
Journal of Machine Learning Research 25 (2024) 1-30 Submitted 11/22; Revised 12/23; Published 2/24

Improving Lipschitz-Constrained Neural Networks by
Learning Activation Functions

Stanislas Ducotterd stanislas.ducotterd@epfl.ch

Alexis Goujon alexis.goujon@epfl.ch

Pakshal Bohra pakshal.bohra@epfl.ch

Dimitris Perdios dimitris.perdios@epfl.ch

Sebastian Neumayer sebastian.neumayer@epfl.ch

Michael Unser michael.unser@epfl.ch

Biomedical Imaging Group,

École polytechnique fédérale de Lausanne (EPFL),

CH-1015 Lausanne, Switzerland

Editor: Samy Bengio

Abstract

Lipschitz-constrained neural networks have several advantages over unconstrained ones
and can be applied to a variety of problems, making them a topic of attention in the deep
learning community. Unfortunately, it has been shown both theoretically and empirically
that they perform poorly when equipped with ReLU activation functions. By contrast,
neural networks with learnable 1-Lipschitz linear splines are known to be more expressive.
In this paper, we show that such networks correspond to global optima of a constrained
functional optimization problem that consists of the training of a neural network composed
of 1-Lipschitz linear layers and 1-Lipschitz freeform activation functions with second-order
total-variation regularization. Further, we propose an efficient method to train these neural
networks. Our numerical experiments show that our trained networks compare favorably
with existing 1-Lipschitz neural architectures.

Keywords: Lipschitz constraints, expressivity, splines, learning under constraints, ac-
tivation functions.

1. Introduction

Lipschitz-constrained neural networks limit the maximum deviation of the output in re-
sponse to a change of the input. This property allows them to generalize well (Luxburg
and Bousquet, 2004; Bartlett et al., 2017; Neyshabur et al., 2017; Sokolić et al., 2017), to
be robust against adversarial attacks (Tsuzuku et al., 2018; Engstrom et al., 2019; Hage-
mann and Neumayer, 2021; Pauli et al., 2022), and to be more interpretable (Ross and
Doshi-Velez, 2018; Tsipras et al., 2019). They also appear in the training of Wasserstein
generative adversarial networks (GAN) (Arjovsky et al., 2017). Finally, such networks can
be inserted in iterative plug-and-play (PnP) algorithms to solve inverse problems, with the
guarantee that the algorithm converges. For successful applications of PnP algorithms in
image reconstruction, we refer to Sreehariand et al. (2016); Meinhardt et al. (2017); Ryu
et al. (2019); Hertrich et al. (2021).

c©2024 Stanislas Ducotterd, Alexis Goujon, Pakshal Bohra, Sebastian Neumayer and Michael Unser.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/22-1347.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/22-1347.html

Ducotterd, Goujon, Bohra, Perdios, Neumayer, and Unser

Unfortunately, the computation of the Lipschitz constant of a neural network is NP-
hard, as shown in Virmaux and Scaman (2018). Rather than prescribing the exact Lips-
chitz constant of a network, one usually either penalizes large Lipschitz constants through
regularization, or constrains the Lipschitz constant of each linear layer and each activation
function. Regularization approaches (Cisse et al., 2017; Gulrajani et al., 2017; Bungert
et al., 2021) penalize the Lipschitz constant via a regularizer in the training loss. They
maintain good empirical performance, but do not offer a direct control of the Lipschitz
constant of the network.

1-Lip Architectures In the constrained design, which is the one that will be considered
here, one fixes the Lipschitz constant of each layer and of each activation function to one,
resulting in what we refer to as 1-Lip neural networks. There are several ways to impose
constraints on the linear layers. The most popular one is spectral normalization (Miyato
et al., 2018), where the `2 operator norm of each weight matrix is set to one. The required
spectral norms are computed via power iterations. To take this idea even further, Anil et al.
(2019) have restricted the weight matrices to be orthonormal in fully connected layers.

The use of rectified linear-unit (ReLU) activation functions in that setting, however,
appears to be overly constraining: it has been shown that 1-Lip ReLU networks cannot
even represent simple functions such as the absolute value function, both under 2-norm
(Anil et al., 2019) and ∞-norm (Huster et al., 2018) constraints on the linear layers. This
observation justifies the development of new activation functions specifically tailored to 1-
Lip architectures. Currently, the most popular one is GroupSort (GS), proposed by Anil
et al. (2019), where the pre-activations are split into groups that are sorted in ascending
order. This results in a multivariate and gradient-norm-preserving (GNP) activation func-
tion. The authors provide empirical evidence that GS outperforms ReLU on Wasserstein-1
distance estimation, robust classification, and function fitting under Lipschitz constraints.

We pursue an alternative way to boost the performance of 1-Lip neural networks. Our
motivation stems from several recent theoretical results in favor of linear-spline activation
functions (Neumayer et al., 2023). Notably, the authors prove that 1-Lipschitz linear splines
with three adjustable linear regions are capable of achieving the optimal expressivity among
all 1-Lip networks with component-wise activation functions. As those splines are unknown
and potentially different for each neuron, we must learn them.

So far, there is no efficient implementation of 1-Lipschitz learnable linear-splines (LLS).
Fortunately, we can build upon existing frameworks for learning unconstrained linear-splines
(Agostinelli et al., 2015; Jin et al., 2016; Bohra et al., 2020). In this setting, Unser (2019)
has proven that neural networks with such activation functions are solutions of a func-
tional optimization problem that consists of the training of a neural network with freeform
activation functions whose second-order total variation is penalized.

Contribution We extend the work of Bohra et al. (2020) to the Lipschitz-constrained
setting. In their experimental comparison, it was found to be the most efficient and stable
LLS framework. Since those parametric activation functions are a priori not 1-Lipschitz, it
is necessary to adapt the theory to this new setting and to develop computational tools to
control the Lipschitz constant. Here, our contributions are threefold.

2

Lipschitz Networks with Learnable Activation Functions

1. Theory: We show that 1-Lip LLS networks correspond to the global optima of a con-
strained functional-optimization problem. The latter consists of the training of a neural
network composed of 1-Lipschitz linear layers and 1-Lipschitz freeform activation functions
with second-order total-variation regularization. In particular, we prove that the solution
of this problem always exists. In effect, the 1-Lip constraint ensures stability, while the
second-order total-variation regularization favors configurations with few linear regions.

2. Implementation: We formulate the training as an unconstrained optimization problem
by representing the LLSs in a B-spline basis and by incorporating two novel modules.

1. An efficient method to explicitly control the Lipschitz constant of each LLS, which we
call SplineProj.

2. A normalization module that modulates the scale of each LLS without changing their
Lipschitz constant.

3. Application: First, we systematically assess the practical expressivity of various 1-Lip
architectures based on function fitting, Wasserstein-1 distance estimation and Wasserstein
GAN training. Then, as our main application, we perform image reconstruction within
the popular PnP framework. Here, we also prove that using 1-Lip networks leads to the
stability of the data-to-reconstruction map. Our framework significantly outperforms the
others for PnP image reconstruction, and at least matches them in all other experiments.
Hence, we expect that LLS can be successfully deployed to any learning task that requires
1-Lip architectures. Our code is accessible on Github1.

2. 1-Lip Neural Networks

A function f : Rm → Rn is K-Lipschitz (K > 0) if, for all x1,x2 ∈ Rm, it holds that

‖f(x1)− f(x2)‖ ≤ K‖x1 − x2‖. (1)

The Lipschitz constant Lip(f) of f is the smallest constant K such that f is K-Lipschitz.
Here, we only consider ‖ · ‖ to be the 2-norm (also known as the Euclidean norm). Comple-
mentary to our framework, there also exists a line of work focusing on the ∞-norm setting
instead (Madry et al., 2019; Zhang et al., 2021, 2022).

In this paper, we consider feedforward neural networks fθ : RN0 → RNL of the form

fθ(x) = AL ◦ · · · ◦ σ` ◦A` ◦ · · · ◦ σ1 ◦A1(x), (2)

where each A` : RN`−1 → RN` , ` = 1, . . . , L, is a linear layer given by

A`(x) = W`x + b`, (3)

with weight matrices W` ∈ RN`,N`−1 and bias vectors b` ∈ RN` . The model incorporates
fixed or learnable nonlinear activation functions σ` : RN` → RN` . For component-wise
activation functions, we have that σ`(x) = (σ`,n(xn))N`

n=1 with individual scalar activation
functions σ`,n : R→ R. The complete set of parameters of the network is denoted by θ.

1. https://github.com/StanislasDucotterd/Lipschitz DSNN

3

https://github.com/StanislasDucotterd/Lipschitz_DSNN

Ducotterd, Goujon, Bohra, Perdios, Neumayer, and Unser

A straightforward way to enfore Lip(fθ) ≤ 1 is to use the sub-multiplicativity of the
Lipschitz constant for the composition operation, which yields the estimate

Lip(fθ) ≤ Lip(AL)
L−1∏
`=1

Lip(σ`) Lip(A`). (4)

Consequently, it suffices to constrain the Lipschitz constant of each A` and σ` by 1.

2.1 1-Lipschitz Linear Layers

It is known that the Lipschitz constant of the linear layer A` is equal to the largest singular
value of its weight matrix W`. In our experiments, we constrain W` in two ways.

• Spectral Normalization: This method rescales each linear layer A` by dividing its
weight matrix W` by its largest singular value. The latter is estimated via power
iterations. This method was introduced for fully connected networks in Miyato et al.
(2018) and later generalized for convolutional layers in Ryu et al. (2019).

• Orthonormalization: Here, the W` are forced to be orthonormal, so that WT
` W` is

the identity matrix. Unlike spectral normalization, which only constrains the largest
singular value, this method forces all the singular values to be one. Various imple-
mentations of orthonormalization have been proposed to handle both fully connected
(Anil et al., 2019) and convolutional layers (Li et al., 2019; Su et al., 2022).

2.2 1-Lipschitz Activation Functions

Here, we shortly introduce all 1-Lipschitz activation functions that we compare against LLS.

• ReLU: The activation function ReLU(x) = (max(0, xn))Nn=1 acts component-wise.

• Absolute Value: The absolute value (AV) activation function is component-wise
and GNP. It is given by AV(x) = (|xn|)Nn=1.

• Parametric ReLU: The parametric ReLU (PReLU) activation function (He et al.,
2015) acts component-wise. It is given by PReLUa(x) = (max(anxn, xn))Nn=1 with
learnable parameters (an)Nn=1. Since Lip(PReLUa) = max(max1≤n≤N |an|, 1), an easy
way to make it 1-Lipschitz is to clip the parameters (an)Nn=1 in [−1, 1].

• GroupSort: This activation function (Anil et al., 2019) separates the pre-activations
into groups of size k and sorts each group in ascending order. Hence, it is locally a per-
mutation and therefore GNP. If the group size is 2, GroupSort (GS) is called MaxMin.
1-Lip MaxMin and GS neural networks are universal approximators for 1-Lipschitz
functions in a specific setting where the first weight matrix satisfies ‖W1‖2,∞ ≤ 1 and
all other weight matrices satisfy ‖Wl‖∞ ≤ 1 (Anil et al., 2019, Theorem 3).

• Householder: The householder (HH) activation function (Singla et al., 2022) sepa-
rates the pre-activations into groups of size 2, and for any x ∈ R2, computes

HHv (x) =

{
x, vTx > 0(
I− 2vvT

)
x, vTx ≤ 0,

(5)

4

Lipschitz Networks with Learnable Activation Functions

where v ∈ R2 with ‖v‖ = 1 is learnable. The HH activation function is GNP.

For these choices, Proposition 1 holds. The proof is given in Appendix A.

Proposition 1 On any compact set D ⊂ RN0, 1-Lip neural networks with AV, PReLU,
GS, or HH activation functions can represent the same set of functions.

By contrast to Proposition 1, 1-Lip ReLU networks are less expressive and can only
represent a subset of these functions.

3. 1-Lip Learnable Linear Spline Networks

It has been shown in Unser (2019) that neural networks with LLS activation functions
are the solution of a functional optimization problem that consists of the optimization of
a neural network with freeform activation functions under a second-order total-variation
constraint. Bohra et al. (2020) proposed a way to learn the linear splines and to efficiently
control their effective number of linear regions via a regularization term in the training loss.
They propose a fast implementation with a computational complexity that does not depend
on the number of linear regions of the LLS. As a first step toward Lipschitz-constrained LLS
networks, Aziznejad et al. (2020) added a term in the training loss that penalizes a loose
bound of the Lipschitz constant of the LLS activation functions. This approach, however,
does not offer a strict control of the overall Lipschitz constant of the network.

In this section, we extend the reasoning and implementation to the strict 1-Lip set-
ting. Ideally, we want to train a neural network with 1-Lipschitz linear layers and freeform
1-Lipschitz activation functions. Unfortunately, this leads to a difficult infinite-dimensional
optimization problem. In order to promote simple solutions, we use the second-order total
variation as regularizer, which favors activation functions with sparse second-order deriva-
tives while ensuring differentiablity almost everywhere.

3.1 Representer Theorem and Expressivity

The second-order total variation of a function f is defined as

TV(2)(f) = ‖D2f‖M, (6)

where D is the distributional derivative operator and ‖ · ‖M is the total-variation norm.
For any function f in the space L1(R) of absolutely integrable functions, it holds that
‖f‖M = ‖f‖L1 . However, unlike the L1 norm, the total-variation norm is also well-defined
for any shifted Dirac impulse with ‖δ(· − τ)‖M = 1, τ ∈ R (see Appendix D for technical
details). In the sequel, we consider activation functions in the space BV(2)(R) = {f : R→
R s.t. TV(2)(f) < +∞} of functions with bounded second-order total variation.

Given a series (xm,ym), m = 1, . . . ,M , of data points and a neural network fθ : RN0 →
RNL with fθ = σL ◦ gθ, where gθ : RN0 → RNL has architecture (2), we propose the con-
strained regularized training problem

arg min
W`,b`,σ`,n∈BV(2)(R)

s.t. Lip(σ`,n)≤1, ‖W`‖≤1

(
M∑
m=1

E
(
ym, fθ (xm)

)
+ λ

L∑
`=1

N∑̀
n=1

TV(2) (σ`,n)

)
, (7)

5

Ducotterd, Goujon, Bohra, Perdios, Neumayer, and Unser

where E : RN`×RN` → R+ is proper, lower-semicontinuous, and coercive. Theorem 2 states
that a neural network with linear-spline activation functions suffices to find a solution of
(7). Its proof can be found in Appendix B.

Theorem 2 A solution of (7) always exists and can be chosen as a neural network with
activation functions of the form

σ`,n(x) = b1,`,n + b2,`,nx+

K`,n∑
k=1

ak,`,n ReLU (x− τk,`,n) (8)

with K`,n ≤M − 2, knots τ1,`,n, . . . , τK`,n,`,n ∈ R, scalar biases b1,`,n, b2,`,n ∈ R, and weights
a1,`,n, . . . , aK`,n,`,n ∈ R.

This result, which is similar to the representer theorems in Unser (2019) and Azizne-
jad et al. (2020), shows that there exists an optimal solution with linear-spline activation
functions. The important point in the statement of the theorem is that each neuron has its
own free parameters, including the (a priori unknown) number of knots K`,n, the determi-
nation of which is part of the training procedure. Beside the strict control of the Lipschitz
constant, which is not covered by the representer theorems in (Unser, 2019), a noteworthy
improvement brought by Theorem 2 is the existence of a solution, which is still an open
problem in the unconstrained case. To this end, we have assumed that the last layer of the
neural network fθ consists of an activation function σL only. This theoretical setup for the
proof is not a strong restriction since the freeform activation σL has the possibility to be
the identity mapping in practice.

The second-order total variation of the activation functions in (8) is given by

‖D2σ`,n‖M =

∥∥∥∥K`,n∑
k=1

ak,`,nδ (· − τk,`,n)

∥∥∥∥
M

=

K`,n∑
k=1

|ak,`,n|‖δ(· − τk,`,n)‖M

=

K`,n∑
k=1

|ak,`,n| = ‖a`,n‖1, (9)

where we used that D2 ReLU(· − τ) = δ(· − τ) and D2{b1 + b2x} = 0 for all τ, b1, b2 ∈ R.
The idea of LSS networks is to have learnable activation functions of the form (8).

There is an approximation result for 1-Lip neural networks with LLS activation functions
(Neumayer et al., 2023, Theorem 4.3) that states that, when the LLSs have three linear
regions, they already achieve the optimal expressivity among all 1-Lip neural networks with
component-wise activation functions. The proof relies on the fact that the number of knots
can be decreased by the addition of layers. For this reason, it is unclear whether it is always
sufficient in practice to have only three linear regions for a given architecture. Remarkably,
our framework allows us to parameterize each LLS activation function σ`,n with more linear

regions and to then sparsify them during the training process through TV(2) regularization.
Indeed, equation (9) shows that the latter amounts to a penalization of the term ‖a`,n‖1,
which will favor solutions with fewer linear regions.

6

Lipschitz Networks with Learnable Activation Functions

3.2 Deep Spline Neural Network Representation

The parameterization (8) has two drawbacks when training neural networks.

• The learning of the number and positions of the knots is challenging.

• The evaluation time is linear in the number of ReLUs.

Our implementation differs from the two main frameworks (Agostinelli et al., 2015; Jin
et al., 2016) by evading those two drawbacks through the use of localized basis functions
ϕT (x) = β1(x/T) on a uniform grid with stepsize T and kmax− kmin + 1 knots, as proposed
by Bohra et al. (2020), where β1 is the B-spline of degree one defined as

β1(x) =

{
1− |x|, x ∈ [−1, 1]

0, otherwise.
(10)

To ease the presentation, we describe the implementation of LLS networks in Sections 3.2
and 3.3 for a single LLS activation function σ expressed as

σ(x) =

ckmin

+ 1
T (ckmin

− ckmin−1) (x− kminT) , x ∈ (−∞, kminT)∑kmax
k=kmin−1 ckβ

1(x/T − k), x ∈ [kminT, kmaxT]

ckmax + 1
T (ckmax+1 − ckmax) (x− kmaxT) , x ∈ (kmaxT,∞) .

(11)

For any x ∈ R, the computation of σ(x) requires the evaluation of at most two basis
functions. The activation function σ is nonlinear on [kminT, kmaxT] and extrapolated linearly
outside of this interval. It is fully described by the stepsize T and by a vector c ∈ RK with
K = kmax − kmin + 3. It has Lip(σ) = 1

T ‖Dc‖∞, where D ∈ RK−1,K is the first-order
finite-difference matrix.

In practice, we choose a high number K and a small stepsize T . We then ensure
that a simple activation function is learned by using TV(2) regularization. In our setting,
TV(2)(σ) = ‖a‖1 = 1

T ‖Lc‖1, where L is the second-order finite-difference matrix. Overall,
we impose strict bounds on the first-order finite differences of the coefficients c, and we seek
to sparsify their second-order finite differences. This procedure leads to an approximate
learning of the optimal position of each knot for each 1-Lipschitz LLS. An illustration of a
possible σ is shown in Figure 1.

Within LLS networks, the LLS can be initialized in many ways, some including popular
activation functions such as ReLU, leaky ReLU, PReLU, or MaxMin. Further, the LLS
activation functions can also be shared, which saves memory and training cost, and allows
one to have one activation function per channel in convolutional neural networks.

3.3 Methods

To ensure that every activation function σ is 1-Lipschitz, the absolute difference between
any two consecutive coefficients must be at most T . Hence, the corresponding set of feasible
coefficients is given by {c ∈ RK : ‖Dc‖∞ ≤ T}. A first attempt at a minimization over this
set has been made in Bohra et al. (2021). There, the authors use a method that divides
each activation function by its maximum slope after each training step. In Section 3.3.1, we

7

Ducotterd, Goujon, Bohra, Perdios, Neumayer, and Unser

−3 −2 −1 1 2 3

1.5

1.0

0.5

−0.5

−1.0

c−3

c−2 c−1

c0

c1

c2

c3

Nonlinear interval of σ
Linear extrapolation of σ
Spline coefficients

Figure 1: A LLS activation function with T = 1 and K = 7. The function is nonlinear
in [−3, 3], and linearly extrapolated outside. At x = 1, the second-order finite-difference
is zero, which effectively removes one linear region. This behavior is favored by the regu-
larization term 1

T ‖Lc‖1 which promotes sparse second-order finite differences and thereby
decreases the number of effective linear regions.

present an alternative projection scheme that is better suited to optimization and yields a
much better performance in practice, while being just as fast. Additionally, we introduce a
scaling parameter for each activation function, which facilitates the training and increases
the performance of the network even further at a negligible computational cost.

3.3.1 Constrained Coefficients

The textbook approach to maintain the 1-Lipschitz property throughout an iterative min-
imization scheme would be to determine the least-squares projection onto {c ∈ RK :
‖Dc‖∞ ≤ T} at each iteration. This operation would preserve the mean of c, as shown
in Appendix C. Unfortunately, its computation is very expensive as it requires to solve a
quadratic program after each training step and for each activation function. As substi-
tute, we introduce a simpler projection SplineProj that also preserves the mean while being
much faster to compute. In brief, SplineProj computes the finite-differences, clips them,
sums them and adds a constant to the preservation of the mean.

Let us denote the Moore–Penrose pseudoinverse of D by D† and the vector of ones by
1 ∈ RK . Further, we require the component-wise operation

ClipT (x) =

−T, x < −T
x, x ∈ [−T, T]

T, x > T.

(12)

8

Lipschitz Networks with Learnable Activation Functions

Proposition 3 The operation SplineProj defined as

SplineProj(c) = D†ClipT (Dc) + 1
1

K

K∑
k=1

ck (13)

has the following properties:

1. it is a projection onto the set {c ∈ RK : ‖Dc‖∞ ≤ T};

2. it is almost-everywhere differentiable with respect to c;

3. it preserves the mean of c.

The proof of Proposition 3 can be found in Appendix C.
In gradient-based optimization, one usually handles domain constraints by projecting

the variables back onto the feasible set after each gradient step. However, this turned out
to be inefficient for neural networks in our experiments. Instead, we parameterize the LLS
activation functions directly with SplineProj(c), which leads to unconstrained training. This
strategy is in line with the popular spectral normalization of Miyato et al. (2018), where the
weight matrices are unconstrained and parameterized using an approximate projection. For
our parameterization approach, Property 2 of Proposition 3 is very important as it allows
us to back-propagate through SplineProj during the optimization process. To compute
SplineProj efficiently, we calculate D† in a matrix-free fashion with a cumulative sum. The
computational cost of SplineProj is negligeable compared to the cost of constraining the
linear layer to be 1-Lipschitz.

3.3.2 Scaling Parameter

We propose to increase the flexibility of our LLS activation functions by the introduction of
an additional trainable scaling factor α. Specifically, we propose the new activation function

σ̃(x) =
1

α
σ(αx). (14)

With this scaling, σ̃ is nonlinear on [kminT/α, kmaxT/α] and the Lipschitz constant

Lip(σ̃) = sup
x1,x2∈R

| 1ασ(αx1)− 1
ασ(αx2)|

|x1 − x2|
= sup

x1,x2∈R

1
α |σ(αx1)− σ(αx2)|

1
α |αx1 − αx2|

= Lip(σ) (15)

is left unchanged. As detailed in Appendix D, the second-order total variation is preserved as
well. Basically, α allows us to decrease the data-fitting term defined in (7) without breaking
the constraints or increasing the complexity of the activation functions. Experimentally,
we indeed found that the performance of LSS networks improves if we also optimize over
α. In contrast, the ReLU, AV, PReLU, GS, and HH activation functions are invariant
to this parameter and do not benefit from it. In practice, the scaling parameter α is
initialized as one and updated via standard stochastic gradient-based methods. Throughout
our experiments, every LLS activation function has its own scaling parameter α.

9

Ducotterd, Goujon, Bohra, Perdios, Neumayer, and Unser

−1 0 1
−0.25

0.30
Function f1

−1 0 1
−0.25

0.30
Function f2

−1 0 1
−0.05

0.05
Function f3

Figure 2: Three 1-Lipschitz functions that we attempt to fit with 1-Lip neural networks.
All functions have zero mean over the interval [−1, 1].

4. Experiments

With our experiments in Section 4.1, we gauge the expressivity of 1-Lip architectures that
use either LLS or one of the activation functions from Section 2.2. Moreover, we assess
the relevance of our proposed learning strategy for LLS. After this validation study, we
benchmark our 1-Lip architectures for the practical use-case of PnP image reconstruction
in Section 4.2. There, we also prove important stability guarantees.

All 1-Lip networks are learned with the Adam optimizer (Kingma and Ba, 2015) and the
default hyperparameters of its PyTorch implementation. For the parameters of the PReLU
and HH activation functions, the learning rate is the same as for the weights of the network.
The LLS networks use three different learning rates: η for the weights, η/4 for the scaling
parameters α, and η/40 for the remaining parameters of the LLS. These ratios remain fixed
throughout this section and, hence, only η is going to be stated.

4.1 Evaluating the Expressivity

4.1.1 One-Dimensional Function Fitting

Here, we use 1-Lip networks to fit the three 1-Lipschitz functions fi : [−1, 1]→ R in Figure 2.
With this experiment, we aim to assess if the architectures achieve the full expressivity in the
class of 1-Lipschitz functions on the real line. For f1, we have |∇f1| = 1 almost everywhere.
Hence, the GNP activation functions are expected to perform well and serve as a baseline
against which we compare LLSs. The function f2 alternates between |∇f2| = 1 and |∇f2| =
0. It was designed to test the ability of LLS networks to fit functions with constant regions.
Lastly, we benchmark all methods on the highly varying function f3(x) = sin(7πx)/7π,
which is challenging to fit under Lipschitz constraints. Additionally, we probe the impact
of the two methods described in Sections 3.3.1 and 3.3.2 on the performance of the LLS
networks by comparing the proposed implementation (denoted as LLS New) with the one
from Bohra et al. (2021) (denoted as LLS Old), which relies on simple normalization.

Each network comes in two variants, namely with orthonormalization and spectral nor-
malization of the weights. The mean squared error (MSE) loss is computed over 1000
uniformly sampled points from [−1, 1] for training, and a uniform partition of [−1, 1] with
10000 points for testing. For each instance, we tuned the width, the depth, and the hyper-
parameters of the network for the smallest test loss. ReLU networks have 10 layers and a
width of 50; AV, PReLU, and HH networks have 8 layers and a width of 20; GS networks

10

Lipschitz Networks with Learnable Activation Functions

−4

−3

−2
Lo

g
of

 M
SE

Function f1

Spectral Normalization
Function f1

Orthonormalization

−5.5

−5.0

−4.5

−4.0

−3.5

Lo
g

of
 M

SE

Function f2 Function f2

ReLU AV PReLU GS HH LLS Old LLS New

−5

−4

−3

Lo
g

of
 M

SE

Function f3

ReLU AV PReLU GS HH LLS Old LLS New

Function f3

Figure 3: Fitting results for the functions from Figure 2. The red markers represent the
median performance. The black bars represent the lower and upper quartiles, respectively.

have 7 layers and a width of 20; LSS networks have 4 layers and a width of 10. We initial-
ized the PReLU as the absolute value, we used GS with a group size of 5, and the LLS was
initialized as ReLU and had a range of [−0.5, 0.5], 100 linear regions, and λ = 10−7 for the
TV(2) regularization. Every network relied on Kaiming initialization (He et al., 2015) and
was trained 25 times with a batch size of 10 for 1000 epochs. The LLS networks always
used η = 2 · 10−3, while the other ones used η = 4 · 10−3 for f1, f2 and η = 10−3 for f3.

We report the median and the two quartiles of the test losses in Figure 3. For the
spectral normalization, it appears that AV, PReLU, and HH tend to get stuck in local
minima when fitting f3 (the associated upper quartile of the loss is quite large). In return,
we observe that LLS consistently outperforms the other architectures in all experiments.
Particularly striking is the improvement of LLS New over LLS Old, which confirms the
benefits of the two modules described in Sections 3.3.1 and 3.3.2. Accordingly, from now
on, we drop LLS Old and only retain LLS New.

4.1.2 High-Dimensional Function Fitting: Wasserstein Distances

The Wasserstein-1 distance W1 is a metric for probability distributions. It has been used
by Arjovsky et al. (2017) to improve the performance of GANs, which were first introduced
in Goodfellow et al. (2014). Using the Kantorovich dual formulation (Villani, 2016), we can

11

Ducotterd, Goujon, Bohra, Perdios, Neumayer, and Unser

Table 1: Estimated Wasserstein distance for the Gaussian mixtures.

N ReLU AV PReLU GS HH LLS

5 2.009/0.004 2.271/0.006 2.279/0.006 2.271/0.006 2.272/0.006 2.283/0.006
10 5.960/0.014 6.461/0.011 6.465/0.012 6.475/0.012 6.461/0.012 6.486/0.011
20 11.638/0.007 13.187/0.012 13.245/0.012 13.251/0.012 13.247/0.012 13.243/0.012

compute W1 by solving an optimization problem over the space of 1-Lipschitz functions

W1(P1, P2) = sup
Lip(f)≤1

Ex∼P1 [f(x)]− Ex∼P2 [f(x)]. (16)

In (16), we can use a neural representations to parameterize the f for optimization purposes.
Since expressive architectures are very important in this context, we get another good
benchmark. Experimentally, Anil et al. (2019) observed that orthonormalization of the
linear layers is superior to spectral normalization for this task. Hence, we only use the former
in our experiments. Further, Gulrajani et al. (2017) have shown that, under reasonable
assumptions, any f∗ that maximizes (16) satisfies |∇f∗| = 1 almost everywhere. Hence,
GNP architectures are expected to perform better. In general, estimating W1 for high-
dimensional distributions is very challenging, see Korotin et al. (2022) for a recent survey.

Gaussian Mixtures In our first setting, the distributions are

P1 = X1Z1 + (1−X1)Z2 and P2 = X2Z3 + (1−X2)Z4, (17)

where P(Xk = 0) = P(Xk = 1) = 1/2 for k = 1, 2 and Zk ∼ N (µk,Σk) for k = 1, ..., 4. The
µk ∈ RN and Σk ∈ RN,N , N ∈ {5, 10, 20}, are random with (µk)n ∼ N (0, 1) and Σk =
AT
kAk with (Ak)nm ∼ N (0, 1) and 1 ≤ n,m ≤ N . For each instance, we tuned the width

and the depth of the fully connected neural representation for best performance. Irrespective
of N , ReLU architectures had 30 layers and a width of 1024; all other architectures had 10
layers and a width of 2048. The PReLUs were initialized as the ReLU for N ∈ {5, 10}, and
as MaxMin for N = 20. We used GS with a group size of 2 for N ∈ {5, 20} and 4 for N = 4.
The LLS had 50 linear regions for N = 5 and 100 for N ∈ {10, 20}. Their range was [−1, 1],
[−5, 5], and [−10, 10] for N = 5, 10 and 20, respectively. Further, we set λ = 10−10 for the
TV(2) regularization, and initialized the LLS as the ReLU for N ∈ {5, 10} and as MaxMin
for N = 20. The additional LLS coefficients increased the architecture parameters by at
most 0.7%. All neural representations used orthogonal initialization (Saxe et al., 2014) and
were optimized for 10000 gradient steps with η = 5 · 10−3 and batches of 4096 samples.

In Table 1, we report the mean and standard deviation over five runs of the Monte
Carlo estimation for W1 as in (16) with the learned f and 105 samples. ReLU leads to an
estimate that is significantly lower than the others, which is, most likely, due to its lack
of expressivity. Otherwise, the estimates are quite similar. LLS has the best estimate for
N ∈ {5, 10} but is slightly outperformed for N = 20.

MNIST Here, P1 is a uniform distribution over a set of real MNIST2 images and P2 is
the generator distribution of a GAN trained to generate MNIST images. The architecture

2. http://yann.lecun.com/exdb/mnist/

12

http://yann.lecun.com/exdb/mnist/

Lipschitz Networks with Learnable Activation Functions

Table 2: Mean and standard deviation of the estimated Wasserstein distance over five
trials for several architectures.

Depth ReLU AV PReLU GS HH LLS

3 0.727/0.001 1.190/0.002 1.190/0.002 1.189/0.001 1.165/0.001 1.190/0.002
5 0.881/0.001 1.368/0.003 1.371/0.002 1.369/0.002 1.369/0.002 1.373/0.003
7 0.960/0.001 1.406/0.008 1.437/0.002 1.436/0.001 1.440/0.003 1.439/0.001

Table 3: Inception scores for MNIST digit generation.

ReLU AV PReLU GS HH LLS

Inception score 1.88 2.19 2.13 2.17 2.07 2.38

of this GAN is taken from Chen et al. (2016). All neural representations of f are fully
connected with a width of 1024, and various depths. They were optimized 5 times each for
2000 epochs with η = 2 · 10−3 and orthogonal initialization (Saxe et al., 2014). For a depth
of 3, GS has group size of 8, and PReLU and LLS were initialized as the absolute value.
For a depth of 5 or 7, GS has a group size of 2, and PReLU and LLS were initialized as
MaxMin. The LLS have a range of [−0.15, 0.15], 20 linear regions, and λ = 10−10. Their
coefficients only increase the total number of parameters in the architecture by 2%. We
optimize the neural representation on 54000 images from the MNIST training set and use
the 6000 remaining ones as validation set. The test set contains 10000 MNIST images.

In Table 2, we report the estimated W1 metric between the MNIST images of the test set
and the ones generated by the GAN. Again, ReLU leads to an estimate that is significantly
lower than the others. Otherwise, the results are more or less similar except for AV and
HH with depth 7 and 3, respectively, which are worse than the others.

4.1.3 1-Lipschitz Wasserstein GAN Training

We train Wasserstein GANs to generate MNIST images. To this end, we use the same
framework and optimization process as Anil et al. (2019), where the discriminators have
strict Lipschitz constraints instead of the commonly used relaxation in terms of a gradient
penalty. On the contrary, the generators themselves are unconstrained. Thus, we use ReLUs
as their activation functions and only plug the activation functions from Section 2.2 into
the discriminator. Here, GS has a group size of 2, PReLU was initialized as MaxMin, LLS
was initialized as the absolute value, has range [−0.1, 0.1], 20 linear regions, and λ = 10−6.
The spline coefficients only increase the total number of parameters in the neural network
by 0.2%. The Wasserstein GANs were trained on the MNIST training set.

We report the inception score on the MNIST test set using the implementation from
Li et al. (2017) in Table 3. As expected, the limited expressivity of the ReLU leads to the
lowest score. LLS yields the best score of all schemes and its ability to generate realistic
digits can be appreciated visually in Figure 4. Still, we should keep in mind that the main
purpose of this experiment is an expressivity comparison and not generative performance.

13

Ducotterd, Goujon, Bohra, Perdios, Neumayer, and Unser

ReLU AV PReLU

GS HH LLS

Figure 4: Digits generated by the Wasserstein GANs with different activation functions.

4.2 Image Reconstruction via Plug-and-Play

Many image-reconstruction tasks can be formulated as a linear inverse problem. Specifically,
the task is to recover an image x ∈ Rn from the noisy measurement

y = Hx + n ∈ Rm, (18)

where H ∈ Rm×n is a measurement operator and n ∈ Rm is random noise. Problem (18)
is nondeterministic and often ill-posed, in the sense that multiple images yield the same
measurements. To make (18) well-posed, one usually incorporates prior knowledge about
the unknown image x by adding regularization. This leads to the reconstruction problem

min
x∈Rn

f(y,Hx) + g(x), (19)

where f : Rm×Rm → R+ is a data-fidelity term and g : Rn → R+ is a prior that favors
certain types of solutions. If f is differentiable and g is convex, (19) can be minimized by
the iterative forward-backward splitting (FBS) algorithm (Combettes and Wajs, 2005) with

xk+1 = proxαg
(
xk − α∇∇∇f(y,Hxk)

)
. (20)

Here, the proximal operator of g is defined as proxg(z) = arg minx∈Rd
1
2‖x − z‖2 + g(x).

The idea behind PnP algorithms (Venkatakrishnan et al., 2013) is to replace proxαg with a
generic denoiser D : Rn → Rn. While not necessarily corresponding to an explicit regularizer
g, this approach has led to improved results compared to conventional methods as it allows

14

Lipschitz Networks with Learnable Activation Functions

the use of powerful deep-learning-based denoisers, as done in Ryu et al. (2019); Sun et al.
(2021); Ye et al. (2018). The convergence of the PnP-FBS iterations

xk+1 = D
(
xk − α∇∇∇f(y,Hxk)

)
(21)

can be guaranteed (Hertrich et al., 2021, Proposition 15) if

• D is averaged, i.e., of the form D = βR+(1−β) Id with a 1-Lipschitz R and β ∈ (0, 1);

• f(y,H·) is convex, differentiable with L-Lipschitz gradient, and α ∈ (0, 2/L).

In addition, we now prove the Lipschitz continuity of the data-to-reconstruction map, which
is an important property for image reconstruction methods.

Proposition 4 Let x∗1 and x∗2 be fixed points of (21) for measurements y1 and y2, respec-
tively. If D is averaged with β ≤ 1/2 and f(y,Hx) = 1

2‖y − Hx‖22, then it holds that

‖Hx∗1 −Hx∗2‖ ≤ ‖y1 − y2‖. (22)

If H is invertible, this yields the direct relation

‖x∗1 − x∗2‖ ≤
1

σmin(HTH)
‖y1 − y2‖. (23)

Under slightly stronger constraints on D, we also have a result for non-invertible H.

Proposition 5 In the setting of Proposition 4, it holds for K-Lipschitz D, K < 1, that

‖x∗1 − x∗2‖ ≤
α‖H‖K
1−K

‖y1 − y2‖. (24)

Propositions 4 and 5 are proven in Appendix E. In principle, the model (19) leads to
better data consistency than the one provided by the end-to-end neural network frameworks
that directly reconstruct x from y. Those latter approaches are also known to suffer from
stability issues (Antun et al., 2020) and, more importantly, have been found to remove or
hallucinate structure (Nataraj and Otazo, 2020; Muckley et al., 2021), which is unacceptable
in diagnostic imaging. Our PnP approach (21) comes with the stability estimates (22), (23)
and (24) which limits the ability of a neural network to overfit high-level structures found
in the training set and is a step towards reliable deep-learning-based image reconstruction.
Those estimates typically do not hold for other PnP methods.

4.2.1 Learning a Denoiser for PnP

A good denoising network is the backbone of most PnP methods. Unfortunately, most
common architectures (Ronneberger et al., 2015; Zhang et al., 2017; Liang et al., 2021) are
not natively 1-Lipschitz. They rely on dedicated modules designed to improve the denoising
performance, such as skip connections, batch normalization, and attention modules. These
make it challenging to build provably averaged denoisers. Instead, we use a plain CNN
architecture that is equivalent to the DnCNN of Zhang et al. (2017) without the residual.
This architecture is easy to constrain and still provides competitive performance. In detail,

15

Ducotterd, Goujon, Bohra, Perdios, Neumayer, and Unser

we train 1-Lip denoisers that are composed of 8 orthogonal convolutional layers and the
activation functions from Section 2.2. The convolutional layers are parameterized with the
BCOP framework (Li et al., 2019) and have kernels of size (3× 3). For the LLS, we take 64
channels. To compensate for the additional spline parameters, we train every other model
with 68 channels.

The training dataset consists of 238400 patches of size (40×40) taken from the BSD500
image dataset (Arbeláez et al., 2011). All images take values in [0, 1]. We train denoisers
for Gaussian noise with standard deviation σ = 5/255, 10/255, 15/255. All denoisers are
trained for 50 epochs with a batch size of 128, η = 4 · 10−5, and the MSE loss function.
The PReLU activation functions were initialized as the absolute value. GS has a group
size of 2. The LLS activation functions have 50 linear regions, a range of 0.1, and were
initialized as the identity. In this experiment, we also investigated the effect of the TV(2)

regularization parameter λ on the performance and the number of linear regions in the
LLSs. The performances on the BSD68 test set are provided in Table 4. For each noise
level, LLS performs best, and, as expected, ReLU is doing worse than all the others.

The number of linear regions for the LLS σ`,n is equal to 1
T ‖Lc`,n‖0 + 1. This metric

can overestimate the number of linear regions due to numerical imprecisions. Instead, we
define the effective number of linear regions as (|{1 ≤ k ≤ K`,n : |(Lc`,n)k| > 0.01}| + 1).
For each LSS network, we report in Table 5 the average number of effective linear regions
(AELR) over all the σ`,n. An AELR close to one indicates that the majority of neurons
become skip connection, which corresponds to a simplification of the network. Without
regularization, the σ`,n have an AELR of 8.07 to 9.24 out of the 50 available linear regions.

The TV(2) regularization drastically sparsifies the σ`,n. With λ ∈ [10−6, 10−4], the AELR
is between 1.07 and 1.44, which is a large decrease without degradation in the denoising
performances. For λ = 10−3, the σ`,n are even further sparsified at the cost of a small loss
of performance. We observe a significant loss of performance when λ is increased to 10−2,
where the network is almost an affine mapping. Notice that the AELR is 2 for ReLU and AV,
meaning that LLS outperforms them while being simpler. Another interesting observation
is that, despite being very sparse on average, the LLS networks with λ ∈ [10−6, 10−3] have
at least one σ`,n with at least three linear regions. This suggests that most of the common
activation functions might be suboptimal as they have only two linear regions.

4.2.2 Numerical Results for PnP-FBS

Now, we want to deploy the learned denoisers Dσ (which are learned with λ = 10−6 for
LLS) in the PnP-FBS algorithm for image reconstruction, where we use the data-fidelity
term f(y,Hx) = 1

2‖y − Hx‖22. To ensure convergence, we set α = 1/‖H∗H‖, and we
tune the noise level σ of Dσ on the validation set over σ = 5/255, 10/255, 15/255. To
further adapt the denoising strength and to make them β-averaged, we replace the Dσ by
Dσ,β = βDσ + (1−β) Id, where the parameter β ∈ [0, 1) is also tuned on the validation set.
In our experiments, we actually noticed that the best β is always lower than 1/2, which
means that the conditions in Proposition 4 are met. As the GS activation function involves
sorting of the feature map along its 68 channels, it takes significantly more time than the
other activation functions. Hence, it is impractical to tune the hyperparameters, and we do
not use it for this image reconstruction experiment.

16

Lipschitz Networks with Learnable Activation Functions

Table 4: PSNR and SSIM values on BSD68 for each activation function and noise level.

Noise level σ = 5/255 σ = 10/255 σ = 15/255
Metric PSNR SSIM PSNR SSIM PSNR SSIM

ReLU 36.10 0.9386 31.92 0.8735 29.76 0.8203
AV 36.58 0.9499 32.33 0.8889 30.09 0.8375
PReLU 36.58 0.9498 32.25 0.8887 30.11 0.8367
GS 36.54 0.9489 32.23 0.8845 30.11 0.8346
HH 36.47 0.9476 32.25 0.8866 30.11 0.8350
LLS (λ = 0) 36.85 0.9540 32.59 0.8978 30.35 0.8464
LLS (λ = 10−6) 36.86 0.9546 32.55 0.8962 30.38 0.8479
LLS (λ = 10−5) 36.86 0.9543 32.55 0.8960 30.34 0.8455
LLS (λ = 10−4) 36.82 0.9534 32.57 0.8970 30.36 0.8468
LLS (λ = 10−3) 36.63 0.9497 32.47 0.8924 30.31 0.8437
LLS (λ = 10−2) 35.15 0.9142 32.00 0.8782 29.73 0.8156

Table 5: Average number of effective linear regions (AELR) for several λ and noise levels.

Noise level λ = 0 λ = 10−6 λ = 10−5 λ = 10−4 λ = 10−3 λ = 10−2

σ = 5/255 9.24 1.21 1.11 1.07 1.02 1.00
σ = 10/255 8.76 1.24 1.15 1.14 1.06 1.01
σ = 15/255 8.07 1.44 1.24 1.25 1.10 1.02

Single-Coil MRI Here, we want to recover x from y = MFx + n ∈ CM , where M is
a subsampling mask (identity matrix with some missing entries), F is the discrete Fourier
transform matrix, and n is a realization of a complex-valued Gaussian noise characterized by
σn for the real and imaginary parts. This noise level is not to be confused with the noise level
σ that appears in Dσ,β. We use fully sampled knee MR images of size (320× 320) from the
fastMRI dataset (Knoll et al., 2020) as ground truths. Specifically, we create validation and
test sets consisting of 100 and 99 images, respectively, which are individually normalized
within the range [0, 1]. For our experiments, the subsampling mask M is specified by
two parameters: the acceleration Macc and the center fraction Mcf. It selects the b320Mcfc
columns in the center of the k-space (low frequencies). Further, it selects columns uniformly
at random from the other regions in the k-space such that the total number of selected
columns is b320/Maccc. The measurements are simulated with σn = 0.01.

The reconstruction performances over the test set are reported in Table 6. We observe a
significant gap between LLS and the other activation functions for both masks M in terms
of PSNR and SSIM. Actually, LLS outperforms the other schemes on every single image
from the test set. In Figure 5, we observe stripe-like structures in the zero-fill reconstruc-
tion. These are typical aliasing artifacts that result from the subsampling in the horizontal
direction in Fourier space. They are significantly reduced in the LLS reconstruction.

Multi-Coil MRI with 15 Coils Here, the data is given by y = (y1, . . . ,y15) with
yk = MFSkx + nk and complex-valued diagonal matrices Sk ∈ Cn×n (called sensitivity

17

Ducotterd, Goujon, Bohra, Perdios, Neumayer, and Unser

maps). These maps were estimated from the data y using the ESPIRiT algorithm (Uecker
et al., 2014), which is part of the BART toolbox (Uecker et al., 2013). Again, the ground-
truth images are from the fastMRI dataset (Knoll et al., 2020), but both with (PDFS) and
without (PD) fat suppression. The Fourier subsampling is performed with the parametric
Cartesian mask from before. Gaussian noise with standard deviation σn = 2 · 10−3 is added
to the real and imaginary parts of the measurements. The reconstruction performances
over the test set are reported in Table 7. Again, we observe a significant gap in terms of
PSNR and SSIM between LLS and the other activation functions for both masks. LLS
outperforms the other schemes on every single image from the test set.

Computed Tomography (CT) The groundtruth comes from human abdominal CT
scans for 10 patients provided by Mayo Clinic for the low-dose CT Grand Challenge (Mc-
Collough, 2016). The validation set consists of 6 images taken uniformly from the first
patient of the training set from Mukherjee et al. (2021). We use the same test set as
Mukherjee et al. (2021), more precisely, 128 slices with size (512× 512) that correspond to
one patient. The data y is simulated through a parallel-beam acquisition geometry with
200 angles and 400 detectors. These measurements are corrupted by Gaussian noise with
standard deviation σn ∈ {0.5, 1, 2}. The reconstruction performance in terms of PSNR and
SSIM over the test set are reported in Table 8. Again, we observe a significant gap between
LLS and the other activation functions. LLS outperforms the other schemes on every single
image from the testing set. Reconstructions for one image are reported in Figure 7.

5. Conclusion

In this paper, we proposed a framework to efficiently train 1-Lipschitz neural networks with
learnable linear-spline activation functions. First, we formulated the training stage as an
optimization task and showed that the solution set contains networks with linear-spline ac-
tivation functions. Our implementation of this framework embeds the required 1-Lipschitz
constraint on the splines directly into the forward pass. Further, we added learnable scaling
factors, which preserve the Lipschitz constant of the splines and enhance the overall expres-
sivity of the network. For the practically relevant PnP image reconstruction, our approach
significantly outperforms 1-Lipschitz architectures that rely on other (popular) activation
functions such as the parametric ReLU and Householder. In this setting, classical choices
such as ReLU suffer from limited expressivity and should not be used. Our observations
are a starting point for the exploration of other architectural constraints and learnable
non-component-wise activation functions within the framework of 1-Lipschitz networks.

Acknowledgment

The research leading to these results was supported by the European Research Council
(ERC) under European Union’s Horizon 2020 (H2020), Grant Agreement - Project No
101020573 FunLearn and by the Swiss National Science Foundation, Grant 200020 184646/1.

18

Lipschitz Networks with Learnable Activation Functions

Ground truth Zero-fill ReLU AV LLS

Figure 5: The ground truth, the zero-fill reconstruction HTy, and the PnP-FBS recon-
struction using networks with ReLU, LLS, and AV for the single-coil MRI experiment.

Ground truth ReLU AV LLS

Figure 6: The ground truth, the zero-fill reconstruction HTy, and the PnP-FBS recon-
struction using networks with ReLU, LLS, and AV for the multi-coil MRI experiment.

Ground truth FBP ReLU AV LLS

Figure 7: Reconstructions for the CT experiment. We report the ground truth, the filtered
backprojection and the PnP-FBS reconstruction using networks with ReLU, LLS, and AV.

19

Ducotterd, Goujon, Bohra, Perdios, Neumayer, and Unser

Table 6: PSNR and SSIM values for the single-coil MRI reconstruction experiment.

(Macc, Mcf) (4, 0.08) (6, 0.06)
Metric PSNR SSIM PSNR SSIM

Zero-fill 27.55 0.6895 25.55 0.6223
ReLU 29.97 0.7574 26.87 0.6781
AV 30.61 0.7721 27.35 0.6921
PReLU 30.58 0.7716 27.32 0.6906
HH 30.55 0.7696 27.34 0.6887
LLS 31.54 0.7924 28.04 0.7108

Table 7: PSNR and SSIM values for the multi-coil MRI experiment.

(Macc, Mcf) (4, 0.08) (8, 0.04)
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS

Zero-fill 27.71 29.94 0.751 0.759 23.80 27.19 0.648 0.681
ReLU 37.21 37.06 0.929 0.915 31.37 32.57 0.837 0.822
AV 37.81 37.48 0.935 0.919 31.82 32.95 0.845 0.829
PReLU 37.71 37.51 0.934 0.919 31.67 33.11 0.845 0.832
HH 37.66 37.39 0.933 0.919 31.68 32.91 0.843 0.829
LLS 38.68 37.96 0.943 0.924 32.75 33.61 0.859 0.835

Table 8: PSNR and SSIM values for the CT experiment.

σn=0.5 σn=1 σn=2
PSNR SSIM PSNR SSIM PSNR SSIM

FBP 32.14 0.697 27.05 0.432 21.29 0.204
ReLU 36.94 0.914 33.65 0.860 30.34 0.782
AV 37.15 0.926 34.19 0.885 31.07 0.813
PReLU 37.18 0.927 34.21 0.887 30.87 0.812
HH 36.94 0.918 34.11 0.877 30.92 0.809
LLS 38.19 0.931 35.15 0.897 31.85 0.844

20

Lipschitz Networks with Learnable Activation Functions

References

Forest Agostinelli, Matthew Hoffman, Peter Sadowski, and Pierre Baldi. Learning activa-
tion functions to improve deep neural networks. International Conference on Learning
Representations, 2015.

Cem Anil, James Lucas, and Roger Grosse. Sorting out Lipschitz function approximation.
In International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 291–301, 2019.

Vegard Antun, Francesco Renna, Clarice Poon, Ben Adcock, and Anders C. Hansen. On
instabilities of deep learning in image reconstruction and the potential costs of AI. Pro-
ceedings of the National Academy of Sciences, 117(48):30088–30095, 2020.

Pablo Arbeláez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detec-
tion and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(5):898–916, 2011.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 214–223, 2017.

Shayan Aziznejad, Harshit Gupta, Joaquim Campos, and Michael Unser. Deep neural
networks with trainable activations and controlled Lipschitz constant. IEEE Transactions
on Signal Processing, 68:4688–4699, 2020.

Shayan Aziznejad, Thomas Debarre, and Michael Unser. Sparsest univariate learning mod-
els under Lipschitz constraint. IEEE Open Journal of Signal Processing, 3:140–154, 2022.

Peter Bartlett, Dylan Foster, and Matus Telgarsky. Spectrally-normalized margin bounds
for neural networks. Advances in Neural Information Processing Systems, 31:6241–6250,
2017.

Pakshal Bohra, Joaquim Campos, Harshit Gupta, Shayan Aziznejad, and Michael Unser.
Learning activation functions in deep (spline) neural networks. IEEE Open Journal of
Signal Processing, 1:295–309, 2020.

Pakshal Bohra, Dimitris Perdios, Alexis Goujon, Sébastien Emery, and Michael Unser.
Learning Lipschitz-controlled activation functions in neural networks for Plug-and-Play
image reconstruction methods. In NeurIPS 2021 Workshop on Deep Learning and Inverse
Problems, 2021.

Leon Bungert, René Raab, Tim Roith, Leo Schwinn, and Daniel Tenbrinck. CLIP: Cheap
Lipschitz training of neural networks. In Scale Space and Variational Methods in Com-
puter Vision, pages 307–319, 2021.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
InfoGAN: Interpretable representation learning by information maximizing generative
adversarial nets. Advances in Neural Information Processing Systems, 29:2172–2180,
2016.

21

Ducotterd, Goujon, Bohra, Perdios, Neumayer, and Unser

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier.
Parseval networks: Improving robustness to adversarial examples. In International Con-
ference on Machine Learning, pages 854–863, 2017.

Patrick Combettes and Valérie Wajs. Signal recovery by proximal forward-backward split-
ting. Multiscale Modeling & Simulation, 4:1168–1200, 2005.

Thomas Debarre, Quentin Denoyelle, Michael Unser, and Julien Fageot. Sparsest piecewise-
linear regression of one-dimensional data. Journal of Computational and Applied Math-
ematics, 406(C):114044, 2022.

Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry.
Exploring the landscape of spatial robustness. International Conference on Machine
Learning, 36:1802–1811, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in
Neural Information Processing Systems, 27:2672–2680, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C.
Courville. Improved training of Wasserstein GANs. Advances in Neural Information
Processing Systems, 30:2644–2655, 2017.

Paul Hagemann and Sebastian Neumayer. Stabilizing invertible neural networks using mix-
ture models. Inverse Problems, 37(8), 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification. In IEEE International
Conference on Computer Vision, pages 1026–1034, 2015.

Johannes Hertrich, Sebastian Neumayer, and Gabriele Steidl. Convolutional proximal neural
networks and plug-and-play algorithms. Linear Algebra and Its Applications, 631:203–
234, 2021.

Todd Huster, Cho-Yu Chiang, and Ritu Chadha. Limitations of the Lipschitz constant as
a defense against adversarial examples. Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, 11329:16–29, 2018.

Xiaojie Jin, Chunyan Xu, Jiashi Feng, Yunchao Wei, Junjun Xiong, and Shuicheng Yan.
Deep learning with S-shaped rectified linear activation units. AAAI Conference on Arti-
ficial Intelligence, 30:1737–1743, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Inter-
national Conference on Learning Representations, 2015.

Florian Knoll, Jure Zbontar, Anuroop Sriram, Matthew J. Muckley, Mary Bruno, Aaron
Defazio, Marc Parente, Krzysztof J. Geras, Joe Katsnelson, Hersh Chandarana, Zizhao
Zhang, Michal Drozdzalv, Adriana Romero, Michael Rabbat, Pascal Vincent, James
Pinkerton, Duo Wang, Nafissa Yakubova, Erich Owens, C. Lawrence Zitnick, Michael P.

22

Lipschitz Networks with Learnable Activation Functions

Recht, Daniel K. Sodickson, and Yvonne W. Lui. fastMRI: A publicly available raw k-
space and DICOM dataset of knee images for accelerated MR image reconstruction using
machine learning. Radiology: Artificial Intelligence, 2(1), 2020.

Alexander Korotin, Alexander Kolesov, and Evgeny Burnaev. Kantorovich strikes back!
wasserstein gans are not optimal transport? In Advances in Neural Information Process-
ing Systems, volume 35, pages 13933–13946. Curran Associates, Inc., 2022.

Chunyuan Li, Hao Liu, Changyou Chen, Yuchen Pu, Liqun Chen, Ricardo Henao, and
Lawrence Carin. ALICE: Towards Understanding Adversarial Learning for Joint Distri-
bution Matching. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger B. Grosse, and Joern-Henrik
Jacobsen. Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Net-
works. In Advances in Neural Information Processing Systems, volume 32, 2019.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timo-
fte. SwinIR: Image restoration using swin transformer. In International Conference on
Computer Vision Workshops, pages 1833–1844. IEEE, 2021.

Ulrike von Luxburg and Olivier Bousquet. Distance–based classification with Lipschitz
functions. Journal of Machine Learning Research, 5:669–695, 2004.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In International
Conference on Machine Learning, 2019.

C. McCollough. TU-FG-207A-04: Overview of the low dose CT grand challenge. Medical
Physics, 43(6Part35):3759–3760, 2016. doi: https://doi.org/10.1118/1.4957556.

Tim Meinhardt, Michael Moeller, Caner Hazirbas, and Daniel Cremers. Learning proximal
operators: Using denoising networks for regularizing inverse imaging problems. In IEEE
International Conference on Computer Vision, pages 1799–1808, 2017.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral nor-
malization for generative adversarial networks. In International Conference on Learning
Representations, 2018.

Matthew J. Muckley, Bruno Riemenschneider, Alireza Radmanesh, Sunwoo Kim, Geunu
Jeong, Jingyu Ko, Yohan Jun, Hyungseob Shin, Dosik Hwang, Mahmoud Mostapha, Si-
mon Arberet, Dominik Nickel, Zaccharie Ramzi, Philippe Ciuciu, Jean-Luc Starck, Jonas
Teuwen, Dimitrios Karkalousos, Chaoping Zhang, Anuroop Sriram, Zhengnan Huang,
Nafissa Yakubova, Yvonne W. Lui, and Florian Knoll. Results of the 2020 fastMRI
Challenge for Machine Learning MR Image Reconstruction. IEEE Transactions on
Medical Imaging, 40(9):2306–2317, September 2021. ISSN 0278-0062, 1558-254X. doi:
10.1109/TMI.2021.3075856.

23

Ducotterd, Goujon, Bohra, Perdios, Neumayer, and Unser

Subhadip Mukherjee, Sören Dittmer, Zakhar Shumaylov, Sebastian Lunz, Ozan Öktem,
and Carola-Bibiane Schönlieb. Learned convex regularizers for inverse problems, March
2021.

Gopal Nataraj and Ricardo Otazo. Model-free deep mri reconstruction: A robustness study.
In ISMRM Workshop on Data Sampling and Image, 2020.

Sebastian Neumayer, Alexis Goujon, Pakshal Bohra, and Michael Unser. Approximation of
Lipschitz functions using deep spline neural networks. SIAM Journal on Mathematics of
Data Science, 5(2):306–322, 2023.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Explor-
ing generalization in deep learning. Advances in Neural Information Processing Systems,
31:5949–5958, 2017.

Patricia Pauli, Anne Koch, Julian Berberich, Paul Kohler, and Frank Allgöwer. Training
robust neural networks using Lipschitz bounds. IEEE Control Systems Letters, 6:121–126,
2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells,
and Alejandro F. Frangi, editors, Medical Image Computing and Computer-Assisted In-
tervention – MICCAI 2015, Lecture Notes in Computer Science, pages 234–241, Cham,
2015. Springer International Publishing. ISBN 978-3-319-24574-4.

Andrew Ross and Finale Doshi-Velez. Improving the adversarial robustness and inter-
pretability of deep neural networks by regularizing their input gradients. Proceedings of
the AAAI Conference on Artificial Intelligence, 32(1), 2018.

Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin.
Plug-and-play methods provably converge with properly trained denoisers. In Interna-
tional Conference on Machine Learning, pages 5546–5557. PMLR, 2019.

Andrew Saxe, James McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. In International Conference on
Learning Representations, 2014.

Laurent Schwartz. Théorie des Distributions. Publications de l’Institut de Mathématique
de l’Université de Strasbourg, IX-X. Hermann, Paris, 1966.

Sahil Singla, Surbhi Singla, and Soheil Feizi. Improved deterministic l2 robustness on
CIFAR-10 and CIFAR-100. International Conference on Learning Representations, 2022.

Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel Rodrigues. Robust large margin
deep neural networks. IEEE Transactions on Signal Processing, 65(16):4265–4280, 2017.

Suhas Sreehariand, Singanallur Venkatakrishnan, Brendt Wohlberg, Gregery Buzzard,
Lawrence Drummy, Jeffrey Simmons, and Charles Bouman. Plug-and-play priors for
bright field electron tomography and sparse interpolation. IEEE Transactions on Com-
putational Imaging, 2(4):408–423, 2016.

24

Lipschitz Networks with Learnable Activation Functions

Jiahao Su, Wonmin Byeon, and Furong Huang. Scaling-up Diverse Orthogonal Convolu-
tional Networks by a Paraunitary Framework. In Proceedings of the 39th International
Conference on Machine Learning, June 2022.

Yu Sun, Zihui Wu, Xiaojian Xu, Brendt Wohlberg, and Ulugbek S. Kamilov. Scalable plug-
and-play ADMM with convergence guarantees. IEEE Transactions on Computational
Imaging, 7:849–863, 2021.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander
Madry. Robustness may be at odds with accuracy. In International Conference on
Learning Representations, ICLR, 2019.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable
certification of perturbation invariance for deep neural networks. Advances in Neural
Information Processing Systems, 31:6542–6551, 2018.

Martin Uecker, Patrick Virtue, Frank Ong, Mark J Murphy, Marcus T Alley, Shreyas S
Vasanawala, and Michael Lustig. Software toolbox and programming library for com-
pressed sensing and parallel imaging. In ISMRM Workshop on Data Sampling and Image
Reconstruction, page 41, 2013.

Martin Uecker, Peng Lai, Mark J Murphy, Patrick Virtue, Michael Elad, John M Pauly,
Shreyas S Vasanawala, and Michael Lustig. ESPIRiT-an eigenvalue approach to auto-
calibrating parallel MRI: Where SENSE meets GRAPPA. Magn. Reson. Med., 71(3):
990–1001, March 2014.

Michael Unser. A representer theorem for deep neural networks. Journal of Machine
Learning Research, 20(110):1–30, 2019.

Singanallur Venkatakrishnan, Charles Bouman, and Brendt Wohlberg. Plug-and-play priors
for model based reconstruction. IEEE Global Conference on Signal and Information
Processing, pages 945–948, 2013.

C. Villani. Optimal Transport: Old and New. Grundlehren der Mathematischen Wis-
senschaften. Springer, Heidelberg, 2016.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: Analysis
and efficient estimation. Advances in Neural Information Processing Systems, 31:3839–
3848, 2018.

Dong Hye Ye, Somesh Srivastava, Jean-Baptiste Thibault, Ken Sauer, and Charles Bouman.
Deep residual learning for model-based iterative CT reconstruction using Plug-and-Play
framework. In IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 6668–6672, 2018.

Bohang Zhang, Tianle Cai, Zhou Lu, Di He, and Liwei Wang. Towards Certifying L-infinity
Robustness using Neural Networks with L-inf-dist Neurons. In International Conference
on Machine Learning, pages 12368–12379, 2021.

25

Ducotterd, Goujon, Bohra, Perdios, Neumayer, and Unser

Bohang Zhang, Du Jiang, Di He, and Liwei Wang. Rethinking Lipschitz Neural Networks
and Certified Robustness: A Boolean Function Perspective. Advances in Neural Infor-
mation Processing Systems, 35:19398–19413, 2022.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a Gaussian
Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Transactions on
Image Processing, 26(7):3142–3155, 2017.

Appendix A. Proof of Proposition 1

We express the activation functions in terms of each other using weights Wk with ‖Wk‖2 ≤
1. Choose B such that x+B > 0 for all x ∈ D and any pre-activation in the network.

AV as Expressive as PReLU: We can express AV using PReLU with a = −1. For the
other direction, we have that

PReLUa(x)

=
[√

(1 + a)/2 −
√

(1− a)/2
]

AV

([√
(1 + a)/2√
(1− a)/2

]
x+

[√
(1 + a)/2B

0

])
− 1 + a

2B
. (25)

AV as Expressive as GS: This was already proven in Anil et al. (2019), but we include
the expressions for the sake of completeness. It holds that[

max(x1)
min(x2)

]
= M AV

(
M

[
x1
x2

]
+

[
B
0

])
−
[√

2B
0

]
, (26)

where

M =
1√
2

[
1 1
1 −1

]
. (27)

For the reverse direction, we have that

AV(x) =
[

1√
2
− 1√

2

]
MaxMin

([
1√
2
1√
2

]
x

)
. (28)

GS as Expressive as HH: For v = 1√
2
(1,−1) we have that HHv = MaxMin. Further,

we can also express HHv using MaxMin as

HHv (z) = R(v) MaxMin
(
R(v)T z

)
, (29)

where R(v) is the rotation matrix

R(v) =

[
cos γ(v1, v2) − sin γ(v1, v2)
sin γ(v1, v2) cos γ(v1, v2)

]
with γ(v1, v2) =

π

4
+ 2 arctan

v2
1 + v1

. (30)

�

26

Lipschitz Networks with Learnable Activation Functions

Appendix B. Proof of Theorem 2

Without loss of generality, we assume that all biases in fθ are zero as they can be integrated
into the σ`. First, we show that solutions for (7) exist. For ` = 1, . . . , (L− 1) and σ̄1 = σ1,
we can iteratively replace the σ` in fθ by u` without changing the output as in

σ`+1

(
W`+1σ̄`(z)

)
= σ`+1

(
W`+1(σ̄`(z)− σ̄`(0)) + W`+1σ̄`(0)

)
= σ̄`+1

(
W`u`(z)

)
, (31)

where u` = σ̄`− σ̄`(0) ∈ BV(2)(R) and σ̄`+1 = σ`+1(·+ W`σ̄`(0)). For the last layer, we set

σ̄L
(
WLuL−1(z)

)
= uL

(
WLuL−1(z)

)
+ aL, (32)

where uL = σ̄L − σ̄L(0) ∈ BV(2)(R) and aL = σ̄L(0) = fθ(0) ∈ RNL . Consequently,
TV(2) (u`,n) = TV(2) (σ`,n) and u`(0) = 0. Hence, a solution of (7) exists if the restricted
problem

arg min
W`,σ`,n∈BV(2)(R)

s.t. Lip(σ`,n)≤1, ‖W`‖≤1
σ`,n(0)=0,|σ`,n(1)|≤1

aL∈RNL

(
M∑
m=1

E
(
ym, fθ (xm) + aL

)
+ λ

L∑
`=1

N∑̀
n=1

TV(2) (σ`,n)

)
(33)

has a nonempty solution set. Since fθ is 1-Lipschitz, it holds that

‖fθ(xm)− aL‖ = ‖fθ(xm)− fθ(0)‖ ≤ ‖xm‖. (34)

In addition, we have that

2‖aL‖ = ‖(fθ(xm)− aL)− (fθ(xm) + aL)‖ ≤ ‖fθ(xm)− aL‖+ ‖fθ(xm) + aL‖ (35)

and, therefore, that
‖fθ(xm) + aL‖ ≥ 2‖aL‖ − ‖xm‖. (36)

The fact that E is coercive and positive implies that

lim
‖aL‖→+∞

M∑
m=1

E
(
ym, fθ (xm) + aL

)
= +∞. (37)

We conclude that there exists a constant A > 0 such that it suffices to minimize over
‖aL‖ ≤ A in (33). Now, the remaining steps for the proof of existence are the same as in
the proof of Theorem 3 in Aziznejad et al. (2020).

For the second part of the claim, we follow the reasoning in Unser (2019). Let fθ̃ be a
solution of (7) with weights W̃`, biases b̃`, and activation functions σ̃`,n. When evaluating
fθ̃ at the data point xm, we iteratively generate vectors zm,`, ỹm,` ∈ RN` as follows.

1. Initialization (input of the network): ỹm,0 = xm.

2. Iterative update: For ` = 1, . . . , L, calculate

zm,` = (zm,`,1, . . . , zm,`,N`
) = W̃`ỹm,`−1 + b̃` (38)

and define ỹm,` = (ỹm,`,1, . . . , ỹm,`,N`
) ∈ RN` as

ỹm,`,n = σ̃`,n (zm,`,n) , n = 1, . . . , N`. (39)

27

Ducotterd, Goujon, Bohra, Perdios, Neumayer, and Unser

We directly observe that ỹm,` only depends on the values of σ̃`,n : R → R at the locations
zm,`,n. Hence, the optimal σ̃`,n are the 1-Lipschitz interpolations between these points with
minimal second-order total variation, as the regularizers for σ̃`,n in (33) do not depend on
each other. More precisely, the σ̃`,n solve the problem

σ̃`,n ∈ arg min
f∈BV(2)(R)
s.t. Lip(f)≤1

TV(2)(f) s.t. f (zm,`,n) = ỹm,`,n, m = 1, . . . ,M. (40)

We assume that zm,`,n are distinct for m = 1, . . . ,M . Otherwise, we can remove the
duplicates as zm1,`,n = zm2,`,n implies that ỹm1,`,n = ỹm2,`,n. The unconstrained problem

min
f∈BV(2)(R)

TV(2)(f) s.t. f (zm,`,n) = ỹm,`,n, m = 1, . . . ,M, (41)

has a linear-spline solution v`,n with no more than M − 2 knots (Debarre et al., 2022,
Proposition 5). It can be shown (Aziznejad et al., 2022) that the Lipschitz constant of this
canonical solution is given by maxm1 6=m2 |ỹm1,`,n − ỹm2,`,n|/|zm1,`,n − zm2,`,n| ≤ Lip(σ̃`,n).
Hence, there exists a linear-spline v`,n with σ̃`,n(zm,`,n) = v`,n(zm,`,n) for all m = 1, . . . ,M ,

Lip(v`,n) ≤ Lip(σ̃`,n), and TV(2)(v`,n) = TV(2)(σ̃`,n). �

Appendix C. Properties of SplineProj

The Least-Square Projection onto {c ∈ RK : ‖Dc‖∞ ≤ T} Preserves the Mean:
Let x ∈ RK and y ∈ {c ∈ RK : ‖Dc‖∞ ≤ T} and x = x̄ + µx1, y = ȳ + µy1, where x̄ and
ȳ have zero mean. It holds that

‖x− y‖22 = ‖x̄− ȳ + 1(µx − µy)‖22 = ‖x̄− ȳ‖22 + (µx − µy)2K2. (42)

Hence, we can add (µx − µy)1 to y and decrease ‖x− y‖ without violating ‖Dc‖∞ ≤ T .

SplineProj Maps RK to {x ∈ RK : ‖Dx‖∞ ≤ T}: We have, for any c ∈ RK , that

‖D SplineProj(c)‖∞ = ‖DD†ClipT (Dc) + D1
1

K

K∑
k=1

ck‖∞ = ‖ClipT (Dc)‖∞ ≤ T. (43)

Here, we used the fact that DD† = Id ∈ RK−1,K−1 and that D1 = 0 ∈ RK .

SplineProj is a Projection: Using the same properties as above, it holds that

SplineProj(SplineProj(c)) = D†ClipT (DD†ClipT (Dc) + D1
1

K

K∑
k=1

ck) + 1
1

K

K∑
k=1

ck

= D†ClipT (ClipT (Dc)) + 1
1

K

K∑
k=1

ck

= D†ClipT (Dc) + 1
1

K

K∑
k=1

ck = SplineProj(c). (44)

28

Lipschitz Networks with Learnable Activation Functions

SplineProj Preserves the Mean of c: From the properties of the Moore-Penrose in-
verse, we have that ker((D†)T) = ker (D), therefore, 1TD† = 0 and

1

K
1T SplineProj(c) =

1

K
1TD†ClipT (Dc) + 1T1

1

K2

K∑
k=1

ck =
1

K

K∑
k=1

ck. (45)

SplineProj is Differentiable Almost Everywhere with Respect to c: The ClipT
function is differentiable everywhere except at T and −T . Therefore, D†ClipT (Dc) is
differentiable everywhere except on

S =

K−1⋃
k=1

{
x ∈ RK : |(Dx)k| = T

}
. (46)

As a union of 2(K − 1) hyperplanes of dimension K − 1, the set S has measure zero in RK .

Appendix D. Second-Order Total Variation

Here, we mainly follow the exposition from Unser (2019). Let S(R) denote the Schwartz
space of smooth and rapidly decaying test functions equipped with the usual Schwartz
topology, see Schwartz (1966). The topological dual space of distributions is denoted by
S ′(R) and can be equipped with the total-variation norm

‖f‖M := sup
ϕ∈S(R):‖ϕ‖∞≤1

〈f, ϕ〉. (47)

As S(R) is dense in C0(R), the associated space M(R) = {f ∈ S ′(R) : ‖f‖M < ∞} can
be identified as the Banach space of Radon measures. Next, we require the second-order
distributional derivative D2 : S ′(R)→ S ′(R) defined via the identity

〈D2f, ϕ〉 =
〈
f,

d2

dx2
ϕ
〉

∀ϕ ∈ S(R). (48)

Based on this operator, the second-order total variation of f ∈ S ′(R) is defined as

TV(2)(f) = ‖D2f‖M = sup
ϕ∈S(R):‖ϕ‖∞≤1

〈
f,

d2

dx2
ϕ
〉
. (49)

In order to make things more interpretable, we introduce the space of continuous functions
Cb,1(R) = {f ∈ C(R) : ‖f‖∞,1 < ∞} that grow at most linearly, which is equipped with
the norm ‖f‖∞,1 := supx∈R |f(x)|(1 + |x|)−1. Now, we are ready to define the space of
distributions with bounded second-order total variation as

BV(2)(R) = {f ∈ S ′(R) : TV(2)(f) <∞} = {f ∈ Cb,1(R) : TV(2)(f) <∞}. (50)

Note that TV(2)(f) = 0 if f is affine and, consequently, TV(2) is only a seminorm.

29

Ducotterd, Goujon, Bohra, Perdios, Neumayer, and Unser

Scale Invariance of TV(2): For α 6= 0 and σ ∈ BV(2)(R), it holds that the rescaling
σ̃ = 1

ασ(α·) ∈ BV(2)(R) satisfies the following invariance

TV(2)(σ̃) = sup
ϕ∈S(R):‖ϕ‖∞≤1

∫
R

1

α
σ(αx)

d2

dx2
ϕ(x) dx = sup

ϕ∈S(R):‖ϕ‖∞≤1

∫
R

1

α2
σ(x)

d2

dx2
ϕ(x/α) dx

= sup
ϕ∈S(R):‖ϕ‖∞≤1

∫
R
σ(x)

d2

dx2
ϕ(·/α)(x) dx = TV(2)(σ). (51)

Appendix E. Proofs for the PnP Stability Results

Proposition 4: If D is β-averaged with β ≤ 1/2, then 2D − Id is 1-Lipschitz since

‖(2D − Id)(z1 − z2)‖ = ‖2β(R(z1)−R(z2)) + (1− 2β)(z1 − z2)‖
≤ 2β‖R(z1)−R(z2)‖+ (1− 2β)‖z1 − z2‖
≤ ‖z1 − z2‖, ∀z1, z2 ∈ Rn. (52)

Using this property, we get that

‖(2D − Id)(x∗1 − α∇∇∇f(Hx∗1,y1))− (2D − Id)(x∗2 − α∇∇∇f(Hx∗2,y2))‖
≤ ‖(x∗1 − α∇∇∇f(Hx∗1,y1))− (x∗2 − α∇∇∇f(Hx∗2,y2))‖. (53)

From the fixed-point property of x∗1 and x∗2, we further get that

‖2(x∗1 − x∗2)− (x∗1 − α∇∇∇f(Hx∗1,y1)) + (x∗2 − α∇∇∇f(Hx∗2,y2))‖
≤ ‖(x∗1 − α∇∇∇f(Hx∗1,y1))− (x∗2 − α∇∇∇f(Hx∗2,y2))‖. (54)

Using the fact that ∇∇∇f(Hx,y) = HT (Hx− y) and developing on both sides, we get that

〈x∗1 − x∗2,H
T (Hx∗2 − y2)−HT (Hx∗1 − y1)〉 ≥ 0. (55)

The claim follows by moving HT to the other side and using the Cauchy-Schwartz inequality

‖H(x∗1 − x∗2)‖‖y1 − y2‖ ≥ 〈H(x∗1 − x∗2),y1 − y2〉 ≥ ‖H(x∗1 − x∗2)‖2. (56)

Proposition 5: We show the relation between the difference of the kth iterate of the PnP
algorithm and the difference of its starting points using the fact that the matrix I−αHTH
has a spectral norm of one when α has an appropriate value. The modulus is

‖xk1 − xk2‖ = ‖D(xk−11 − αHT (Hxk−11 − y1)−D(xk−12 − αHT (Hxk−12 − y2)‖
≤ K‖(I− αHTH)(xk−11 − xk−12)− αHT (y1 − y2)‖
≤ K‖xk−11 − xk−12 ‖+ αK‖H‖‖y1 − y2‖
≤ K2‖xk−21 − xk−22 ‖+ α‖H‖(K +K2)‖y1 − y2‖

≤ Kk‖x0
1 − x0

2‖+ α‖H‖‖y1 − y2‖
k∑

n=1

Kn. (57)

Taking the limit k →∞, we get that ‖x∗1 − x∗2‖ ≤
α‖H‖K
1−K ‖y1 − y2‖.

30

	Introduction
	1-Lip Neural Networks
	1-Lipschitz Linear Layers
	1-Lipschitz Activation Functions

	1-Lip Learnable Linear Spline Networks
	Representer Theorem and Expressivity
	Deep Spline Neural Network Representation
	Methods
	Constrained Coefficients
	Scaling Parameter

	Experiments
	Evaluating the Expressivity
	One-Dimensional Function Fitting
	High-Dimensional Function Fitting: Wasserstein Distances
	1-Lipschitz Wasserstein GAN Training

	Image Reconstruction via Plug-and-Play
	Learning a Denoiser for PnP
	Numerical Results for PnP-FBS

	Conclusion
	Proof of Proposition 1
	Proof of Theorem 2
	Properties of SplineProj
	Second-Order Total Variation
	Proofs for the PnP Stability Results

