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Abstract

Selecting the number of topics in Latent Dirichlet Allocation (LDA) models is considered
to be a difficult task, for which various approaches have been proposed. In this paper the
performance of the recently developed singular Bayesian information criterion (sBIC) is
evaluated and compared to the performance of alternative model selection criteria. The
sBIC is a generalization of the standard BIC that can be applied to singular statistical
models. The comparison is based on Monte Carlo simulations and carried out for several
alternative settings, varying with respect to the number of topics, the number of docu-
ments and the size of documents in the corpora. Performance is measured using different
criteria which take into account the correct number of topics, but also whether the rele-
vant topics from the considered data generation processes (DGPs) are revealed. Practical
recommendations for LDA model selection in applications are derived.

Keywords: Topic models, text analysis, latent Dirichlet allocation, singular Bayesian
information criterion, Monte Carlo simulation, text generation

1. Introduction

Text data have been increasingly used in different applications lately. One of the main
challenges in working with text data is to structure and to quantify these data. To this
end, probabilistic topic modelling approaches are often applied, as they allow to uncover
hidden structures behind text data. One of the best-known and widely used topic modelling
approaches is Latent Dirichlet Allocation (LDA) introduced by Blei et al. (2003). For some
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recent applications making use of this method, see, e.g., Lüdering and Winker (2016),
Thorsrud (2020), Ellingsen et al. (2022), and Savin and Teplyakov (2022).

LDA is a generative model that builds on two basic assumptions. First, it is assumed
that each document in a corpus represents a mixture of topics. The second assumption is
that each topic is determined by a mixture of terms from the vocabulary. The number of
these topics, or themes, is a parameter to be set by the researcher. Often this decision is
based on human/expert judgment and is, therefore, rather subjective. In order to account
for possible subjectivity and to allow for a more standardised estimation procedure, various
evaluation metrics have been developed for identifying an optimal number of topics in LDA
models. Some of them aim to minimize the similarity of different topics (Cao et al., 2009),
maximize the topic coherence (Mimno et al., 2011) or maximize the goodness-of-fit between
the estimated and the actual document-term frequencies (Lewis and Grossetti, 2022). These
criteria, however, often result in (substantially) different numbers when applied to the same
corpus. Their performance might also differ across corpora depending on the underlying
data set (see examples in Section 2). Bystrov et al. (2022) propose to use a new measure for
selecting an optimal number of topics, namely the singular Bayesian information criterion
(sBIC). This information criterion reflects the trade-off between goodness-of-fit and model
complexity and showed promising results in a first application.

There have been some attempts to compare selected criteria based on individual real
datasets.1 In this paper, comprehensive Monte Carlo (MC) simulations are proposed, which
allow a systematic evaluation going beyond individual case reports by using a large number
of datasets coming from well defined data generating processes (DGP) with known prop-
erties. Thereby, we consider three different data generating processes to reflect different
types of text data commonly used in applications. In a first step, we generate corpora with
a known (true) number of topics under the assumption that the underlying DGPs follow an
LDA process (LDA based text generation). Afterwards, to each of the generated corpora
in each of the considered DGPs, LDA models with different numbers of topics are fitted.
Then, we apply several alternative criteria to select the number of topics and evaluate the
performance of criteria over many MC replications. To the best of our knowledge, no such
systematic and comprehensive comparison analysis of the criteria used for selecting the
number of topics in LDA models has been performed yet.

The contribution of this paper is threefold. First, with the sBIC we implement a new
measure for identifying the true number of topics in LDA models. Second, we perform
proper Monte Carlo (MC) simulations to evaluate the proposed criterion as well as several
alternatives commonly used in applications. Third, we evaluate the performance of studied
criteria quantitatively and qualitatively, i.e., we consider whether the actual number of
topics as well as the content and structure of the estimated topics are approximated well

The remainder of this paper is structured as follows. The considered model selection
criteria are described in Section 2. Section 3 presents the design and the implementation
details of the MC simulations. The results of the MC simulations for three different DGPs
are presented in Section 4, which is divided in two subsections to address the main trade-
off between number of topics and coherence/structure of the uncovered topics. The final
section summarises the findings and provides recommendations for applications.

1. A notable exception including also a small scale Monte Carlo simulation is Lewis and Grossetti (2022).
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2. Model Selection Criteria for LDA

The selection of the optimal number of topics for LDA models can be based either on
measures of topic quality (similarity or coherence) or on measures of goodness-of-fit and
model complexity.

Let us consider an LDA model under a standard “bag-of-words” assumption. For a
document corpus D that consists of J documents, each document j (j = 1, 2, . . . , J) is a
set of Nj words, where the ordering of words is ignored. The total number of words in

the corpus is equal to N =
∑J

j=1Nj . The document corpus D can be characterized by a

J × I document-term frequency matrix X = {xji}J,Ij,i=1, where xji is the frequency of term
i encountered in document j and I is the number of different terms in the vocabulary.

Under the “bag-of-words” assumption, an LDA model can be summarized by a J ×K
matrix θ of document-topic frequencies and a K × I matrix β of topic-term frequencies
with the dimensions of these matrices depending on the number of topics K. The estimated
document-term matrix is a product of estimates θ̂ and β̂: X̂ = θ̂×β̂. A set of candidate LDA
models is determined by the numbers of topics in candidate models: K ∈ {Kmin, . . . ,Kmax}.

In the following, we describe two popular semantic measures of topic quality, which are
often used in applications, and two recently developed goodness-of-fit measures.

2.1 Topic Similarity

Following Cao et al. (2009), the optimal number of topics is often selected by minimizing
the average cosine similarity across topics:

Cao Juan(K) =

∑K
k=1

∑K
l=k+1 corr(k, l)

K × (K − 1)/2
,

where

corr(k, l) =

∑I
i=1 βkiβli√∑I

i=1 β
2
ki

√∑I
i=1 β

2
li

,

and βki is the frequency of term i in topic k.
The average cosine similarity is extensively used for selecting the number of topics in

different text-as-data applications, e.g. analyzing scientific articles to examine the evolution
of research over time and identify future fields of research (Loureiro et al., 2021; Tiba
et al., 2018), analyzing the speeches by Executive Board members of the European Central
Bank (Hartmann and Smets, 2018), investigating news data in the context of economic
reforms (Lin and Katada, 2022), analyzing and categorizing innovation projects (Dahlke
et al., 2021).

2.2 Topic Coherence

Mimno et al. (2011) proposed a model selection procedure that maximizes the average
semantic coherence of topics:
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Mimno(K) =
1

K

K∑
k=1

coh(k, i(k)),

where coh(k, i(k)) is the coherence metric for topic k,

coh(k, i(k)) =
2

v × (v − 1)

v∑
m=2

m−1∑
n=1

log
f(i

(k)
m , i

(k)
n ) + ε

f(i
(k)
n )

,

i(k) = (i
(k)
1 , . . . , i

(k)
v ) is the list of the v most frequent terms in topic k, f(i) is the document

frequency of term i (i.e., the number of documents with at least one token of type i),
and f(i, i′) is the co-document frequency of terms i and i′ (i.e., the number of documents
containing one or more tokens of type i and at least one token of type i′). The smoothing
parameter ε is included to avoid taking the logarithm of zero and its default value is given
by e−12. The number of the most frequent terms, v, is set to the default value of 20.

The average semantic coherence is often used for selecting the number of topics in
applied topic mining, e.g., for the analysis of monetary policy speeches (Ferrara et al.,
2022), stock market news (Adämmer and Schüssler, 2020), tweets concerning the energy
market (Polyzos and Wang, 2022), or survey responses on the consequences of the Covid-19
pandemic (Kleinberg et al., 2020).

2.3 OpTop Criterion

Lewis and Grossetti (2022) proposed to use a goodness-of-fit statistic based on the com-
parison of actual and estimated document-term frequencies. The frequency of term i in
document j estimated in an LDA model with K topics is

x̂
(K)
ji =

K∑
k=1

θ̂
(K)
jk β̂

(K)
ki .

Because the matrix of document-term frequencies is usually sparse, Lewis and Grossetti
(2022) suggest collapsing relatively rare terms in a single frequency bin. For document j,

they order terms from the smallest to the largest estimated frequency, (i
(j)
1 , i

(j)
2 , . . . , i

(j)
I )

such that x̂
(K)

ji
(j)
1

≤ x̂
(K)

ji
(j)
2

≤ . . . ≤ x̂
(K)

ji
(j)
I

, and select a sub-vector of relatively rare terms

(i
(j)
1 , i

(j)
2 , . . . , i

(j)
p ). The cumulative frequency of relatively rare terms in document j esti-

mated in an LDA model with K topics is

x̂
(K)
j,min =

∑
i∈(i

(j)
1 ,...,i

(j)
p )

x̂
(K)
ji ,

where x̂
(K)

ji
(j)
p

is the largest frequency such that
∑i

(j)
p

i=i
(j)
1

x̂
(K)
ji < xcutoff , and xcutoff is a cumula-

tive frequency cut-off value. Following Lewis and Grossetti (2022), we use xcutoff = 0.05 as
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a baseline cut-off value. (For a robustness check, we also consider a cut-off value of 0.20).
The actual cumulative frequency of relatively rare terms in document j is

xj,min =
∑

i∈(i
(j)
1 ,...,i

(j)
p )

xji.

The resulting goodness-of-fit statistic is

OpTop(K) =
J∑
j=1

(Pj + 1)

 ∑
i∈(i

(j)
p+1,...,i

(j)
I )

(x̂
(K)
ji − xji)2

x̂
(K)
ji

+
(x̂

(K)
j,min − xj,min)2

x̂
(K)
j,min


 , (2.1)

where (i
(j)
p+1, . . . , i

(j)
I ) is a sub-vector of relatively frequent terms in the jth document and

Pj is the length of this sub-vector. Lewis and Grossetti (2022) propose to select an optimal
number of topics by minimizing the OpTop statistic (2.1). Unlike the criteria proposed by
Cao et al. (2009) and Mimno et al. (2011), the OpTop statistic is not a semantic measure
of topic quality, but a goodness-of-fit measure that can be easily computed.

2.4 Singular Bayesian Information Criterion

The last model selection criterion – the singular Bayesian information criterion – is a gen-
eralization of the Bayesian information criterion (BIC) that can be applied to singular
statistical models (Drton and Plummer (2017)). The criterion was successfully used by
Bystrov et al. (2022) for selecting parsimonious LDA models with coherent topics, however
the properties of the criterion as applied to LDA modelling have not been studied in a
simulation setup.

The standard BIC for an LDA model with K topics is of the form

BIC(K) = logP (D|θ̂, β̂,K)− dK
2

log(N), (2.2)

where P (D|θ̂, β̂,K) is the value of the likelihood function for corpus D given the estimated
matrices of document-topic and topic-term probabilities (θ̂ and β̂), dK = J(K−1)+(I−1)K
is the number of estimated parameters (model dimension), and N is the total number of
words in the corpus. The model dimension, dK , is a linear function of the number of topics,
K, and the term dK

2 log(N) in equation (2.2) is a penalty for increasing the number of
parameters.

The general formula of the BIC was derived by Schwartz (1978) as a quadratic ap-
proximation for the logarithm of the marginal likelihood under the assumption of a regular
(non-singular) model for which the Fisher information matrix is positive definite. For Latent
Dirichlet Allocation (LDA) models the Fisher matrix is singular and the quadratic approx-
imation of the log-marginal likelihood, which is used in the derivation of the standard BIC
(2.2), is not possible.
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The singular Bayesian information criterion (sBIC) can be derived using an approxima-
tion of the log-marginal likelihood described by Watanabe (2009). For an LDA model, this
approximation can be written as

logL(D|K) ' logP (D|θ̂, β̂,K)− [λKr log(N)− (mKr − 1) log log(N)] , (2.3)

where λKr is a rational number in the interval [0, dK/2], mKr is a natural number
in the range {1, 2, . . . , dK}, and r is an intrinsic value of the true distribution, r =
rank(θ × β), that depends on the true number of topics (see Hayashi (2021)). The
term [λKr log(N)− (mKr − 1) log log(N)] is an approximation of the model complexity in
LDA, which is determined by the number of non-redundant parameters in matrices of
document-topic and topic-term probabilities. It is smaller than the penalty in the stan-
dard BIC and, moreover, as a sub-linear function of the number of topics, K, the term
[λKr log(N)− (mKr − 1) log log(N)] grows slower than the penalty in the standard BIC
(see Watanabe (2009) and Hayashi (2021)). Therefore, a criterion based on the approxima-
tion (2.3) selects an LDA model with more topics than the standard BIC (2.2).

The coefficients λKr and mKr cannot be computed directly, because they depend on
the true number of topics. This problem can be overcome by applying model averaging
as proposed by Drton and Plummer (2017). In this approach, a feasible singular Bayesian
information criterion for an LDA model with K topics is defined as an approximation of
the log-marginal likelihood obtained by the averaging of sub-models (models with smaller
or equal number of topics). The feasible sBIC satisfies the equation

sBIC(K) = logP (D|θ̂, β̂,K)− log

∑
k≤K

ωKkN
λKk(logN)−(mKk−)

 ,
where the penalty term is the logarithm of the weighted average of

[
NλKk(logN)−(mKk−1)

]
with coefficients λKk and mKk depending on the number of topics in sub-models, k ≤ K,
and weights ωKk depending on the data. The computation of the feasible sBIC involves
calculating λKk and mKk for all k ≤ K as well as solving a system of quadratic equations.
Therefore, full details of computing the feasible sBIC for an LDA model are provided in
Appendix A.

3. Monte Carlo Simulations

Despite the broad usage of some metrics described in the previous section, there is not yet
consensus on which metric performs best, when it comes to selecting the number of topics.
Given that the data generating process (DGP) is unknown in applications, the relative
performance of the metrics can only be assessed on the basis of a subjective analysis of the
estimated topics. To account for this issue, we carry out a Monte Carlo (MC) simulation
study, for which the data are generated by well-defined DGPs with known numbers of
topics.2 This allows us to compare the performance of alternative metrics with regard to

2. The idea of using Monte Carlo simulations for obtaining well-defined text corpora has been applied
recently by Wang et al. (2021) in the context of model selection for text classification tasks. The authors
use the generated data to evaluate the classification performance of different topic models.
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the number of topics identified as well as to evaluate whether certain characteristics of
the corpora such as number or length of documents might affect the relative performance.
Furthermore, in the MC simulation study, we not only compare the selected number of
topics to the number of topics in the DGP, but we also evaluate whether the estimated
topics closely match the topics in the DGP.

This section provides the details of the Monte Carlo simulation setup used for the com-
parison of the methods described in Section 2. First, in Subsection 3.1 we present the general
framework that is applied for each of three different DGPs. Second, in Subsection 3.2 we
describe the DGPs, which are derived from actual corpora with typical characteristics of
textual data used in applications. Finally, Subsection 3.3 provides some technical imple-
mentation details.

3.1 Procedure

The three DGPs used in the Monte Carlo simulations are designed to replicate the charac-
teristics of a given real document corpus. Figure 1 presents the generic procedure which is
applied to each of these DGPs.

Figure 1: Generic procedure for Monte Carlo simulations with a given selection criterion

As described in Section 2, redLatent Dirichlet Allocation (LDA) is based on the assump-
tion that each document in a corpus is a distribution over a given number Ktrue of latent
topics and each topic is a distribution over a fixed corpus vocabulary (Blei et al., 2003).
Thus, an LDA model can be described by two matrices, the first containing the probabilities
of occurrence of each term in each topic (topic-term distribution), and the second providing
the probabilities of each topic occurring in a single document (document-topic distribution).
These matrices are used to generate text corpora in the MC simulations.

In the first step of the procedure, an LDA model is estimated using a real document
corpus with a number of topics that was used in previous analysis of the selected corpus.
In order to make certain that only distinct topics will be used for the MC generation of
text corpora in the following step, topics exhibiting a cosine similarity with other topics
larger than a selected cut-off value (95% or 99% percentile) are dropped and the document-
topic matrix is re-scaled to ensure that topic weights add up to one (see Appendix B
for more details). The data generating process based on distinct topics is intended to
approximate a feature of the generative LDA model described by Blei et al. (2003) where
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topics are independently drawn from a Dirichlet distribution. Dealing with well-separated
topics stabilizes the performance of the estimation methods developed for LDA.

In the second step, text corpora are generated using the estimated document-topic
and topic-term distributions. The text generation process based on LDA is presented in
Algorithm 1. For each document in the original corpus, a new Monte Carlo document is
created with the same number of words and document-topic distribution. For each word in
this document, a topic is randomly selected based on the known document-topic distribution
and then a term is drawn from the vocabulary using the known topic-term distribution.

As mentioned above, Algorithm 1 does not exactly reproduce the generative procedure
described in Blei et al. (2003) where rows of document-topic and topic-term frequency
matrices are drawn from Dirichlet distributions. In applications, hyper-parameters of these
distributions are not often estimated, and using exchangeable Dirichlet distributions in the
generating process could result in document-topic and topic-term frequency matrices that
structurally differ from frequency matrices estimated for actual text corpora. Therefore, we
use a synthetic approach that, on the one hand, approximates the essential features of the
generative LDA model and, on the other hand, replicates properties of frequency matrices
estimated for real data.

Algorithm 1 Text generation

1: for document = 1, 2, . . . , J do
2: document length = original document length
3: for word = 1, 2, . . . , document length do
4: Randomly select a topic from the document-topic distribution

of the current document

5: Randomly select a term from the topic-term distribution
6: Append the selected term to the current document
7: end for
8: Append the generated document to the corpus.
9: end for

Algorithm 1 is implemented in each DGP with 1 000 Monte Carlo replications, i.e., 1 000
corpora containing the same number of documents of same length as the original corpus.

In the third step of the procedure, we estimate LDA models with the number of topics
ranging from max{2;Ktrue − 20} to Ktrue + 20, where Ktrue is the number of topics in
the data generating process. The maximum length of the range of admitted values for the
number of topics is equal to 41 with the true number of topics, Ktrue, located in the center of
the range if Ktrue > 20. Otherwise, the lower bound is set to 2, the lowest sensible number
of topics. This limited range of admitted values for the number of topics is due to the high
computational costs of model estimation. The optimal number of topics is determined for
each of the selected criteria based on the estimated models.

In the final step, we compare the number of topics selected by different criteria using
descriptive statistics such as standard deviation, mean, median, and skewness (see Subsec-
tion 4.1). For the visualisation of the distributions over the number of topics determined
according to the considered criteria, we use histograms. Furthermore, in Subsection 4.2,
we provide information about the extent to which the content of topics used for generating
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texts is revealed in the estimated LDA with the number of topics selected by the different
criteria.

3.2 Data Generating Processes

The three data generating processes (DGPs) used for the Monte Carlo (MC) simulations
are related to three actual text corpora:

• DGP 1 replicates the characteristics of a corpus consisting of scientific papers pub-
lished in the Journal of Economics and Statistics (JES).

• DGP 2 reproduces features of the corpus consisting of abstracts submitted to Euro-
pean Research Consortium for Informatics and Mathematics (ERCIM) and Compu-
tational and Financial Econometrics (CFE) conferences.

• DGP 3 reproduces the properties of a corpus containing Newsticker items from heise
online.

The data from JES used for DGP 1 cover the period from 1984 to 2020 and consists of
704 documents with an average text length of about 3,000 words. The size of the vocabulary
for this corpus is equal to 3,911 terms. The collection focuses on scientific publications in
empirical economics and applied statistics. The initial number of topics selected was equal
to 60 as in Bystrov et al. (2022). After removing topics which were too similar, the final
number of topics used in DGP 1 is equal to 38 (Ktrue = 38).

The conference abstract data used for DGP 2 cover the period from 2007 to 2019 and
consists of 11,387 documents with an average text length of about 80 words. For this corpus
the vocabulary is composed of 1,796 terms. The focused nature of conference abstracts
suggests a limited number of topics. The initial number of topics selected for this corpus
was equal to 20. This number was reduced to 12 (Ktrue = 12) after removing the topics
that were too similar.

The heise data used for DGP 3 cover the period from 1996 to 2021 and include 181,402
documents with an average length of about 120 words. The number of terms in the vocab-
ulary for this corpus is equal to 4,675. The news platform discusses a significant number of
topics concerning technological advances. The initial number of topics selected was equal to
120. After removing the most similar topics, the final number of topics used in DGP 3 was
equal to 70 (Ktrue = 70). In the analysis we used only the most recent 50,000 documents
from this corpus because using the whole dataset would increase the computational costs
of MC simulations beyond the available capacities.

At this point, we would like to emphasize that in the described experiments, texts are
generated using an LDA model with distinct topics. It means that each generated text is
a ”bag-of-words”, where semantic and syntactic relationships between words, observed in
actual texts, are neglected. However, it allows us to create a controlled setting for text
generation as well as for evaluating model selection criteria. The results of applying the
considered criteria to actual corpora, which do not emerge from the generative LDA model,
may therefore differ from those presented in this study. Nevertheless, the results of the
described experiments provide insights into the usability of the model selection criteria in
settings when LDA constitutes a reasonable approximation to the actual DGP.
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3.3 Details of Implementation

All Monte Carlo simulations were implemented using Python. To generate random se-
quences used in the text generation stage (Algorithm 1), the random number generator
from Pythons’ numpy package was used (https://numpy.org/doc/stable/reference/
random/generator.html).

LDA models were estimated using the Gibbs sampler as implemented in the Python
package “lda” (https://pypi.org/project/lda/). The number of iterations was set to a
relatively small value of 1 000 due to computational constraints. Most other parameters of
the package were used at the default values. The point estimates of document-topic and
topic-term frequency matrices are computed as in Griffiths and Steyvers (2004).

For DGP 1, the numbers of topics in the estimated models ranged from 18 to 58; for
DGP, the number of topics ranged from 2 to 32; and for DGP 3 - from 50 to 90.

The average topic similarity (Cao Juan) and the average semantic coherence (Mimno)
criteria were computed using the Python package “tmtoolkit” (https://pypi.org/
project/tmtoolkit/). The Python implementations of the singular Bayesian informa-
tion criterion (sBIC) and the goodness-of-fit statistic (OpTop) model selection criteria were
written by the authors.

For high-precision computations in the implementation of sBIC we used the Python
module ”decimal” and wrote a procedure that augments precision if it is necessary. The
outer limits allowable for exponents of floating-point numbers have to be sufficiently large
in order to avoid exponent underflow and overflow in the computation of sBIC which is
a solution of a recursive system of quadratic equations parameterized by likelihood val-
ues in sub-models (see Appendix A). Compared to the estimation time of LDA models,
the additional time needed for high-precision computations in the sBIC algorithm is not
substantial.

Computations were performed using the high-performance-computing-cluster at
Justus Liebig University Giessen (justHPC) (https://www.hkhlr.de/de/cluster/
justhpc-giessen).3

4. Results

This section summarizes the results of the Monte Carlo simulations. It is divided into two
subsections. Subsection 4.1 presents and discusses the results of estimating the optimal
number of topics and subsection 4.2 evaluates the structure and contents of the estimated
topics.

4.1 Number of Topics

The first set of results concerns the estimation of the number of topics, K. Figures 2-
4 present histograms of the numbers of topics selected by different criteria for the three
considered data generating processes (DGPs). In each of the histograms, the red vertical
line depicts the true number of topics, Ktrue, used for generating the corpora. The shape
and location of histograms shown in Figures 2-4 suggest that the sBIC is clearly the best

3. Code details can be found in the Github repository for this paper at https://github.com/VikaNa/sBIC.

10

https://numpy.org/doc/stable/reference/random/generator.html
https://numpy.org/doc/stable/reference/random/generator.html
https://pypi.org/project/lda/
https://pypi.org/project/tmtoolkit/
https://pypi.org/project/tmtoolkit/
https://www.hkhlr.de/de/cluster/justhpc-giessen
https://www.hkhlr.de/de/cluster/justhpc-giessen
https://github.com/VikaNa/sBIC


Choosing the Number of Topics in LDA Models

method for selecting the number of topics for DGP 1 and DGP 2, while it performs similarly
to the method of Cao et al. (2009) for DGP 3.
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Figure 2: Comparison of evaluation metrics for DGP1
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Figure 3: Comparison of evaluation metrics for DGP2

Table 1 provides descriptive statistics computed for the number of topics selected by
each criterion. The results in Table 1 demonstrate that the mean and the median of the
number of topics estimated by the sBIC is the closest to the true value for all DGPs. For
DGP 2 the median of the estimates provided by the sBIC is the actual number of topics.
The performance of the criterion differs for DGP 1 and DGP 3. In the first case, the
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Figure 4: Comparison of evaluation metrics for DGP3

sBIC tends to select too many topics and in the second case, on average, it selects too few
topics. The differences between the true and the estimated values are relatively small, but
both types of estimation errors have their consequences. Overestimation of the number of
topics means that some spurious topics will be generated, while underestimation implies
that relevant topics will be omitted. These issues are further discussed in Section 4.2 where
the structure and content of the estimated topics is evaluated.

The performance of the OpTop statistic (goodness-of-fit) is rather poor as it has a strong
tendency to select too many topics for each DGP. This result is robust with respect to the
choice of the cut-off value for low-frequency terms (5% or 20%). In each case, the mean and
median values of the estimates are very close to the maximum of the range of candidates
for the optimal number of topics. Such large overestimation errors mean that a substantial
number of irrelevant topics would be estimated. Since, as noted by Mimno et al. (2011),
there is a trade-off between obtaining many refined and meaningful topics, the quality of
these additional topics found by the OpTop method might be expected to be rather low.

The performance of the average cosine similarity (Cao Juan) varies depending on the
DGP. The mean/median number of topics selected for DGP 1 is too large as compared to
the true number of topics, while the mean/median number of topics selected for DGPs 2
and 3 is too low as compared to the true number of topics. This outcome might depend on
particular features of the DGPs (e.g. DGP 1 including a relatively small number of longer
documents) which could be subject to further analyses. On the whole, the estimation errors
are larger than for the sBIC and smaller than in case of the OpTop criterion.

The unsystematic behaviour in terms of the tendency to over- or underestimate can
be also seen for the average semantic coherence (Mimno). The mean/median number of
topics selected for DGP 1 and DGP 3 is too large as compared to the true number of
topics, while there is severe underestimation problem for DGP 2. The performance of this
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procedure seems to be quite unstable as the estimates have the largest variance compared
to the remaining methods for DGP 1 and DGP 3.

DGP1
(Ktrue = 38)

DGP2
(Ktrue = 12)

DGP3
(Ktrue = 70)

sBIC

std 1.23 1.35 4.09
mean 40.15 12.28 65.43
median 40.00 12.00 66.00
skewness -0.24 0.00 -0.04

Cao Juan

std 4.54 1.68 5.36
mean 53.40 9.43 63.53
median 55.00 9.00 64.00
skewness -1.16 -0.28 0.12

Mimno

std 9.23 0.20 7.55
mean 47.88 2.04 79.50
median 50.00 2.00 81.00
skewness -1.89 5.55 -0.61

OpTop 5%

std 2.30 0.59 2.06
mean 55.81 31.70 88.03
median 57.00 32.00 89.00
skewness -1.22 -2.17 -1.28

OpTop 20%

std 2.39 0.67 2.61
mean 55.67 31.63 87.38
median 56.00 32.00 88.00
skewness -1.37 -1.78 -1.30

Table 1: Evaluation of different criteria

Table 2 reports the percentages of the number of topics, estimated by each criterion,
falling within symmetric intervals centered at the true number of topics, [Ktrue−k,Ktrue+k],
k ∈ {0, 1, 2, 3, 4, 5}. The sBIC clearly outperforms other criteria for all DGPs. This result
holds for all considered intervals. For example, in 88% of the cases sBIC delivers a topic
number between 35 and 41 for DGP 1 (Ktrue = 38). In nearly 60% of cases sBIc proposes a
number of topics between 65 and 75 for DGP 3 (Ktrue = 70) as opposed to 40% by Cao Juan
and 23% by Mimno.

4.2 Structure and Content of Topics

While the selected number of topics delivers first general insights on the performance of
different criteria, this indicator does not contain information on the correspondence between
the topics used to generate the text corpora and the topics obtained using the selected
number of topics in the estimation procedure. Therefore, the structure and the content of
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Ktrue − k ≤ Kmetric ≤ Ktrue + k
DGP Metric k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

DGP 1

Cao Juan 0.1 0.3 0.8 2.1 3.5 5.5
Mimno 0.2 0.3 0.6 1.4 2.4 3.7
OpTop 20% 0.0 0.0 0.0 0.0 0.0 0.0
OpTop 5% 0.0 0.0 0.0 0.0 0.0 0.0
sBIC 7.6 26.0 58.7 88.0 98.5 99.7

DGP 2

Cao Juan 8.0 24.5 48.3 75.5 87.5 94.4
Mimno 0.0 0.1 0.1 0.1 0.1 0.1
OpTop 20% 0.0 0.0 0.0 0.0 0.0 0.0
OpTop 5% 0.0 0.0 0.0 0.0 0.0 0.0
sBIC 26.9 68.4 97.1 99.9 100.0 100.0

DGP 3

Cao Juan 3.7 9.7 17.4 23.9 32.7 40.1
Mimno 2.8 8.0 11.6 15.4 20.1 23.4
OpTop 20% 0.0 0.0 0.0 0.0 0.1 0.3
OpTop 5% 0.0 0.0 0.0 0.0 0.0 0.0
sBIC 4.2 13.4 25.8 36.2 47.8 56.9

Table 2: Percentages of the estimated number of topics, Kmetric, falling within intervals
around the true number of topics, Ktrue

topics should be also evaluated.4 To this end, we propose to consider the problem as a
classification task. This allows us to compare the results obtained using all the different
selection criteria quantitatively making the use of well established performance measures,
precision and recall. In standard applications, these are defined as follows:

• Recall describes how many relevant items are retrieved.

• Precision indicates how many retrieved items are relevant.

In standard classification tasks, the length of predicted and actual labels is the same.
In our case it might be different, as the number of topics selected by each of the considered
criteria can deviate from the true number of topics as described in the previous subsection.
Thus, we define the True Positive (TP) class as those topics that were correctly identified,
i.e., true topics which find their match in the set of estimated topics for the number of
topics indicated by the given selection criterion. Using this definition, precision and recall
can be defined and calculated as follows:

Recall =
|TP|
Ktrue

, (4.1)

4. In applications, sometimes the quality of topics is analyzed based on human judgment. For example,
Morstatter and Liu (2018) present an approach based on existing measures of topic coherence and
extending them by a measure of topic consensus by humans. Although this approach delivers some
measure of interpretability by humans, the authors point out the need for automated and reproducible
measures of topic quality.
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where |TP| denotes the cardinality of the set TP and Ktrue is the true number of topics in
a particular DGP.

Precision =
|TP|
Kmetric

, (4.2)

where Kmetric is the proposed number of topics according to the selection criterion consid-
ered.

As there might be a trade-off between recall and precision, the F1 measure is often used
as a combined measure. F1 is calculated as follows:

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
. (4.3)

For computing these measures, estimated topics have to be matched with true topics
from the data generating process (DGP). This matching can be done using the topic match-
ing technique proposed by Bystrov et al. (2022), the so-called best matching. Thereby, each
topic is represented as a probability vector over the vocabulary. For each “true” topic, a
match in the set of estimated topics is identified using the cosine similarity measure. Cosine
similarity is often used in natural language processing to measure similarity between high-
dimensional text representations. For each topic of the “true” topic set, cosine similarities
to all the topics from the estimated topic set are calculated. Initially, a topic pair with the
highest cosine similarity value is considered a “best match”. Obviously, a “best match” does
not have to be a sensible match, i.e., close to the true topic. Therefore, we apply a threshold
for the cosine similarity which has to be surpassed in order to consider a match as being a
sensible match. This threshold is the same as used for the topic number reduction step for
each DGP described in Subsection 3.2 (see Appendix B for further details). If one of the
“true” topics finds several sensible matches, we only consider the matches with the highest
cosine similarities. The number of identified matches corresponds to “true positives”, i.e.
the number of correctly identified topics. This number of reproduced topics is then divided
either by the true number of topic Ktrue (recall) or the estimated number of topics Kmetric

(precision).
Table 3 describes the distribution of precision and recall for each DGP and each eval-

uation metric.5 As mentioned before, our application differs from standard classification
problems as the number of true and estimated topics might differ. Hence, the interpretation
of the results is slightly different.

A precision value of 1 means that all of the estimated topics are sensible matches to
some of the true topics. However, it does not imply that all of the true topics are uncovered.
Consequently, this measure might overestimate the performance of a metric if it tends to
underestimate the true number of topics. For example, in case of DGP 2, the average
precision of topics selected by the Mimno criterion (average semantic coherence) is equal
to 1, while the average recall is equal to 0.17. In the previous subsection, it was shown

5. As a robustness check we also calculate the described performance metrics using cosine similarities instead
of the binary indicator match/no match. The procedure is described in Appendix D. The results do not
differ qualitatively.
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Recall Precision F1
data metric mean std mean std mean std

DGP1

Cao Juan 1.00 0.00 0.72 0.07 0.83 0.04
Mimno 0.96 0.12 0.78 0.09 0.85 0.06
OpTop 20% 1.00 0.00 0.68 0.03 0.81 0.02
OpTop 5% 1.00 0.00 0.68 0.03 0.81 0.02
sBIC 0.99 0.01 0.94 0.03 0.97 0.01

DGP2

Cao Juan 0.78 0.13 1.00 0.02 0.87 0.09
Mimno 0.17 0.02 1.00 0.00 0.29 0.02
OpTop 20% 1.00 0.00 0.38 0.01 0.55 0.01
OpTop 5% 1.00 0.00 0.38 0.01 0.55 0.01
sBIC 0.93 0.06 0.92 0.07 0.92 0.04

DGP3

Cao Juan 0.87 0.05 0.96 0.03 0.91 0.02
Mimno 0.93 0.04 0.83 0.05 0.87 0.02
OpTop 20% 0.98 0.01 0.79 0.03 0.87 0.02
OpTop 5% 0.98 0.01 0.78 0.02 0.87 0.02
sBIC 0.88 0.04 0.95 0.03 0.91 0.02

Table 3: Descriptive statistics of recall, precision, and F1 scores

that the Mimno metric tends to underestimate the true number of topics for DGP 2. Thus,
the high precision value only indicates that these few estimated topics are related to the
true topics. On the other hand, for the sBIC, which performs very well in case of DGP
2, there are relatively high values of both recall and precision (0.93 and 0.92, respectively)
indicating that mostly true topics and most of the true topics are recovered.

A recall value of 1 means that all of the true topics are uncovered by the estimated
topics. However, it does not imply that Kmetric = Ktrue. Consequently, this measure might
lead to overestimation of the performance of a metric if it tends to select too many topics.
For DGP 1, for example, the Cao Juan metric (average cosine similarity) reveals an average
recall value of 1, while the average precision value of 0.72 is substantially lower. Also in
this example, sBIC performs well with average recall and precision values of 0.99 and 0.94,
respectively.

To take account of the trade-off described above, it seems appropriate to combine preci-
sion and recall measures. This is done by using the F1 score which is defined in equation 4.3
a the harmonic mean of precision and recall. The interpretation of F1 is straightforward:
the higher the values the better the joint score of precision and recall. The results indicate
that the sBIC outperforms the other evaluation metrics for DGP 1 and DGP 2. For DGP 3,
according to the F1 score the sBIC is found to perform similarly to the Cao Juan criterion,
while still exhibiting some advantages compared to the other criteria.

5. Conclusions and Outlook

Estimating Latent Dirichlet Allocation (LDA) models requires making a number of decisions
regarding parameter settings. This paper considered the problem of selecting the value of
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one of those essential parameters, viz. the number of topics discussed in the text corpus. The
main aim was to analyze the performance of various model selection criteria with special
focus on the recently proposed singular Bayesian information criterion. The performance
of the methods was examined via Monte Carlo experiments using synthetic data generating
processes (DGPs) based on empirical text corpora which differed with respect to the number
and length of documents and the number of topics. This text generation process was
based on the assumption that the considered DGPs actually follow an LDA process (or
could be approximated by an LDA process). The generalizability of the results is therefore
limited. The performance of different model selection procedures was evaluated by not only
examining the accuracy of estimating the actual number of topics but also by analyzing the
structure and contents of the estimated topics.

Simulation results showed that the singular Bayesian information criterion (sBIC) per-
formed relatively well for all data generating processes considered in the experiments. It
was the best method for estimating the number of topics as it was associated with the
smallest estimation errors as compared to the competitors. In addition, it resulted in topics
with good content and structure and performed in a relatively stable fashion for all data
generating processes. Across the DGPs, the performance of the sBIC was worst for DGP 3
corresponding to a text corpus with a large number of short documents and a substantial
number of topics. In this setting, sBIC exhibited a certain downward bias in the selected
number of topics which might be taken into account in applied work. The reasons for this
finding and possible adjustments to the method might be subject to further analyses.

The performance of the methods proposed by Cao et al. (2009) (the average cosine
similarity) and Mimno et al. (2011) (the average semantic coherence) depended on the
DGP. For each of these methods, the experiments revealed cases of systematic under- or
overestimation of the true number of topics. The estimation errors were larger than those
found for the sBIC and had some negative consequences for the structure and content of
the estimated topics. Dependence on the DGP implies that reliability and stability of
these methods cannot be guaranteed in applied work unless further analyses will explain
the relation between features of a DGP and the model selection results. Despite these
drawbacks, the method of Cao et al. (2009) was still overall the second best approach to
LDA model selection in the experiments reported in this paper. It was found that the
method could be particularly useful for modelling collections of many short texts related to
a large range of topics.

The final set of conclusions relates to the OpTop criterion (the goodness-of-fit statistic).
It was shown that the method tends to select models with an excessively large number of
topics. The estimation errors were very substantial and led to small precision and F1 metric
values used for examining the content and structure of estimated topics. These results imply
that using this criterion in applied work can result in obtaining some spurious topics, which
do not correspond to the data generating process. It seems that poor estimation properties
of the OpTop procedure could be improved by the introduction of an appropriate penalty
for model complexity (which increases with the number of topics) into the test statistic
formula. This adjustment constitutes a direction of future research.

17



Bystrov, Naboka-Krell, Staszewska-Bystrova, Winker

Acknowledgments

Financial support from the German Research Foundation (DFG) (WI 2024/8-1) and the
National Science Centre (NCN) (Beethoven Classic 3: UMO-2018/31/G/HS4/00869) for the
project TEXTMOD is gratefully acknowledged. The project also benefited from cooperation
within HiTEC Cost Action CA 21163.

Appendix A. Computation of the singular Bayesian Information
Criterion (sBIC)

The marginal likelihood of a corpus D composed of J documents with a vocabulary including
I terms given an LDA model with K topics is defined as

L(D|K) =

∫
θ,β
P (D|θ, β,K)dP (θ, β|K), (A.1)

where P (D|θ, β,K) is the value of the likelihood function for the corpus D given (J ×K)
matrix of document-topic probabilities θ and (K × I) matrix of topic-term probabilities β,
and P (θ, β|K) is a prior distribution of matrices θ and β in the LDA model with K topics.

An approximation of the marginal likelihood (A.1), based on the averaging of sub-models
with number of topics k = Kmin, . . . ,K, is defined as (see Drton and Plummer (2017))

L′(D|K) =

∑K
k=Kmin

L′KkL(D|k)P (k)∑K
k=Kmin

L(D|k)P (k)
, (A.2)

where P (k) is a prior for a model with k topics (assumed to be a known positive constant).
The term L′Kk is

L′Kk = P (D|θ̂, β̂,K)N−λKk(logN)mKk−1, (A.3)

where P (D|θ̂, β̂,K) is the value of the likelihood function given the estimated parameter
matrices θ̂ and β̂ in the LDA model with K topics, and coefficients λKk, mKk are computed
for k = Kmin, . . . ,K using formulas from Hayashi (2021) where the rank of the matrix
product θ×β in true distribution, r, is replaced by the number of topics in a sub-model, k:

1. If J + k ≤ I +K, I + k ≤ J +K, K + k ≤ I + J and

(a) if I + J +K + k − 1 is odd, then
λKk = 1

8

{
2(K + k)(I + J)− (I − J)2 − (K + k)2

}
− 1

2J and mKk = 1

(b) if I + J +K + k − 1 is even, then
λKk = 1

8

{
2(K + k)(I + J)− (I − J)2 − (K + k)2 + 1

}
− 1

2J and mKk = 2

2. Else if I +K < J + k, then λKk = 1
2 {IK + Jk −Kk − J}, mKk = 1

3. Else if J +K < I + k, then λKk = 1
2 {JK + Ik −Kk − J}, mKk = 1
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4. Else (i.e. I + J < K + k), then λKk = 1
2(IJ − J), mKk = 1.

In equation (A.2) the approximation of the marginal likelihood, L′(D|K), is expressed as
a function of the actual marginal likelihoods L(D|k), k = Kmin, . . . ,K. Drton and Plummer
(2017) resolve this problem by replacing the unknown marginal likelihoods L(D|k) on the
right-hand side of (A.2) by their approximations, L′(D|k), and considering a system of
equations

L′(D|K) =
K∑

k=Kmin

L′(D|k)P (k)∑K
k=Kmin

L′(D|k)P (k)
L′Kk, K = Kmin, . . . ,Kmax, (A.4)

where L′Kk and P (k) are known constants and L′(D|K) are unknowns to be found. Then
the singular Bayesian information criterion for a model with K topics is defined as

sBIC(K) = logL′(D|K), (A.5)

where L′(D|K) is the unique solution of the transformed equation system (assuming that
P (K) > 0 for K = Kmin, . . . ,Kmax)

K∑
k=Kmin

[L′(D|K)− L′Kk]L′(D|k) = 0, K = Kmin, . . . ,Kmax (A.6)

that can be found inductively with L′(D|Kmin) = L′KminKmin
> 0 for the minimal model.

Proceeding by induction, if L′(D|k) have been computed for all k = Kmin, . . . , (K−1), then
L′(D|K) is the unique positive solution of quadratic equation

L′(D|K)2 + bKL
′(D|K)− cK = 0, (A.7)

with

bK = −L′KK +

K−1∑
k=Kmin

L′(D|k)
P (k)

P (K)
and cK =

K−1∑
k=Kmin

L′KkL
′(D|k)

P (k)

P (K)
.

Since cK > 0 by induction, the quadratic equation (A.7) has the unique positive solution

L′(D|K) =
1

2

(
−bK +

√
b2K + 4cK

)
for K = Kmin + 1, . . . ,Kmax. Given formulas (A.3), (A.4) and (A.5), sBIC should satisfy

sBIC(K) = logP (D|θ̂, β̂,K)− log

 K∑
k=Kmin

ωKkN
λKk(logN)−(mKk−1)
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where weights ωKk are defined as

ωKk =
L′(D|k)P (k)∑K

k=Kmin
L′(D|k)P (k)

, k = Kmin, . . . ,K.

Because the coefficient λKk is less than half the model dimension, 1
2 [J(K − 1) + (I − 1)K],

for every k = Kmin, . . . ,K, the penalty in the singular BIC is less than in the standard BIC
for an LDA model with the same number of topics. Moreover, the penalty for increasing
the number of topics in the singular BIC grows slower as compared to the standard BIC.

Appendix B. Topic Number Reduction

The goal of the topic number reduction step in preparing our DGPs for the Monte Carlo
simulations was to use well separated topics allowing for a robust comparison of the topics
estimated with the underlying DGPs. The process of topic number reduction comprises the
following three steps:

1. Starting with the estimated LDA for a given corpus, for each topic the most similar
other topic is identified using the standard matching proposed by Bystrov et al. (2022).

2. For deciding whether a pair of topics is “too similar”, i.e., will be excluded before
generating synthetic data within the Monte Carlo simulation, a threshold value has
to be defined. This value is also obtained by a data driven approach. We calculate all
pairwise cosine similarity scores for each DGP providing K2−K

2 typical values. Sorting
them in increasing order provides the distributions shown in Figure 5. Following the
approach of the “elbow” criterion, we set percentile values defining the cut-off value
for each DGP. These values are shown in the figure by the red horizontal line and
correspond to the 95% percentile for DGP2 and to the 99% percentile for DGPs 1 and
3, respectively.
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Figure 5: Distribution of the pairwise cosine similarity values.

3. All topics belonging to matched topic pairs above the cut-off value are considered
as being too similar and, consequently, are removed from the model before starting
the data generation within the Monte Carlo simulation. Figures 6, 7, and 8 show
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examples of pairs including redundant topics in each DGP, which are eliminated by
this method.

Topic 30 Topic 12

Figure 6: Similar topics in DGP 1

Topic 6 Topic 3

Figure 7: Similar topics in DGP 2

Appendix C. Recall and Precision

Figures 9, 10, and 11 exhibit the scatter plots of recall and precision values for each DGP
separately. Thereby, each point corresponds to one of the simulated corpora. Consequently,
there is a total of 300 points in each plot. However, the evaluation metrics considered may
result in the same recall and precision scores for multiple corpora. Thus, some points may
overlap.
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Topic 74 Topic 61

Figure 8: Similar topics in DGP 3
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Figure 9: Precision and recall for DGP1
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Figure 10: Precision and recall for DGP2
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Figure 11: Precision and recall for DGP3
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Appendix D. Weighted Recall & Precision

As a robustness analysis, we report results for alternative definitions of recall and precision.
We identified a True Positive (TP) for the measures in Section 4.2, when the similarity of
matched topics was above a predefined threshold. Here, we use the actual cosine similarity
scores instead, which would be close to 1 for good matches. Hence, recall and precision
values are calculated as follows:

Recall =

∑n
i=1 cosine similarity scorei

Ktrue
, (D.1)

Precision =

∑n
i=1 cosine similarity scorei

Kmetric
, (D.2)

where Ktrue is the true number of topics in a particular DGP. Kmetric is the proposed number
of topics for the evaluation metric considered. The numerator contains the sum of cosine
similarity values of all the n identified matches. Therefore, recall presents the average cosine
similarity value among the matches relative to the true number of topics. Precision presents
the average cosine similarity value between the matches relative to the estimated number
of topics.

Table 4 summarizes the recall, precision, and F1 score values for this alternative defi-
nitions of recall and precision. As expected, the values are smaller than the values shown
in Table 3 for the original definitions, but the qualitative findings about the relative per-
formance of the different criteria remain unchanged. According to the F1 scores, sBIC
performs best for DGP 1 and DGP 2, while the average F1 scores are quite similar for all
the considered metrics in DGP 3, still with a minor advantage for Cao Juan and sBIC.

While recall and precision values of our standard implementation are discrete leading
to clustering of points in the scatter plots shown in Appendix C, the weighted recall and
precision values reported in this section are continuous and each point is actually unique
due to the differences in the cosine values, although these might be minor. Therefore, we do
not use the type of plots from Appendix C taking into account the clustering, but standard
scatter plots in Figures 12, 13, and 14.
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Recall Precision F1
data metric mean std mean std mean std

DGP1

Cao Juan 0.99 0.00 0.71 0.07 0.82 0.04
Mimno 0.95 0.13 0.76 0.08 0.83 0.07
OpTop 20% 0.98 0.00 0.67 0.03 0.80 0.02
OpTop 5% 0.98 0.00 0.67 0.03 0.80 0.02
sBIC 0.99 0.02 0.93 0.03 0.96 0.02

DGP2

Cao Juan 0.76 0.14 0.96 0.03 0.84 0.10
Mimno 0.11 0.02 0.66 0.02 0.19 0.02
OpTop 20% 1.00 0.00 0.38 0.01 0.55 0.01
OpTop 5% 1.00 0.00 0.38 0.01 0.55 0.01
sBIC 0.92 0.07 0.91 0.06 0.91 0.05

DGP3

Cao Juan 0.85 0.06 0.94 0.02 0.89 0.03
Mimno 0.92 0.04 0.81 0.05 0.86 0.02
OpTop 20% 0.98 0.02 0.78 0.03 0.87 0.02
OpTop 5% 0.98 0.02 0.78 0.02 0.87 0.02
sBIC 0.86 0.05 0.92 0.03 0.89 0.03

Table 4: Descriptive statistics of recall, precision, and F1 scores based on cosine similarity
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Figure 12: Precision and recall based on cosine similarity for DGP1
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Figure 13: Precision and recall based on cosine similarity for DGP2
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Figure 14: Precision and recall based on cosine similarity for DGP3
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