about the W∞-norm used in this paper. Appendix C then
defines the function αφ which is later used in the proof of several results. Appendices D,
E, F, and G.3 contain technical deferred proofs.

5. A Duality Result for Θ and R̄φ

5.1 Strong Duality

The fundamental duality relation of this paper follows from employing the Fenchel-Rockafellar
theorem in conjunction with the Riesz representation theorem, stated below for reference.
See e.g. (Villani, 2003) for more on this result.

Theorem 10 (Fenchel-Rockafellar Duality Theorem) Let E be a normed vector space
E∗ its topological dual and Θ,Ξ two convex functionals on E with values in R ∪ {∞}. Let
Θ∗,Ξ∗ be the Legendre-Fenchel transforms of Θ,Ξ respectively. Assume that there exists
z0 ∈ E such that

Θ(z0) <∞,Ξ(z0) <∞

and that Θ is continuous at z0. Then

inf
z∈E

[Θ(z) + Ξ(z)] = sup
z∗∈E∗

[−Θ∗(z∗)− Ξ∗(−z∗)] (23)

11
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and furthermore, the supremum on the right hand side is attained.

LetM(X) be the set of finite signed Borel measures on a space X and recall that Cb(X)
is the set of bounded continuous functions on the space X.

Theorem 11 (Riesz Representation Theorem) Let K be any compact subset of Rd.
Then the dual of Cb(K) is M(K).

See Theorem 1.9 of (Villani, 2003) and result 7.17 of (Folland, 1999) for more details.

Notice that in the Fenchel-Rockafellar theorem, the left-hand side of (23) is convex while
the right-hand side is concave. However, when φ is non-convex, Rεφ is not convex. In order
to apply the Fenchel-Rockafellar theorem, we will relax the primal Rεφ will to a convex
functional Θ.

We define Θ as

Θ(h0, h1) =

∫
Sε(h1)dP1 +

∫
Sε(h0)dP0 (24)

which is convex in h0, h1 due to the sub-additivity of the supremum operation. Notice that
one obtains Θ from Rεφ by replacing φ ◦ f with h1 and φ ◦ −f with h0.

The functional Ξ will be chosen to restrict h0, h1 in the hope that at the optimal value,
h1 = φ(f) and h0 = φ(−f) for some f . Notice that if h1 = φ(f), h0 = φ(−f) then for all
η ∈ [0, 1],

ηh1(x) + (1− η)h0 = ηφ(f)) + (1− η)φ(−f) ≥ C∗φ(η).

Thus we will optimize Θ over the set of functions Sφ defined by

Sφ =

{
(h0, h1) : h0, h1 : Kε → R Borel, 0 ≤ h0, h1 and for

all x ∈ Rd, η ∈ [0, 1], ηh0(x) + (1− η)h1(x) ≥ C∗φ(η)

}
(25)

where K = supp(P0 ∪ P1). (Notice that the definition of Sε(g) in (11) assumes that the
domain of g must include Bε(x). Thus in order to define the integral

∫
Sε(h)dQ, the domain

of h must include (suppQ)ε.) Thus we define Ξ as

Ξ(h0, h1) =

{
0 if (h0, h1) ∈ Sφ
+∞ otherwise

(26)

The following result expresses R̄φ as an infimum of linear functionals continuous with
respect to the weak topology on probability measures. This lemma will assist in the compu-
tation of Ξ∗. In the remainder of this section, M+(S) will denote the set of positive finite
Borel measures on a set S.

Lemma 12 Let K ⊂ Rd be compact, E = Cb(K
ε)×Cb(Kε), and P′0,P′1 ∈M+(Kε). Then

inf
(h0,h1)∈Sφ∩E

∫
h1dP′1 +

∫
h0dP′0 = R̄φ(P′0,P′1) (27)

Therefore, R̄φ is concave and upper semi-continuous onM+(Kε)×M+(Kε) with respect
to the weak topology on probability measures.

12
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We sketch the proof and formally fill in the details in Appendix D. Let P′ = P′0 + P′1,
η′ = dP′1/dP′. Then ∫

h1dP′1 +

∫
h0dP′0 =

∫
η′h1 + (1− η′)h0dP′

Clearly, the inequality ≥ holds because η′h1 + (1 − η′)h0 ≥ C∗φ(η′) for all (h0, h1) ∈ Sφ.
Equality is achieved at h1 = φ(αφ(η′)), h0 = φ(−αφ(η′)), with αφ as in (8). However, these
functions may not be continuous. In Appendix D, we show that h0, h1 can be approximated
arbitrarily well by elements of Sφ ∩ E.

Lemma 13 Let φ be a non-increasing, lower semi-continuous loss function and let P0,P1

be compactly supported finite Borel measures. Let Sφ be as in (25).
Then

inf
(h0,h1)∈Sφ

Θ(h0, h1) = sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

R̄φ(P′0,P′1) (28)

Furthermore, there exist P∗0,P∗1 which attain the supremum.

Proof We will show a version of (28) with the infimum taken over Sφ ∩E, and then argue
that the same claim holds when the infimum is taken over Sφ.

Notice that if h0, h1 are continuous, then Sε(h0), Sε(h1) are also continuous and∫
Sε(h0)dQ,

∫
Sε(h1)dQ are well-defined for every Borel Q. Hence we assume that P0,

P1 are Borel measures rather than their completion.
Let K = supp(P0 + P1). We will apply the Fenchel-Rockafellar Duality Theorem to

the functionals given by (24) and (26) on the vector space E = Cb(K
ε)×Cb(Kε) equipped

with the sup norm. By the Riesz representation theorem, dual of the space E is E∗ =
M(Kε)×M(Kε).

To start, we argue that the Fenchel-Rockafellar duality theorem applies to these func-
tionals. First, notice that if (h0, h1) ∈ E, then both h0, h1 are bounded so Θ(h0, h1) < ∞.
Furthermore, Θ is convex due to the subadditivity of supremum and Ξ is convex because
the constraint h0(x) + (1 − η)h1(x) ≥ C∗φ(η) is linear in h0 and h1. Furthermore, Θ is
continuous on E because Θ is convex and bounded and E is open, see Theorem 2.14 of
(Barbu and Precupanu, 2012).

Because the constant function (C∗φ(1/2), C∗φ(1/2)) is in Sφ, Ξ is not identically ∞ and
therefore the Fenchel-Rockafellar theorem applies.

Clearly infE Θ(h0, h1) + Ξ(h0, h1) reduces to the left-hand side of (28).
We now compute the dual of Ξ. Lemma 12 implies that

− Ξ∗(−P′0,−P′1) = − sup
(h0,h1)∈Sφ∩E

−
∫
h0dP′0 −

∫
h1dP′1 (29)

=

{
R̄φ(P′0,P′1) if P′i ≥ 0

−∞ otherwise

This computation implies that the term −Ξ∗(−P′0,−P′1) present in the Fenchel-Rockafellar
Theorem is not −∞ iff P′0,P′1 are positive measures. Next, notice that because Θ(h0, h1) <

13
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+∞ for all (h0, h1) ∈ E, −Θ∗(P′0,P′1) is never +∞. Therefore, it suffices to compute Θ∗ for
positive measures P′0,P′1. Lemma 4 implies that for positive measures P′0,P′1,

Θ∗(P′0,P′1) = sup
h0,h1∈C0(Kε)

∫
h1dP′1 +

∫
h0dP′0 −

(∫
Sε(h0)dP0 +

∫
Sε(h1)dP1

)
= sup

h1∈C0(Kε)

(∫
h1dP′1 −

∫
Sε(h1)dP1

)
+ sup
h0∈C0(Kε)

(∫
h0dP′0 −

∫
Sε(h0)dP0+

)

=

{
0 P′0,P′1 positive measures, with W∞(P′0,P0) ≤ ε and W∞(P′1,P1) ≤ ε
+∞ P′0,P′1 positive measures, with either W∞(P′0,P0) > ε or W∞(P′1,P1) > ε

Therefore

sup
P′0,P′1∈M(Kε)

−Θ(P′0,P′1)− Ξ(−P′0,−P′1) = sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

R̄φ(P′0,P′1)

and furthermore there exist measures P∗0,P∗1 maximizing the dual problem. Therefore the
Fenchel-Rockafellar Theorem implies that

inf
(h0,h1)∈Sφ

Θ(h0, h1) ≤ inf
(h0,h1)∈Sφ∩E

Θ(h0, h1) = sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

R̄φ(P′0,P′1)

The opposite inequality follows from the weak duality argument presented in (16) in Sec-
tion 4.1. See Lemma 45 of Appendix E for a full proof.

Note that this proof does not easily extend to an unbounded domain X: for a non-compact
space, the dual of Cb(X) is much larger than M(X), and thus a naive application of the
Fenchel-Rockafellar Theorem would result in a different right-hand side than (28). On the
other hand, the Reisz representation theorem for an unbounded domain X states that the
dual of C0(X) isM(X), where C0(X) is the set of continuous bounded functions vanishing
at ∞. At the same time, if h0, h1 ∈ C0(X), then ηh1(x) + (1− η)h0(x) becomes arbitrarily
small for large x so the constraint ηh1(x) + (1 − η)h0(x) ≥ C∗φ(η) cannot hold for all η.
Thus if K is unbounded, Sφ ∩ C0(X) = ∅ and the functional Ξ would be +∞ everywhere
on C0(X), precluding and application of the Fenchel-Rockafellar Theorem.

However, Lemma 13 can be extended to distributions with arbitrary support via a simple
approximation argument. By Lemma 13, the strong duality result holds for the distributions
defined by Pn0 = P0

∣∣
Bn(0)

,Pn1 = P1

∣∣
Bn(0)

. One then shows strong duality by computing the

limit of the primal and dual problems as n→∞. We therefore obtain the following Lemma,
which is proved formally in Appendix E.

Lemma 14 Let φ be a non-increasing, lower semi-continuous loss function and let P0,P1

be finite Borel measures supported on Rd. Let Sφ be as in (25). Then

inf
(h0,h1)∈Sφ

Θ(h0, h1) = sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

R̄φ(P′0,P′1)

Furthermore, there exist P∗0,P∗1 which attain the supremum.
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5.2 Complimentary Slackness

Using a standard argument, strong duality (Lemma 14) allows us to prove a version of the
complimentary slackness theorem.

Lemma 15 Assume that P0,P1 are compactly supported. The functions h∗0, h
∗
1 minimize Θ

over Sφ and (P∗0,P∗1) maximize R̄φ over B∞ε (P0)× B∞ε (P1) iff the following hold:

1) ∫
h∗1dP∗1 =

∫
Sε(h

∗
1)dP1 and

∫
h∗0dP∗0 =

∫
Sε(h

∗
0)dP0 (30)

2) If we define P∗ = P∗0 + P∗1 and η∗ = dP∗1/dP∗, then

η∗(x)h∗1(x) + (1− η∗(x))h∗0(x) = C∗φ(η∗(x)) P∗-a.e. (31)

This lemma is proved in Appendix F. Theorem 7 will later follow from this result.
To show that Lemma 15 is non-vacuous, one must prove that there exist minimizers to

Θ over Sφ, which we delay to Sections 6 and 7. Notice that the application of the Fenchel-
Rockafellar Theorem in Lemma 13 actually implies the existence of dual maximizers in the
case of compactly supported P0,P1.

In fact, the complimentary slackness conditions hold approximately for any maximizer
of R̄φ and any minimizing sequence of Θ. This result is essential for proving the existence
of minimizers to Θ.

Lemma 16 Let (hn0 , h
n
1 ) be a minimizing sequence for Θ over Sφ: limn→∞Θ(hn0 , h

n
1 ) =

inf(h0,h1)∈Sφ Θ(h0, h1). Then for any maximizer of the dual problem (P∗0,P∗1), the following
hold:

1)

lim
n→∞

∫
Sε(h

n
0 )dP0 −

∫
hn0dP∗0 = 0, lim

n→∞

∫
Sε(h

n
1 )dP1 −

∫
hn1dP∗1 = 0 (32)

2) If we define P∗ = P∗0 + P∗1 and η∗ = dP∗1/dP∗

lim
n→∞

∫
η∗hn1 + (1− η∗)hn0 − C∗φ(η∗)dP∗ = 0 (33)

Proof Let
m = inf

(h0,h1)∈Sφ
Θ(h0, h1).

Then the fact that (hn0 , h
n
1 ) ∈ Sφ and the duality result (Lemma 14) implies∫

hn1dP∗1 +

∫
hn0dP∗0 =

∫
η∗hn1 + (1− η∗)hn0dP∗ ≥

∫
C∗φ(η∗)dP∗ = m (34)

Now pick δ > 0 and an N for which n ≥ N implies that Θ(hn0 , h
n
1 ) ≤ m+ δ. Then

m+ δ ≥
∫
Sε(h

n
1 )dP1 +

∫
Sε(h

n
0 )dP0 ≥

∫
η∗hn1 + (1− η∗)hn0dP∗ ≥ m.

15
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Subtracting m =
∫
C∗φ(η∗)dP∗ from this inequality results in

δ ≥
∫
η∗hn1 + (1− η∗)hn0dP∗ −

∫
C∗φ(η∗)dP∗ ≥ 0 (35)

which implies (33). Next, (34) further implies

m−
∫
hn1dP∗1 +

∫
hn0dP∗0 ≤ 0 (36)

Now this inequality implies

δ ≥ δ +m−
(∫

hn1dP∗1 +

∫
hn0dP∗0

)
≥ Θ(hn1 , h

n
0 )−

(∫
hn1dP∗1 +

∫
hn0dP∗0

)
≥
(∫

Sε(h
n
1 )dP1 +

∫
Sε(h

n
0 )dP0

)
−
(∫

hn1dP∗1 +

∫
hn0dP∗0

)
However, Lemma 3 implies that both

∫
Sε(h

n
1 )dP1−

∫
hn1dP∗1,

∫
Sε(h

n
0 )dP0−

∫
hn0dP∗0 are

positive quantities. Therefore, we have shown that for any δ > 0, there is an N for which
n ≥ N implies that

δ >

∫
Sε(h

n
1 )dP1 −

∫
hn1dP∗1 ≥ 0 and δ >

∫
Sε(h

n
0 )dP0 −

∫
hn0dP∗0 ≥ 0

which implies (32).

An analogous approximate complimentary slackness result typically holds in other applica-
tions of the Fenchel-Rockafellar theorem. Consider a convex optimization problem which
can be written as infx Θ(x) + Ξ(x) in such a way that the Fenchel-Rockafellar theorem ap-
plies and for which Ξ and Θ∗ are indicator functions of the convex sets CP , CD respectively.
Then the Fenchel-Rockafellar Theorem states that

inf
x∈CP

Θ(x) = inf
x∈Cp

sup
y∈CD

〈y, x〉 = sup
y∈CD

inf
x∈CP

〈y, x〉 = sup
y∈CD

Ξ∗(y) (37)

Let y∗ be a maximizer of the dual problem and let m be the minimal value of Θ over CP .
If xk is a minimizing sequence of Θ, then for δ > 0 and sufficiently large k, δ +m > Θ(xk)
and thus by (37),

m+ δ > Θ(xk) = sup
y∈Cp
〈y, xk〉 ≥ 〈y∗, xk〉 ≥ inf

x∈CD
〈y∗, x〉 = inf

x∈CD
Ξ∗(x) = m (38)

and therefore limk→∞〈y∗, xk〉 = m. Condition (31) is this statement adapted to the
adversarial learning problem. Furthermore, subtracting Θ(xk) from (38) and taking the
limit k → ∞ results in limk→∞Θ(xk) − 〈y∗, xk〉 = 0. In our adversarial learning scenario,
this statement is equivalent to the conditions in (32) due to Lemma 3. Furthermore, just
like the standard complimentary slackness theorems, the relations limk→∞〈y∗, xk〉 = m,
limk→∞Θ(xk)− 〈y∗, xk〉 = 0 imply that xk is a minimizing sequence for Θ.

In the classical proof of the Kantorovich duality, one can choose Θ,Ξ of a form similar
to the discussion above, see for instance Theorem 1.3 of Villani (2003). Using an argument
similar to (38), one can prove approximate complimentary slackness for the Kantorovich
problem called the quantitative Knott-Smith criteria, see Theorems 2.15, 2.16 of Villani
(2003) for further discussion.
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6. Existence of Minimizers of Θ over Sψ

After proving the existence of maximizers to the dual problem, we can now use the ap-
proximate complimentary slackness conditions to prove the existence of minimizers to the
primal. The exponential loss ψ has certain properties that make it particularly easy to
study:

Lemma 17 Let ψ(α) = e−α. Then C∗ψ(η) = 2
√
η(1− η) and αψ(η) = 1/2 log(η/1 − η) is

the unique minimizer of Cψ(η, ·), with αψ(0), αψ(1) interpreted as −∞, +∞ respectively.
Furthermore, ∂C∗ψ(η) is the singleton ∂C∗ψ(η) = {ψ(αψ(η))− ψ(−αψ(η))}.

See Appendix G.1 for a proof. The existence of minimizers of Θ for the exponential loss
then follows from properties of Cψ. Let (hn0 , h

n
1 ) be a minimizing sequene of R̄φ. Because

the function Cψ is strictly concave, one can use the condition (33) to show that there is
a subsequence {nk} along which hnk0 (x′), hnk1 (x′) converge P∗0,P∗1-a.e. respectively. Due
to (32), Sε(h

nk
0 )(x), Sε(h

nk
1 ) also converge P0,P1-a.e. respectively along this subsequence.

This observation suffices to show the existence of functions that minimize Θ over Sψ.
The first step of this proof is to formalize this argument for sequences in R.

Lemma 18 Let (an, bn) be a sequence for which an, bn ≥ 0 and

ηan + (1− η)bn ≥ C∗ψ(η) for all η ∈ [0, 1] (39)

and
lim
n→∞

η0an + (1− η0)bn = C∗ψ(η0) (40)

for some η0. Then limn→∞ an = ψ(αψ(η0)) and limn→∞ bn = ψ(−αψ(η0)).

Notice that if ηa + (1 − η)b ≥ C∗ψ(η) and η0a + (1 − η0)b = C∗ψ(η0), then this lemma
implies that a = ψ(αψ(η0)) and b = ψ(−αψ(η0)).

To prove Lemma 18, we show that all convergent subsequences of {an} and {bn} must
converge to a and b that satisfy η0a+ (1− η0)b = C∗φ(η0) and a− b ∈ ∂C∗ψ(η0). As the set
∂C∗ψ(η0) is a singleton, the values a = ψ(αψ(η0)) and b = ψ(αψ(η0)) uniquely solve these
equations for a and b. Therefore the sequences {an} and {bn} must converge to a and b as
well. See Appendix G.2 for a formal proof. This result applied to a minimizing sequence of
Θ allows one to find a subsequence with certain convergence properties.

Lemma 19 Let (hn0 , h
n
1 ) be a minimizing sequence of Θ over Sψ. Then there exists a

subsequence nk for which Sε(h
nk
1 ), Sε(h

nk
0 ) converge P1, P0-a.e. respectively.

Proof Let P∗0,P∗1 be maximizers of the dual problem. Let γi be the coupling between Pi,P∗i
with supp γi ⊂ ∆ε.

Then (33) of Lemma 16 implies that

lim
n→∞

∫
η∗(x′)hn1 (x′) + (1− η∗(x′))hn0 (x′)− Cψ(η∗(x′))d(γ1 + γ0)(x,x′) = 0

and (32) implies that

lim
n→∞

∫
Sε(h

n
1 )(x)− hn1 (x′)dγ1(x,x′) = 0, lim

n→∞

∫
Sε(h

n
0 )(x)− hn0 (x′)dγ0(x,x′) = 0
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Recall that on a bounded measure space, L1 convergence implies a.e. convergence along a
subsequence (see Corollary 2.32 of (Folland, 1999)). Thus one can pick a subsequence nk
along which

lim
k→∞

η∗(x′)hnk1 (x′) + (1− η∗(x′))hnk0 (x′)− Cψ(η∗(x′)) = 0 (41)

γ1 + γ0-a.e. and

lim
k→∞

Sε(h
nk
1 )(x)− hnk1 (x′) = 0, lim

k→∞
Sε(h

nk
0 )(x)− hnk0 (x′) = 0 (42)

γ1, γ0-a.e. respectively.
Furthermore, ηhn1 + (1−η)hn0 ≥ C∗ψ(η) for all η ∈ [0, 1]. Thus (41) and Lemma 18 imply

that h1
nk

converges to ψ(αψ(η∗)) and h0
nk

converges to ψ(−αψ(η∗)) γ0 +γ1-a.e. Equation 42
then implies that Sε(h

nk
1 )(x), Sε(h

nk
0 )(x) converge γ1, γ0 -a.e. respectively. Because P1,P0

are marginals of γ1, γ0, this statement implies the result.

The existence of a minimizer then follows from the fact that Sε(h
nk
1 ) converges. The

next lemma describes how the Sε operation interacts with lim infs and lim sups.

Lemma 20 Let hn be any sequence of functions. Then the sequence hn satisfies

lim inf
n→∞

Sε(hn) ≥ Sε(lim inf
n→∞

hn) (43)

and
lim sup
n→∞

Sε(hn) ≥ Sε(lim sup
n→∞

hn) (44)

See Appendix G.3 for a proof.
Finally, we prove that there exists a minimizer to Θ over Sψ.

Lemma 21 There exists a minimizer (h∗0, h
∗
1) to Θ over the set Sψ.

Proof Let (hn0 , h
n
1 ) be a sequence minimizing Θ over Sψ.

Lemma 19 implies that there is a subsequence {nk} for which limk→∞ Sε(h
nk
0 ) exists

P0-a.e.
Thus

lim sup
k→∞

Sε(h
nk
0 ) = lim inf

k→∞
Sε(h

nk
0 ) P0-a.e. (45)

Next, we will argue that the pair (lim supk h
nk
0 , lim infk h

nk
1 ) is in Sψ. Because

C∗ψ(η) ≤ ηhnk1 + (1− η)hnk0 ,

one can conclude that

C∗ψ(η) ≤ η lim inf
k→∞

(hnk1 + (1− η)hnk0 ) ≤ η lim inf
k→∞

hnk1 + (1− η) lim sup
k→∞

hnk0 .

Define
h∗1 = lim inf

k
hnk1 , h∗0 = lim sup

k
hnk0
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Now Fatou’s lemma, Lemma 20, and Equation 45 imply that

lim
k→∞

Θ(hnk0 , hnk1 ) ≥
∫

lim inf
k→∞

Sε(h
nk
1 )dP1 +

∫
lim inf
k→∞

Sε(h
nk
0 )dP0 (Fatou’s Lemma)

=

∫
lim inf
k→∞

Sε(h
nk
1 )dP1 +

∫
lim sup
k→∞

Sε(h
nk
0 )dP0 (Equation 45)

≥
∫
Sε(lim inf

k→∞
hnk1 )dP1 +

∫
Sε(lim sup

k→∞
hnk0 )dP0 (Lemma 20)

=

∫
Sε(h

∗
1)dP1 +

∫
Sε(h

∗
0)dP0

Therefore, (h∗0, h
∗
1) must be a minimizer.

7. Reducing Θ to Rε
φ

Using the properties of C∗ψ(η), we showed in the previous section that there exist minimizers
to Θ over the set Sψ. The inequality ηh∗1 +(1−η∗)h∗0 ≥ C∗ψ(η) together with (31) imply that
h∗1(x) − h∗0(x) is a supergradient of C∗ψ(η∗(x)) and thus h∗1 − h∗0 = (C∗ψ)′(η). This relation
together with (31) provides two equations in two variables that can be uniquely solved for
h∗0, h

∗
1, resulting in h∗0 = ψ ◦ −αψ(η∗), h∗1 = ψ ◦ αψ(η∗).

Next, primal minimizers of Θ over Sφ for any φ will be constructed from the dual max-
imizers P∗0, P∗1 of R̄ψ. Because αψ(η) = 1/2 log(η/1 − η) is a strictly increasing function,
the compositions ψ ◦ αψ, ψ ◦ −αψ are strictly monotonic. Thus the complimentary slack-
ness condition (30) applied to h∗1 = ψ(αψ(η∗)), h∗0 = ψ(−αψ(η∗)) implies that suppP∗1 is
contained in the set of points x′ for which η∗ assumes its infimum over some ε-ball at x′

and suppP∗0 is contained in the set of points x′ where η∗ assumes its supremum over some
ε-ball at x′. Thus, the functions φ ◦ αφ(η∗), φ ◦ −αφ(η∗) satisfy (30) for the loss φ. The
definition of αφ further implies they satisfy (31). Therefore, Lemma 15 implies that for any
φ, h∗1 = φ ◦ αφ(η∗), h∗0 = φ ◦ αφ(η∗) are primal optimal and P∗0, P∗1 are dual optimal!

This reasoning about η∗ is technically wrong but correct in spirit. Because η∗ is a
Raydon-Nikodym derivative, it is only defined P∗-a.e. As a result, the supremum over an
ε-ball of the function φ(αψ(η∗)) is not well-defined. The solution is to replace η∗ in the
discussion above by a function η̂ that is defined everywhere. The function η̂ is actually a
version of the Raydon-Nikodym derivative dP∗1/dP∗. The next two lemmas describe how
one constructs this function η̂.

The next two lemmas discuss the analog of the c transform for the Kantorovich problem
in optimal transport (see for instance Chapter 1 of (Santambrogio, 2015) or Section 2.5 of
(Villani, 2003)).

Lemma 22 Assume that h0, h1 ≥ 0 and (h0(x), h1(x)) satisfy ηh1 + (1− η)h0 ≥ C∗φ(η) for

all η. Then if we define h
C∗φ
0 via

h
C∗φ
0 = sup

η∈[0,1)

C∗φ(η)− ηh1

1− η
(46)
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then h
C∗φ
0 ≤ h0 while and h1 +(1−η)h

C∗φ
0 ≥ C∗φ(η) for all η, and h

C∗φ
0 is the smallest function

h0 for which (h0, h1) ∈ Sφ. Furthermore, the function h
C∗φ
0 is Borel and there exists a

function η̄ : Rd → [0, 1] for which η̄(x)h1(x) + (1− η̄(x))h
C∗φ
1 (x) = C∗φ(η̄(x)).

Proof For convenience, set h̃0 = h
C∗φ
1 . Notice that h̃0 ≥ 0 because the right-hand side of

(46) evaluates to 0 at η = 0. We will show that h̃0 is Borel and that (h̃0, h1) is a feasible
pair.

Next, Notice that the map

G(η, α) =


C∗φ(η)−ηα

1−η if η < 1

limη→1
C∗φ(η)−ηα

1−η if η = 1
(47)

is continuous in η. Thus, the supremum in (46) can be taken over the countable set Q∩ [0, 1]
and hence the function h̃0(x) = supη∈[0,1)∩QG(η, h1(x)) is Borel measurable. Because
G(η, h1(x)) is continuous in η for each fixed x, G(·, h1(x)) assumes its maximum on η ∈ [0, 1]
for each fixed x. Thus there exists a function η̄(x) that maps x to a maximizer of G(·, h1(x)).
For this function η̄(x), one can conclude that h̃0(x) = G(η̄(x),x) and hence

η̄(x)h1(x) + (1− η̄(x))h̃0(x) = C∗φ(η̄(x)). (48)

Equation 48 implies that if f(x) < h̃0(x) at any x, then ηh1(x)+(1−η)f(x) < C∗φ(η(x))

so (f, h1) is not in the feasible set Sφ. Therefore, h̃0 is the smallest function f for which
(f, h1) ∈ Sφ.

Next we use this result to define an extension of η∗ to all of Rd.

Lemma 23 There exist a Borel minimizer (h∗0, h
∗
1) to Θ over Sψ for which

η̂(x)h∗1(x) + (1− η̂(x))h∗0(x) = C∗ψ(η̂(x)) (49)

for all x and some Borel measurable function η̂ : (suppP)ε → [0, 1].

Proof Let (h0, h1), be an arbitrary Borel minimizer to the primal (Lemma 21 implies that

such a minimizer exists). Set h∗1 = h1 and h∗0 = h
C∗ψ
1 . Then Lemma 22 implies that h∗0 ≤ h0,

so (h∗0, h
∗
1) is also optimal and ηh∗1 + (1− η)h∗0 ≥ C∗ψ(η) for all η. Furthermore, Lemma 22

implies that there is a function η̂ for which η̂(x)h∗1(x) + (1− η̂(x))h∗0(x) = C∗ψ(η̂(x)).
It remains to show that η̂ is Borel measurable. We will express η̂(x) in terms of

h∗1(x), and because h∗1(x) is Borel measurable, it will follow that η̂ is Borel measurable
as well. Because ηh∗1(x) + (1 − η)h∗0(x) ≥ C∗ψ(η) with equality at η = η̂(x), it follows
that h∗1(x) − h∗0(x) is a supergradient of C∗ψ at η = η̂(x). Thus Lemma 17 implies that

h∗1 − h∗0 = (1 − 2η̂)/
√
η̂(1− η̂) ⇔ h∗1 = h∗0 + (1 − 2η̂)/

√
η̂(1− η̂). Plugging this expression

and the formula C∗ψ(η) = 2
√
η(1− η) into the relation η̂h∗1 + (1 − η̂)h∗0 = C∗ψ(η̂) results

in the equation h∗0 + η̂(1 − 2η̂)/
√
η̂(1− η̂) = 2

√
η̂(1− η̂). Solving for η̂ then results in

η̂ = (h∗0)2/(1 + (h∗0)2). Because h∗0 is Borel measurable, η̂ is measurable as well.
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Notice that this result together with Lemma 18 immediately implies that h∗1 = ψ(αψ(η̂))
and h∗1 = ψ(−αψ(η̂)), immediately proving that minimizing Θ over Sψ is equivalent to
minimizing Rψ. Next, this observation is extended to arbitrary losses using properties of η̂.
Because both ψ and αψ are strictly monotonic, η̂ interacts in a particularly nice way with
maximizers of the dual problem:

Lemma 24 Let P∗0,P∗1 be any maximizer of R̄ψ over B∞ε (P0)×B∞ε (P1). Set P∗ = P∗0 + P∗1,
η∗ = dP∗1/dP∗. Let η̂ be defined as in Lemma 23. Then η̂ = η∗ P∗-a.e.

Furthermore, let γi be a coupling between Pi,P∗i with supp γi ⊂ ∆ε. Then

supp γ1 ⊂ {(x,x′) : inf
‖y−x‖≤ε

η̂(y) = η̂(x′)} (50)

supp γ0 ⊂ {(x,x′) : sup
‖y−x‖≤ε

η̂(y) = η̂(x′)} (51)

The statement η̂ = η∗ P∗-a.e. implies that η̂ is in fact a version of the Raydon-Nikodym
derivative dP∗1/dP∗.

For convenience, in this proof, we introduce the notation

Iε(f)(x) = inf
‖y−x‖≤ε

f(y).

Proof Let h∗0, h
∗
1 be the minimizer described by Lemma 23. Then Lemma 18 implies that

h∗1 = ψ(αψ(η̂)) and h∗0 = ψ(−αψ(η̂)).
The complimentary slackness condition (31) implies that η∗h∗1 + (1 − η∗)h∗0 = C∗ψ(η∗)

P∗-a.e., and thus Lemma 18 implies that h∗1 = ψ(αψ(η∗)) and h∗0 = ψ(αψ(η∗)) P∗-a.e.
Therefore, ψ(αψ(η∗)) = ψ(αψ(η̂)) P∗-a.e. Now because the functions ψ, αψ are strictly
monotonic, they are invertible. Thus it follows that η̂ = η∗ P∗-a.e.

The complimentary slackness condition (30) states that∫
Sε(hi)(x)− h∗i (x′)dγi = 0.

Therefore,

Sε(ψ(αψ(η̂)))(x) = ψ(αψ(η̂(x′)) γ1-a.e. and Sε(ψ(−αψ(η̂)))(x) = ψ(−αψ(η̂(x′)) γ0-a.e.

which implies

ψ(αψ(Iε(η̂)(x))) = ψ(αψ(η̂(x′)) γ1-a.e. and ψ(−αψ(Sε(η̂)(x))) = ψ(−αψ(η̂(x′)) γ0-a.e.

Now ψ, αψ are both strictly monotonic and thus invertible. Therefore

Iε(η̂)(x) = η̂(x′) γ1-a.e. and Sε(η̂)(x) = η̂(x′) γ0-a.e.

Next, the relation (49) suggests that h∗1 = φ ◦ f∗, h∗0 = φ ◦ −f∗, where f∗ is a function
satisfying Cψ(η̂(x), f∗(x)) = C∗ψ(η̂(x)). In fact, Lemma 24 implies that this relation holds
for all loss functions, and not just the exponential loss ψ. To formalize this idea, we prove
the following result about minimizers of Cψ(η, ·) in Appendix C:
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Lemma 25 Fix a loss function φ and let αφ(η) be as in (8). Then αφ maps η to the
smallest minimizer of Cφ(η, ·). Furthermore, the function αφ(η) non-decreasing in η.

Finally, we use the complimentary slackness conditions of Lemma 15 to construct a
minimizer (h∗0, h

∗
1) to Θ over Sφ for which h∗1 = φ ◦ f∗, h∗0 = φ ◦ −f∗ for some function f∗.

Lemma 26 Let ψ = e−α be the exponential loss and let φ be any arbitrary loss. Let P∗0,P∗1
be any maximizer of R̄ψ over B∞ε (P0) × B∞ε (P1). Define P∗ = P∗0 + P∗1 and η∗ = dP∗1/dP∗.
Let η̂ be defined as in Lemma 23.

Then h∗0 = φ(−αφ(η̂)), h∗1 = φ(αφ(η̂)) minimize Θ over Sφ and (P∗0,P∗1) maximize R̄φ
over B∞ε (P0)× B∞ε (P1).

Thus there exists a Borel minimizer to Rεφ and inff R
ε
φ(f) = inf(h0,h1)∈Sφ Θ(h0, h1).

Proof We will verify the complimentary slackness conditions of Lemma 15.
Lemma 24 implies that η̂ = η∗ P∗-a.e. Therefore, P∗-a.e.,

C∗φ(η∗) = C∗φ(η̂) = η̂h1 + (1− η̂)h0 = η∗h1 + (1− η∗)h0

This calculation verifies the complimentary slackness condition (31).
We next verify the other complimentary slackness condition (30). Let γi be a coupling

between Pi,P∗i with supp γi ⊂ ∆ε. Next, because φ ◦ αφ, φ ◦ −αφ are monotonic, the
conditions (50) and (51) imply that∫
φ(αφ(η̂))dP∗1 =

∫
φ(αφ(η̂(x′)))dγ1(x,x′) =

∫
Sε(φ(αφ(η̂)))(x)dγ1(x,x′) =

∫
Sε(φ(αφ(η̂)))dP1∫

φ(−αφ(η̂))dP∗0 =

∫
φ(−αφ(η̂(x′)))dγ0(x,x′) =

∫
Sε(φ(−αφ(η̂)))(x)dγ0(x,x′) =

∫
Sε(φ(−αφ(η̂)))dP0

This calculation verifies the complimentary slackness condition (30).

Theorems 6 and 9 immediately follow from Lemmas 14 and 26.

8. Conclusion

We initiated the study of minimizers and minimax relations for adversarial surrogate risks.
Specifically, we proved that there always exists a minimizer to the adversarial surrogate
risk when perturbing in a closed ε-ball and a maximizer to the dual problem. Just like
the results of (Pydi and Jog, 2021), our minimax theorem provides an interpretation of the
adversarial learning problem as a game between two players. This theory helps explain the
phenomenon of transfer attacks. We hope the insights gained from this research will assist
in the development of algorithms for training classifiers robust to adversarial perturbations.
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Appendix A. The Universal σ-Algebra and a Generalization of Theorem 1

A.1 Definition of the Universal σ-Algebra and Main Measurability Result

In this Appendix, we prove results for supremums over an arbitrary compact set, not nec-
essarily a unit ball. For a function g : Rd → Rd, we will abuse notation and denote the
supremum of g over the compact set B by

SB(g)(x) = sup
h∈B

g(x + h).

Let X be a separable metric space and let B(X) be the Borel σ-algebra on X. Denote
the completion of B(X) with respect to a Borel measure ν by Lν(X). Let M+(X) be the
set of all finite2 positive Borel measures on X. Then the universal σ-algebra on X, U (X)
is

U (X) =
⋂

ν∈M+(X)

Lν(X). (52)

In other words, the universal σ-algebra is the sigma-algebra of sets which are measurable
with respect to the completion of every Borel measure. Thus U (X) is contained in Lν(X)
for every Borel measure ν. The goal of this appendix is to prove

Theorem 27 If f is universally measurable and B is a compact set, then SB(f) is univer-
sally measurable.

Thus, if P0,P1, and g are Borel, integrals of the form
∫
Sε(g)dPi in (10) can be interpreted

as the integral of Sε(g) with respect to the completion of Pi.

A.2 Proof Outline

To prove Theorem 27, we analyze the level sets of SB(g). One can compute the level set
[SB(g)(x) > a] using a direct sum.

Lemma 28 Let g : Rd → Rd be any function. For a set B, define −B = {−b : b ∈ B}.
Then

[SB(g) > a] = [g > a]⊕−B

Proof To start, notice that SB(g)(x) > a iff there is some h ∈ B for which g(x + h) > a.
Thus

x ∈ [SB(g) > a]⇔ x + h ∈ [g > a] for some h ∈ B ⇔ x ∈ [g > a]⊕−B

Therefore, to show that SB(g) is measurable for measurable g, it suffices to show that
the direct sum of a measurable set and the compact set B is measurable. Thus, to prove
Theorem 27, it suffices to demonstrate the following result:

Theorem 29 Let A ∈ U (Rd) and let B be a compact set. Then A⊕B ∈ U (Rd).

2. Alternatively, one could compute the intersection in (52) over all σ-finite measures. These two approaches
are equivalent because for every σ-finite measure λ and compact set K, the restriction λ K is a finite
measure with L

λ K
(X) ⊃ Lλ(X).
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The proof of Theorem 29 follows from fundamental concepts of measure theory. A
classical measure theory result states that if f : X → Y is a continuous function, f−1

maps Borel sets in Y to Borel sets in X. Consider now the function w : B × Rd → B × Rd
given by w(h,x) = (h,x− h). Then w is invertible and the inverse of w is w−1(h,x + h).
Furthermore, w−1 maps the set B×A to B×A⊕B. Therefore, if A ∈ B(Rd), then B×A⊕B
is Borel in B(B × Rd). However, from this statement, one cannot conclude that A ⊕ B is
Borel in Rd! On the otherhand, one can use regularity of measures to conclude that A⊕B
is in U (Rd). Therefore, to prove Theorem 29, we prove the following two results:

Lemma 30 Let B ⊂ Rd be a compact set. Then B ×A ∈ U (B × Rd) iff A ∈ U (Rd).

In this document, we say a function f : X → Y is universally measurable if f−1(E) ∈ U (X)
whenever E ∈ U (Y ).

Lemma 31 Let f : X → Y be a Borel measurable function. Then f is universally measur-
able as well.

This result is stated on page 171 of (Bertsekas and Shreve, 1996), but we include a proof
below for completeness.

Lemma 31 applied to w implies that the set B ×A⊕B is universally measurable while
Lemma 30 implies that A⊕B is universally measurable.

A.3 Proof of Theorem 29

We begin by proving Lemma 31.

Proof [Proof of Lemma 31] Let A be a Borel set in Y . We will show that for any finite
measure ν on X, f−1(A) ∈ Lν(X). As ν is arbitrary, this statement will impy that f−1(A) ∈
U (X).

Consider the pushforward measure µ = f]ν. This measure is a finite measure on Y ,
so by the definition of U (Y ), A ∈ Lµ(Y ). Therefore, there are Borel sets B1 ⊂ A ⊂ B2

in Y for which µ(B1) = µ(B2). Thus, f−1(B1), f−1(B2) are Borel sets in X for which
f−1(B1) ⊂ f−1(A) ⊂ f−1(B2) and ν(f−1(B1)) = ν(f−1(B2)). Therefore, f−1(A) ∈ Lν(X).

On the other hand, the proof of Lemma 30 relies on the definition of a regular space X:

Definition 32 A measure ν is inner regular if for every Borel set A,

ν(A) = sup
K compact
K⊂A

ν(K).

The topological space X is regular if every finite Borel measure on X is inner regular.

The following result implies that most topological spaces encountered in applications
are regular.

Theorem 33 A σ-compact locally compact Hausdorff space is regular.
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This theorem is is a consequence of Theorem 7.8 of (Folland, 1999).

The notion of regularity extends to complete measures.

Lemma 34 Let ν be the completion of a measure ν on a regular space X. Then for any
A ∈ Lν(X),

ν(A) = sup
K compact
K⊂A

ν(K).

The proof of this result is left as a exercise to the reader.

Now using the concept of regularity, we prove Lemma 30.

Proof [Proof of Lemma 30] We first prove the forward direction. Consider the projection
function Π2 : B × Rd → Rd given by Π2(x,y) = y. Then Π2 is a continuous function and
Π−1

2 (A) = B × A. Therefore Lemma 31 implies that if A is universally measurable in Rd,
then B ×A is universally measurable in B × Rd.

To prove the other direction, assume that B × A is universally measurable in B × Rd.
Let ν be any finite Borel measure on Rd. We will find Borel sets B1, B2 with B1 ⊂ A ⊂ B2

for which ν(B1) = ν(B2), and thus A ∈ Lν(Rd). As ν was arbitrary, it follows that A is
universally measurable.

Theorem 33 implies that B × Rd is a regular space. Fix a Borel probability measure λ
on B. Then λ× ν is a finite Borel measure on B × Rd, so it is inner regular. Let λ× ν be
the completion of λ× ν. Then by Lemma 34,

λ× ν(B ×A) = sup
K compact
K⊂B×A

λ× ν(K)

We will now argue that

sup
K compact
K⊂B×A

λ× ν(K) = sup
K compact
K⊂A

ν(K) (53)

Let K ⊂ B×A and let Π2 be projection onto the second coordinate. Because the continuous
image of a compact set is compact, K’=Π2(K) is compact and contained in A. Thus
B ×A ⊃ B ×K ′ ⊃ K, which implies (53). Now (53) applied to AC implies that

λ× ν(X ×A) = inf
UC compact
U⊃B×A

λ× ν(U) = inf
UC compact

U⊃A

ν(U).

Thus

sup
K compact
K⊂A

ν(K) = inf
UC compact

U⊃A

ν(U) := m

Let Kn be a sequence of compact sets contained in A for which limn→∞ ν(Kn) = m and
Un a sequence of sets containing A for which UCn is compact and limn→∞ ν(Un) = m.
Because a finite union of compact sets is compact, one can choose such sequences that
satisfy Kn+1 ⊃ Kn and Un+1 ⊂ Un. Then B1 =

⋃
Kn, B2 =

⋂
Un are Borel sets that

satisfy B1 ⊂ A ⊂ B2 and ν(B1) = ν(B2) so A ∈ Lν(Rd).
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Lastly, we formally prove Theorem 29.

Proof [Proof of Theorem 29] Consider the function w : B×Rd → B×Rd given by w(h,x) =
(h,x− h). Then w is continuous, invertible, and w−1(h,x) = (x,x + h).

Now let A ∈ U (Rd). Then Lemma 30 implies that B ×Rd is universally measurable in
B×A. Lemma 31 then implies that w−1(B×A) = B×A⊕B is universally measurable as
well. Finally, Lemma 30 implies that A⊕B ∈ U (Rd) as well.

Appendix B. Alternative Characterizations of the W∞ Metric

We start with proving Lemma 3 using a measurable selection theorem.

Theorem 35 Let X,Y be Borel sets and assume that D ⊂ X × Y is also Borel. Let Dx

denote

Dx = {y : (x, y) ∈ D}

and

ProjX(D) : = {x : (x, y) ∈ D}

Let f : D → R be a Borel function mapping D to R and define

f∗(x) = inf
y∈Dx

f(x, y)

Assume that f∗(x) > −∞ for all x. Then for any δ > 0, there is a universally measurable
ϕ : ProjX(D)→ Y for which

f(x, ϕ(x)) ≤ f(x) + δ

This statement is a consequence of Proposition 7.50 from (Bertsekas and Shreve, 1996).

We use the following results about universally measurable functions, see Lemma 7.27 of
(Bertsekas and Shreve, 1996).

Lemma 36 Let g : Rd → R be a universally measurable function and let Q be a Borel
measure. Then there is a Borel measurable function ϕ for which ϕ = g Q-a.e.

This result can be extended to Rd-valued functions:

Lemma 37 Let g : Rd → Rd be a universally measurable function and let Q be a Borel
measure. Then there is a Borel measurable function ϕ for which ϕ = g Q-a.e.

Proof Let ei denote the ith basis vector. Then gi := ei · g is a universally measurable
function from Rd to R, so by Lemma 36, there is a Borel function ϕi for which ϕi = gi
Q-a.e. Then if we define ϕ = (ϕ1, ϕ2, . . . , ϕd), this function is equal to g Q-a.e.

Finally, we prove Lemma 3. Due to Lemmas 36 and 37, this lemma heavily relies on the
fact that the domain of our functions is Rd rather than an arbitrary metric space.
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Lemma 3 Let Q be a finite positive Borel measure and let f : Rd → R ∪ {∞} be a Borel
measurable function. Then ∫

Sε(f)dQ = sup
Q′∈B∞ε (Q)

∫
fdQ′ (13)

Recall that this paper defines the left-left hand side of (13) as the integral of Sε(f) with
respect to the completion of Q.
Proof

To start, let Q′ be a Borel measure satisfying W∞(Q′,Q) ≤ ε. Let γ be a coupling with
marginals Q and Q′ supported on ∆ε. Then∫

fdQ′ =
∫
f(x′)dγ(x,x′) =

∫
f(x′)1‖x′−x‖≤εdγ(x,x′)

≤
∫
Sε(f)(x)1‖x′−x‖≤εdγ(x,x′) =

∫
Sε(f)(x)dγ(x,x′) =

∫
Sε(f)dQ

Therefore, we can conclude that

sup
Q′∈B∞ε (Q)

∫
fdQ′ ≤

∫
Sε(f)dQ.

We will show the opposite inequality by applying the measurable selection theorem.
Theorem 35 implies for each δ > 0, one can find a universally measurable function ϕ : Rd →
Bε(x) for which f(ϕ(x)) + δ ≥ Sε(f)(x). By Lemma 37, one can find a Borel measurable
function T for which T = ϕ Q-a.e.

Let Q′ = Q ◦ T−1. Because T is Borel measurable, Q′ and f ◦ T are Borel. We will
now argue that

∫
fdQ′ + δ ≥

∫
Sε(f)dQ. Recall that ϕ is always measurable with respect

to the completion of Q, and by convention
∫
gdQ means integration with respect to the

completion of Q. Then if we define M = Q(Rd),∫
fdQ′ =

∫
fdQ◦T−1 =

∫
f(T (x))dQ =

∫
f(ϕ(x))dQ ≥

∫
Sε(f)−δdQ =

∫
Sε(f)dQ−δM

Because δ > 0 was arbitrary and Q′ ∈ B∞ε (Q),∫
Sε(f)dQ ≤ sup

Q′∈B∞ε (Q)

∫
fdQ′

It remains to show that W∞(Q,Q′) ≤ ε. Define a function G : Rd → Rd × Rd, G(x) =
(x, T (x)) and a coupling γ by γ = G]Q. Then γ(∆ε) = G](Q)(∆ε) = Q(G−1(∆ε)) = 1, so
supp(γ) ⊆ ∆ε.

Next we prove Lemma 4. We begin by presenting Strassen’s theorem, see Corollary 1.28
of (Villani, 2003) for more details

Theorem 38 (Strassen’s Theorem) Let P,Q be positive finite measures with the same
mass and let ε ≥ 0. Let Π(P,Q) denote the set couplings of P and Q. Then

inf
π∈Π(P,Q)

π({‖x− y‖ > ε) = sup
A closed

Q(A)− P(Aε) (54)
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Strassen’s theorem is usually written with Aε in (54) replaced by Aε] = {x : dist(x, A) ≤
ε}—however, for closed sets Aε] = Aε. Strassen’s theorem together with Urysohn’s lemma
then immediately proves Lemma 4.

Lemma 39 (Urysohn’s Lemma) Let A and B be two closed and disjoint subsets of Rd.
Then there exists a function f : Rd → [0, 1] for which f = 0 on A and f = 1 on B.

See for instance result 4.15 of (Folland, 1999).

Lemma 4 Let P,Q be two finite positive Borel measures with P(Rd) = Q(Rd). Then

W∞(P,Q) = inf
ε
{ε ≥ 0:

∫
hdQ ≤

∫
Sε(h)dP ∀h ∈ Cb(Rd)}

Proof First, notice that Lemma 3 implies that if Q ∈ B∞ε (P), then
∫
Sε(h)dP ≥

∫
hdQ for

all h ∈ Cb(Rd), proving the inequality ≥ in the statement of the lemma.
We will now argue the other inequality: specifically, we will show that

sup
A closed

Q(A)− P(Aε) ≤ sup
h∈Cb(Rd)

∫
hdQ−

∫
Sε(h)dP (55)

Strassen’s theorem will then imply that W∞(P,Q) ≤ ε. Let δ be arbitrary and let A be a
closed set that satisfies supA closed Q(A)−P(Aε) ≤ Q(A)−P(Aε)+δ. Now because A is closed,
An = A⊕B1/n(0) is a series of open sets decreasing to A and Aεn = Aε⊕B1/n(0) is a sequence
of open sets decreasing to Aε. Thus pick n sufficiently large so that P(Aεn − P(Aε) ≤ δ. By
Urysohn’s lemma, one can choose a function h which is 1 on A, 0 on ACn , and between 0
and 1 on An − AC . Then Sε(h) is 1 on Aε, 0 on (Aεn)C and between 0 and 1 on Aεn − Aε.
Then

∫
hdQ−Q(A) ≥ 0 and thus(∫

hdQ−
∫
Sε(h)dP

)
− (Q(A)− P(Aε)) ≥ P(Aε)− P(Aεn) ≥ −δ.

Because δ was arbitrary, (55) follows.

Appendix C. Minimizers of Cφ(η, ·): Proof of Lemma 25

Lemma 25 Fix a loss function φ and let αφ(η) be as in (8). Then αφ maps η to the
smallest minimizer of Cφ(η, ·). Furthermore, the function αφ(η) non-decreasing in η.

Proof To start, we will show that αφ(η) as defined in (8) is a minimizer of Cφ(η, ·). Let S
be the set of minimizers of C∗φ(η, ·), which is non-empty due to the lower semi-continuity of
φ. Let a = inf S = αφ(η) and let si ∈ S be a sequence converging to a. Then because φ is
lower semi-continuous,

C∗φ(η) = lim inf
i→∞

ηφ(si) + (1− η)φ(−si) ≥ ηφ(a) + (1− η)φ(−a)

Then a is in fact a minimizer of C∗φ(η, ·), so it is the smallest minimizer of C∗φ(η, ·).
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We will now show that the function αφ is non-decreasing.
One can write

Cφ(η2, α) = η2φ(α) + (1− η2)φ(−α)

= η1φ(α) + (1− η1)φ(−α) + (η2 − η1)(φ(α)− φ(−α))

= Cφ(η1, α) + (η2 − η1)(φ(α)− φ(−α)) (56)

Notice that the function α 7→ φ(α) − φ(−α) is non-increasing. Then because αφ(η1)
is the smallest minimizer of Cφ(η1, α), if α < αφ(η1), then Cφ(η1, α) > Cφ(η1, αφ(η1)).
Furthermore, φ(α) − φ(−α) ≥ φ(αφ(η1)) − φ(−αφ(η1)). Therefore, (56) implies that
Cφ(η2, α) > Cφ(η2, αφ(η1)), and thus α cannot be a minimizer of Cφ(η2, ·). Therefore,
αφ(η2) ≥ αφ(η1).

Appendix D. Continuity Properties of R̄φ—Proof of Lemma 12

Recall the function G(η, α) defined by (47). With this notation, one can write the C∗φ

transform as h
C∗φ
1 = supη∈[0,1]G(η, h1).

Lemma 40 Let c > 0 and consider α ≥ c. Let a(α) = αC
∗
φ, where the C∗φ transform is as

in Lemma 22. Then there is a constant k < 1 for which

a(α) = sup
η∈[0,k]

C∗φ(η)− ηα
1− η

(57)

The constants k depends only on c.

Proof Recall that the function G(η, α) is decreasing in α for fixed η and continuous on
[1, 0). Let k = sup{η : G(η, c) > 0}. As c is strictly positive, one can conclude that
limη→1G(η, c) = −∞ and as a result k < 1. Because G is decreasing in α, one can
conclude that G(η, α) ≤ 0 for all η > k and α ≥ c. However, supη∈[0,1]G(η, α) ≥ 0 because
G(0, α) = 0 for all α. Thus (57) holds.

Lemma 41 Let {fα} be a set of L-Lipschitz functions. Then supα fα is also L-Lipschitz.

This statement is proved in Box 1.8 of (Santambrogio, 2015).

Lemma 42 Let Q be any finite measure and assume that g is a non-negative function in
L1(Q). Let δ > 0. Then there is a lower semi-continuous function g̃ for which

∫
|g− g̃| < δ

and g ≥ 0.

See Proposition 7.14 of Folland.
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Lemma 43 Let g be a lower semi-continuous function bounded from below. Then there is
a sequence of Lipschitz functions that approaches g from below.

This statement appears in Box 1.5 of (Santambrogio, 2015).

Corollary 44 Let h be an L1(Q) function with h ≥ 0. Then for any δ, there exists a
Lipschitz h̃ for which

∫
|h− h̃|dQ < δ.

Proof By Lemma 42, one can pick a lower semi-continuous g̃ for which g̃ ≥ 0 and
∫
|h −

g̃|dQ < δ/2. Next, by Lemma 43, one can pick a Lipschitz h̃ for which
∫
|g̃ − h̃|dQ ≤ δ/2.

Thus
∫
|h− h̃|dQ < δ.

Lemma 12 Let K ⊂ Rd be compact, E = Cb(K
ε)×Cb(Kε), and P′0,P′1 ∈M+(Kε). Then

inf
(h0,h1)∈Sφ∩E

∫
h1dP′1 +

∫
h0dP′0 = R̄φ(P′0,P′1) (27)

Therefore, R̄φ is concave and upper semi-continuous onM+(Kε)×M+(Kε) with respect
to the weak topology on probability measures.

Proof Let P′ = P′0 + P′1 and η′ = dP′1/dP′. Then for any (h0, h1) ∈ Sφ ∩ E,

∫
h1dP′1 +

∫
h0dP′0 =

∫
η′h1 + (1− η′)h0dP′ ≥

∫
C∗φ(η′)dP′ = R̄φ(P′0,P′1).

We will now focus on showing the other inequality. Define a function f by

f(x) =

{
αφ(η′(x)) x ∈ suppP′

0 x 6∈ suppP′

Let h1 = φ ◦ f , h0 = φ ◦−f . Then h1, h0 satisfy the inequality ηh1 + (1− η)h0 ≥ C∗φ(η) for
all η while on suppP′, η′(x)h1(x) + (1− η′(x))h0(x) = C∗φ(η′) and therefore∫

h1dP′1 +

∫
h0dP′0 =

∫
η′h1 + (1− η′)h0dP′ =

∫
C∗φ(η′)dP′.

However, (h0, h1) 6∈ E. We will now approximate h0, h1 by bounded continuous functions
contained in Sφ. Let δ > 0 be arbitrary. Pick a constant c > 0 for which

∫
cdP′ < δ and set

h̃1 = max(h1, c). The pair (h0, h̃1) are feasible pair for the set Sφ, and thus

C∗φ(η)− ηh̃1 − (1− η)h0 ≤ 0 (58)

Furthermore, ∫
h̃1dP′1 +

∫
h0dP′0 < R̄φ(P′0,P′1) + δ. (59)

Let k be the constant described by Lemma 40 corresponding to c. Now by Corollary 44,
there is a Lipschitz function g for which

∫
|h1 − g|dP′ < min((1 − k)/k, 1)δ. Let ĥ1 =
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max(g, c). Then Lemma 41 implies that ĥ1 has the same Lipschitz constant as g, and the
fact that h̃1 ≥ c implies that∫

|h̃1 − ĥ1|dP′ ≤
∫
|h̃1 − g|dP′ < min

(
1− k
k

, 1

)
δ (60)

Now let ĥ0 = ĥ
C∗φ
1 . By Lemma 40, the supremum in the C∗φ transform for computing ĥ0 can

be taken over [0, k]. Therefore, if L is the Lipschitz constant of ĥ1, Lemma 41 implies that
the Lipschitz constant of ĥ0 is at most kL/(1 − k). Furthermore, ĥ0, ĥ1 are bounded on
Kε because Lipschitz functions are bounded over compact sets. Thus (ĥ0, ĥ1) is in Sφ ∩E.

Next, we will show that
∫
ĥ0 is close to

∫
h0.

∫
ĥ0 − h0dP′0 =

∫
sup
[0,k]

C∗φ(η)− ηĥ1

1− η
− h0dP′0 =

∫
sup
[0,k]

C∗φ(η)− ηĥ1 − (1− η)h0

1− η
dP′0

=

∫
sup
[0,k]

(
C∗φ(η)− ηh̃1 − (1− η)h0

1− η
+

η

1− η
(h̃1 − ĥ1)

)
dP′0

≤
∫

sup
[0,k]

C∗φ(η)− ηh̃1 − (1− η)h0

1− η
+ sup

[0,k]

η

1− η
(h̃1 − ĥ1)dP′0 ≤

∫
sup
[0,k]

η

1− η
(h̃1 − ĥ1)dP′0 (Equation 58)

=
k

1− k

∫
h̃1 − ĥ1dP′0 ≤ δ (Equation 60)

Therefore, by (59), (60), and the computation above,∫
ĥ1dP′1 +

∫
ĥ0dP′0 ≤ R̄φ(P′0,P′1) + 3δ

AS δ > 0 is arbitrary, this inequality implies (27). Because Kε is compact, the upper semi-
continuity and concavity of R̄φ then follows from (27) together with the Reisz representation
theorem.

Appendix E. Duality for Distributions with Arbitrary Support—Proof of
Lemma 14

We begin with the simple observation that weak duality holds for measures supported on
Rd. This argument is essentially swapping the order of an infimum and a supremum as
presented in Section 4.1.

Lemma 45 (Weak Duality) Let φ be a non-increasing and lower semi-continuous loss
function. Let Sφ be the set of pairs of functions defined in (25) for K = Rd.

Then

inf
(h0,h1)∈Sφ

Θ(h0, h1) ≥ sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

R̄φ(P′0,P′1)
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Proof By Lemma 3,

inf
(h0,h1)∈Sφ

∫
Sε(h0)dP0 +

∫
Sε(h1)dP1 = inf

(h0,h1)∈Sφ
sup

P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

∫
h0dP′0 +

∫
h1dP′1.

Thus by swapping the inf and the sup,

inf
(h0,h1)∈Sφ

∫
Sε(h0)dP0 +

∫
Sε(h1)dP1 ≥ sup

P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

inf
(h0,h1)∈Sφ

∫
h0dP′0 +

∫
h1dP′1

= sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

inf
(h0,h1)∈Sφ

∫
dP′1

d(P′0 + P′1)
h1 +

(
1− dP′1

d(P′0 + P′1)

)
h0d(P′0 + P′1) ≥ sup

P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

R̄φ(P′0,P′1)

The main strategy in this section is approximating measures with unbounded support
by measures with bounded support. To this end, we define the restriction of a measure P
to a set K by P|K(A) = P(K ∩A).

The Portmaneau theorem then allows us to draw some conclusions about weakly con-
vergent sequences of measures.

Theorem 46 (Portmanteau Theorem) The following are equivalent:

1) The sequence Qn ∈M+(Rd) converges weakly to Q

2) For all closed sets C, lim supn→∞Qn(C) ≤ Q(C) and limn→∞Qn(Rd) = Q(Rd)

3) For all open sets U , lim infn→∞Qn(U) ≥ Q(U) and limn→∞Qn(Rd) = Q(Rd)

See Theorem 8.2.3 of (Bogachev, 2007). This result allows us to draw conclusions about
restrictions of weakly convergent sequences.

Lemma 47 Let Qn,Q ∈M+(Rd) and assume that Qn converges weakly to Q. Let K be a
compact set with Q(∂K) = 0. Then Qn|K converges weakly to Q|K .

Proof We will verify 2) of Theorem 46 for the measures Qn|K , Q.
First, because Q(K) = Q(intK), Theorem 46 implies that

lim sup
n→∞

Qn(K) ≤ Q(K) = Q(intK) ≤ lim inf
n→∞

Qn(intK) ≤ lim inf
n→∞

Qn(K).

Therefore, limn→∞Qn|K(Rd) = limn→∞Qn(K) = Q(K). Next, for any closed set C, the
set C ∩K is also closed so the fact that Qn weakly converges to Q implies that

lim sup
n→∞

Qn|K(C) = lim sup
n→∞

Qn(K ∩ C) ≤ Q(K ∩ C) = Q|K(C).

Next, Prokhorov’s theorem allows us to identify weakly convergent subsequences.
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Theorem 48 Let Qn be a sequence of measures for which supnQn(Rd) <∞ and for all δ,
there exists a compact K for which Qn(KC) < δ for all n. Then Qn has a weakly convergent
subsequence.

See Theorem 8.6.2 of (Bogachev, 2007). These results imply that R̄φ is upper semi-
continuous on M+(Rd)×M+(Rd).

Lemma 49 The functional R̄φ is upper semi-continuous with respect to the weak topology
on probability measures (in duality with C0(Rd)).

Notice that Lemma 12 implies that R̄φ is upper semi-continuous on the space M+(Kε) ×
M+(Kε) for a compact set K. However, on Rd, weak convergence of measures is defined
with respect to the dual of C0(Rd), the set of continuous functions vanishing at ∞. This
set is strictly smaller than Cb(Rd), and thus the relation (27) would not immediately imply
the the upper semi-continuity of Rεφ.

Proof Let Qn
0 ,Qn

1 be sequences of measures converging to Q0,Q1 respectively. Set Q =
Q0 + Q1.

Define a function F (R) = Q(BR(0)
C

). Then because this function is non-increasing, it
has finitely many points of discontinuity.

Let δ > 0 be arbitrary and choose R large enough so that F (R) < δ/C∗φ(1/2) and F is
continuous at R. Then notice that P(∂BR(0)) = 0 and thus one can apply Lemma 47 with
the set BR(0).

Now let ν0, ν1 be arbitrary measures. Consider νRi defined by νRi = νi|BR(0)
. Set

ν = ν0 + ν1, η = dν1/dν, νR = νR0 + νR1 , ηR = dνR1 /dν
R. Then on BR(0), ηR = η a.e. Thus

|R̄φ(νR0 , ν
R
1 )− R̄φ(ν0, ν1)| =

∣∣∣∣∫ C∗φ(η)1
BR(0)

dν −
∫
C∗φ(η)dν

∣∣∣∣ ≤ C∗φ(1

2

)
ν(BR(0)C) (61)

If we define Qi,R,Qn
i,R via Qi,R = Qi|BR(0)

, Qn
i,R = Qn

i = Qn
i |BR(0)

, Lemma 47 implies that

Qn
i,R converges weakly to Qi,R and limn→∞Qn(BR(0)

C
) = Q(BR(0)C) < δ. Therefore, for

sufficiently large n, Qn(BR(0)
C

) < 2δ/C∗φ(1/2). By Lemma 12 and (61),

lim sup
n→∞

R̄φ(Qn
0 ,Qn

1 ) ≤ lim sup
n→∞

R̄φ(Qn
0,R,Qn

1,R) +2δ ≤ R̄φ(Q0,R,Q1,R) +2δ ≤ R̄φ(Q0,Q1) +3δ

Because δ was arbitrary, the result follows.

Next we consider an approximation of P0, P1 by compactly supported measures.

Lemma 50 Let P0,P1 be finite measures. Define Pni = Pi|Bn(0)
for n ∈ N. Then Pn0 ,Pn1

converge weakly to P0, P1 respectively. Furthermore, there are measures P∗0 ∈ B∞ε (P0),P∗1 ∈
B∞ε (P1) for which

lim sup
n→∞

sup
P′1∈B∞ε (Pn1 )
P′0∈B∞ε (P0)n

R̄φ(P′0,P′1) ≤ R̄φ(P∗0,P∗1) (62)
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Proof Set P = P0 + P1, Pn = Pn0 + Pn1 . Notice that 2) of Theorem 46 implies that Pni
converges weakly to Pi. Let P∗,n0 ,P∗,n1 be maximizers of R̄φ over B∞ε (Pn0 )× B∞ε (Pn1 ). Next,

by Strassen’s theorem (Theorem 38), Pni (Br(0)) ≤ Pn,∗i (Br+ε(0)) and thus Pi(Br(0)
C

) ≥
Pni (Br(0)

C
) ≥ Pn,∗i (Br+ε(0)). Therefore, one can apply Prokhorov’s theorem (Thereom 48)

to conclude that Pn,∗0 , Pn,∗1 have subsequences Pnk,∗0 , Pnk,∗1 that converge to measures P∗0,P∗1
respectively. The upper semi-continuity of Rφ (Lemma 49) then implies that P∗0,P∗1 satisfy
(62).

It remains to show that P∗i ∈ B∞ε (Pi). We will apply Lemma 4. Because Pnk,∗i ∈ B∞ε (Pnki )
for all nk, Lemma 4 implies that for every f ∈ Cb(Rd),

∫
Sε(f)dPnki ≥

∫
fdP∗,nki . Because

Pnki converges weakly to Pi and P∗,nki converges weakly to P∗i , one can take the limit k →∞
to conclude

∫
Sε(f)dPi ≥

∫
fdP∗i for all f ∈ Cb(Rd). Lemma 4 then implies P∗i ∈ B∞ε (Pi).

Lemma 14 Let φ be a non-increasing, lower semi-continuous loss function and let P0,P1

be finite Borel measures supported on Rd. Let Sφ be as in (25). Then

inf
(h0,h1)∈Sφ

Θ(h0, h1) = sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

R̄φ(P′0,P′1)

Furthermore, there exist P∗0,P∗1 which attain the supremum.

Proof Let Pn0 , Pn1 , P∗0,P∗1 be the the measures described in Lemma 50. Notice that because
Pn0 , Pn1 are compactly supported, Lemma 13 applies. Define

Θn(h0, h1) =

∫
Sε(h1)dPn1 +

∫
Sε(h0)dPn0 .

Thus Lemmas 13 and Lemma 50 imply that

lim sup
n→∞

inf
(h0,h1)∈Sφ

Θn(h0, h1) = lim sup
n→∞

sup
P′0∈B∞ε (Pn0 )
P′1∈B∞ε (Pn1 )

R̄φ(P′0,P′1) ≤ R̄φ(P∗0,P∗1) ≤ sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

R̄φ(P′0,P′1).

(63)

We will show

inf
(h0,h1)∈Sφ

Θ(h0, h1) ≤ lim sup
n→∞

inf
(h0,h1)∈Sφ

Θn(h0, h1). (64)

Equations 63 and 64 imply that

inf
(h0,h1)∈Sφ

Θ(h0, h1) ≤ R̄φ(P∗0,P∗1) ≤ sup
P′0∈B∞ε (P0)
P′1∈B∞ε (P1)

R̄φ(P′0,P′1). (65)

This relation together with weak duality (Lemma 45) imply that the inequalities in (65)
are actually equalities. Therefore strong duality holds and P∗0,P∗1 maximizes the dual.
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Next, we prove the inequality in (64). Let δ > 0 be arbitrary and choose an n ∈ N for
which n > 2ε and

P1(Bn−2ε(0)
C

) + P0(Bn−2ε(0)
C

) ≤ δ (66)

Let (hn0 , h
n
1 ) ∈ Sφ be functions for which

Θn(hn0 , h
n
1 ) ≤ inf

(h0,h1)∈Sφ
Θn(h0, h1) + δ (67)

Define

h̃n0 =

{
hn0 x ∈ Bn−ε(0)

C∗φ
(

1
2

)
x 6∈ Bn−ε(0)

h̃n1 =

{
hn1 x ∈ Bn−ε(0)

C∗φ
(

1
2

)
x 6∈ Bn−ε(0)

Because ηhn0 + (1− η)hn1 ≥ C∗φ(η) ∀η ∈ [0, 1] on Bn−ε(0) and (C∗φ(1/2), C∗φ(1/2)) ∈ Sφ, one

can conclude that (h̃n0 , h̃
n
1 ) ∈ Sφ.

Now because n > 2ε, the regions Bn−ε(0), Bn−2ε(0) are non-empty. One can bound
Sε(h̃i) in terms of Sε(hi) and C∗φ(1/2):

Sε(h̃i)(x) = Sε(hi)(x) for x ∈ Bn−2ε(0)

Sε(h̃i)(x) ≤ max(Sε(hi)(x), C∗φ(1/2)) ≤ Sε(hi) + C∗φ(1/2) for x ∈ Bn(0)

Sε(h̃i) = C∗φ(1/2) for x ∈ Bn(0)
C

Now for each i, these bounds imply that∫
Sε(h̃

n
i )dPi ≤

∫
Bn−2ε(0)

Sε(h
n
i )dPi +

∫
Bn(0)−Bn−2ε(0)

Sε(h
n
i ) + C∗φ

(
1

2

)
dPi +

∫
Bn(0)

C
C∗φ

(
1

2

)
dPi

=

∫
Bn(0)

Sε(h
n
i )dPi +

∫
Bn−2ε(0)

C
C∗φ

(
1

2

)
dPi

Then, applying this bound for each i,

Θ(h̃n0 , h̃
n
1 ) =

∫
Sε(h̃

n
1 )dP1 +

∫
Sε(h̃

n
0 )dP0

≤

(∫
Bn(0)

Sε(h
n
1 )dP1 +

∫
Bn(0)

Sε(h
n
0 )dP0

)
+

(∫
Bn−2ε(0)

C
C∗φ

(
1

2

)
dP1 +

∫
Bn−2ε(0)

C
C∗φ

(
1

2

)
dP0

)

= Θn(hn0 , h
n
1 ) + C∗φ

(
1

2

)(
P0(Bn−2ε(0)

C
) + P1(Bn−2ε(0)

C
)
)
≤
(

inf
(h0,h1)∈Sφ

Θn(h0, h1) + δ

)
+ δC∗φ

(
1

2

)
The last inequality follows from Equations 66 and 67. Because δ arbitrary, (64) holds.

Appendix F. Complimentary Slackness

Lemma 15 Assume that P0,P1 are compactly supported. The functions h∗0, h
∗
1 minimize Θ

over Sφ and (P∗0,P∗1) maximize R̄φ over B∞ε (P0)× B∞ε (P1) iff the following hold:
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1) ∫
h∗1dP∗1 =

∫
Sε(h

∗
1)dP1 and

∫
h∗0dP∗0 =

∫
Sε(h

∗
0)dP0 (30)

2) If we define P∗ = P∗0 + P∗1 and η∗ = dP∗1/dP∗, then

η∗(x)h∗1(x) + (1− η∗(x))h∗0(x) = C∗φ(η∗(x)) P∗-a.e. (31)

Notice that the forward direction of this lemma is actually a consequence of the approxi-
mate complimentary slackness result in Lemma 16, but we provide a separate self-contained
proof below.

Proof

First assume that (P∗0,P∗1) maximizes R̄φ over B∞ε (P0)×B∞ε (P1) and (h∗0, h
∗
1) minimizes

Θ over Sφ. Because P∗i ∈ B∞ε (Pi) and (h∗0, h
∗
1) ∈ Sφ, by Lemma 3

Θ(h∗0, h
∗
1) =

∫
Sε(h

∗
1)dP1 +

∫
Sε(h

∗
0)dP0 ≥

∫
h∗1dP∗1 +

∫
h∗0dP∗0 (68)

=

∫
η∗h∗1 + (1− η∗)h∗0dP∗ ≥

∫
C∗φ(η∗)dP∗ = R̄φ(P∗0,P∗1) (69)

By Lemma 14, both the first expression of (68) and the last expression of (69) are equal.
Thus all the inequalities above must be equalities which implies (31). Next, because (69)
implies that ∫

Sε(h
∗
1)dP1 +

∫
Sε(h

∗
0)dP0 =

∫
h∗1dP∗1 +

∫
h∗0dP∗0

and Lemma 3 implies that
∫
Sε(h

∗
0)dP0 ≥

∫
h∗0dP∗0 and

∫
Sε(h

∗
1)dP1 ≥

∫
h∗1dP∗1 we can

conclude (30).

We will now show the opposite implication. Assume that h∗0, h
∗
1,P∗0,P∗1 satisfy (30) and

(31). Then

Θ(h∗0, h
∗
1) =

∫
Sε(h

∗
1)dP1 +

∫
Sε(h

∗
0)dP0

=

∫
h∗1dP∗1 +

∫
h∗0dP∗0 (Equation 30)

=

∫
η∗h∗1 + (1− η∗)h∗0dP∗ =

∫
C∗φ(η∗)dP∗ (Equation 31)

= R̄φ(P∗0,P∗1)

However, Lemma 14 implies that Θ(h0, h1) ≥ R̄φ(P′0,P′1) for any h0, h1,P′0,P′1. Therefore,
h∗0, h

∗
1 must be optimal for Θ and P∗0,P∗1 must be optimal for R̄φ.

Notably, a similar strategy shows that if (hn0 , h
n
1 ) ∈ Sφ is a sequence that satisfies 1) and 2)

of Lemma 16, then (hn0 , h
n
1 ) must be a minimizing sequence for Θ.
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Appendix G. Technical Lemmas from Section 6

G.1 Proof of Lemma 17

Lemma 17 Let ψ(α) = e−α. Then C∗ψ(η) = 2
√
η(1− η) and αψ(η) = 1/2 log(η/1 − η) is

the unique minimizer of Cψ(η, ·), with αψ(0), αψ(1) interpreted as −∞, +∞ respectively.
Furthermore, ∂C∗ψ(η) is the singleton ∂C∗ψ(η) = {ψ(αψ(η))− ψ(−αψ(η))}.

Proof First, one can verify that −∞ minimizes Cψ(0, α) and ∞ minimizes Cψ(1, α),
and that C∗ψ(0) = C∗ψ(1) = 0. To find minimizers of Cψ(η, α) for η ∈ (0, 1), we solve

∂αCψ(η, α) = −ηe−α + (1 − η)eα = 0, resulting in αψ(η) = 1/2 log(η/1− η). This formula
allows for computation of C∗ψ(η) via C∗ψ(η) = Cψ(η, αψ(η)).

Next, by definition

ηψ(αψ(η)) + (1− η)(−ψ(αψ(η))) = C∗ψ(η) and sψ(αψ(η)) + (1− s)(−ψ(αψ(η))) ≥ C∗ψ(s)

for all s ∈ [0, 1]. Therefore, ψ(αψ(η))− ψ(−αψ(η)) is a supergradient of C∗ψ(η) at η.
The function C∗ψ is differentiable on (0, 1), and thus the superdifferential is unique on

this set. To show that ∂C∗ψ(0), ∂C∗ψ(1) are singletons, it suffices to observe that

lim
η→0

d

dη
C∗ψ(η) = +∞, lim

η→1

d

dη
C∗ψ(η) = −∞.

G.2 Proof of Lemma 18

Lemma 18 Let (an, bn) be a sequence for which an, bn ≥ 0 and

ηan + (1− η)bn ≥ C∗ψ(η) for all η ∈ [0, 1] (39)

and
lim
n→∞

η0an + (1− η0)bn = C∗ψ(η0) (40)

for some η0. Then limn→∞ an = ψ(αψ(η0)) and limn→∞ bn = ψ(−αψ(η0)).

Proof Recall that on the extended real number line, every subsequence has a convergent
subsequence. We will show that limn→∞ an = ψ(αψ(η0)) and limn→∞ bn = ψ(−αψ(η0))
by proving that every convergent subsequence of {an} converges to ψ(αψ(η0)) and every
convergent subsequence of bn converges to ψ(αψ(η0)).

Let ank , bnk be a convergent subsequences of {an}, {bn} respectively. (Again, this
convergence is in R.) Set a = limk→∞ ank , b = limk→∞ bnk .

Then (39) (40) imply that

ηa+ (1− η)b ≥ C∗ψ(η) for all η ∈ [0, 1]

η0a+ (1− η0)b = C∗ψ(η0) (70)
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These equations imply that a− b ∈ ∂C∗ψ(η0) and thus

a− b = ψ(αψ(η0))− ψ(−αψ(η0)) (71)

while (70) is equivalent to

η0a+ (1− η0)b = η0ψ(αψ(η0)) + (1− η0)ψ(−αψ(η0)) (72)

The equations (71) and (72) comprise a system of equations in two variables with a
unique solution for a and b.

G.3 Proof of Lemma 20

Lastly, we prove Lemma 20.

Lemma 20 Let hn be any sequence of functions. Then the sequence hn satisfies

lim inf
n→∞

Sε(hn) ≥ Sε(lim inf
n→∞

hn) (43)

and
lim sup
n→∞

Sε(hn) ≥ Sε(lim sup
n→∞

hn) (44)

Proof We start by showing (43).

lim inf
n→∞

Sε(hn)(x) = lim inf
n→∞

sup
‖h‖≤ε

hn(x + h) = sup
N

inf
n≥N

sup
‖h‖≤ε

hn(x + h)

≥ sup
‖h‖≤ε

sup
N

inf
n≥N

hn(x + h) = sup
‖h‖≤ε

lim inf
n→∞

hn(x + h) = Sε(lim inf
n→∞

hn)(x)

Equation 44 can then be proved by the same argument:

lim sup
n→∞

Sε(hn)(x) = lim sup
n→∞

sup
‖h‖≤ε

hn(x + h) = inf
N

sup
n≥N

sup
‖h‖≤ε

hn(x + h)

≥ sup
‖h‖≤ε

inf
N

sup
n≥N

hn(x + h) = sup
‖h‖≤ε

lim sup
n→∞

hn(x + h) = Sε(lim sup
n→∞

hn)(x)
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