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Abstract
Data augmentation (DA) is a powerful workhorse for bolstering performance in modern
machine learning. Specific augmentations like translations and scaling in computer vision
are traditionally believed to improve generalization by generating new (artificial) data from
the same distribution. However, this traditional viewpoint does not explain the success of
prevalent augmentations in modern machine learning (e.g. randomized masking, cutout,
mixup), that greatly alter the training data distribution. In this work, we develop a new
theoretical framework to characterize the impact of a general class of DA on underparam-
eterized and overparameterized linear model generalization. Our framework reveals that
DA induces implicit spectral regularization through a combination of two distinct effects:
a) manipulating the relative proportion of eigenvalues of the data covariance matrix in a
training-data-dependent manner, and b) uniformly boosting the entire spectrum of the
data covariance matrix through ridge regression. These effects, when applied to popular
augmentations, give rise to a wide variety of phenomena, including discrepancies in gen-
eralization between over-parameterized and under-parameterized regimes and differences
between regression and classification tasks. Our framework highlights the nuanced and
sometimes surprising impacts of DA on generalization, and serves as a testbed for novel
augmentation design.
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1. Introduction

Data augmentation (DA), or the transformation of data samples before or during learning, is
a workhorse of both supervised (Shorten and Khoshgoftaar, 2019; Iosifidis and Ntoutsi, 2018;
Liu et al., 2021b) and self-supervised approaches (Gidaris et al., 2018; Chen et al., 2020b;
Grill et al., 2020; Azabou et al., 2021; Zbontar et al., 2021) for machine learning (ML). It is
critical to the success of modern ML in multiple domains, e.g., computer vision (Shorten and
Khoshgoftaar, 2019), natural language processing (Feng et al., 2021), time series data (Wen
et al., 2020), and neuroscience (Lashgari et al., 2020; Azabou et al., 2021; Liu et al., 2021a).
This is especially true in settings where data and/or labels are scarce or in other cases where
algorithms are prone to overfitting (Zhang et al., 2021). While DA is perhaps one of the most
widely used tools for regularization, most augmentations are applied in an ad hoc manner,
and it is often unclear exactly how, why, and when a DA strategy will work for a given
dataset (Cubuk et al., 2019; Ratner et al., 2017; Balestriero et al., 2022a).

Recent theoretical studies have provided insights into the effect of DA on learning and
generalization when augmented samples lie close to the original data distribution (Dao et al.,
2019; Chen et al., 2020a). However, state-of-the-art augmentations that are used in practice
(e.g. data masking (He et al., 2022), cutout (DeVries and Taylor, 2017), mixup (Zhang et al.,
2017)) are stochastic and can significantly alter the distribution of the data (Gontijo-Lopes
et al., 2020; He et al., 2022; Yuan et al., 2021). Despite many efforts to explain the success
of DA in the literature (Bishop, 1995; Chapelle et al., 2001; Chen et al., 2020a; Dao et al.,
2019; Wu et al., 2020), there is still a lack of a comprehensive platform to compare different
types of augmentations at a quantitative level.

In this paper, we address this challenge by proposing a simple yet flexible theoretical
framework that precisely characterizes the impact of DA on generalization. Our framework
enables generalization analysis for: 1. general stochastic augmentations, 2. the classical
underparameterized regime (Hastie et al., 2009) and the modern overparameterized regime, 3.
regression and classification tasks, and 4. strong and weak distributional-shift augmentations.
To do this, we borrow and build on finite-sample analysis techniques that simultaneously
operate in the underparameterized and overparameterized regime for linear and kernel
models (Bartlett et al., 2020; Tsigler and Bartlett, 2020; Muthukumar et al., 2021, 2020).

We find that DA induces two types of implicit, training-data-dependent regularization:
manipulation of the spectrum (i.e. eigenvalues) of the data covariance matrix, and the
addition of explicit ℓ2-type regularization to avoid noise overfitting. The first effect of
spectral manipulation can either make or break generalization by introducing helpful or
harmful biases. In contrast, the explicit ℓ2 regularization effect always improves generalization
by preventing possibly harmful overfitting of noise.

Our theory reveals good, bad, and ugly sides to DA depending on the setting, nature
of task and type of augmentation. We find that on one hand, DA improves generalization
when it is designed in a targeted manner to reduce variance while preserving bias (for any
setting/task) or if the reduction in variance outweighs increase in bias (for classification
or underparameterized regression). On the other hand, DA is more unforgiving for over-

2



The implicit spectral regularization of data augmentation

parameterized regression; here, we find that popular augmentations frequently induce a
large increase in both bias and distribution shift between training and test data. We also
identify several ugly (i.e. subtle/nuanced) features to DA depending on whether the task is
regression or classification, the model is underparameterized or overparameterized, and the
augmentations are pre-computed or applied on-the-fly.

1.1 Main contributions

Below, we outline and provide a roadmap of the main contributions of this work.

• We propose a new framework for studying non-asymptotic generalization with data
augmentation for linear models by building on the recent literature on the theory of
overparameterized learning (Bartlett et al., 2020; Tsigler and Bartlett, 2020; Muthuku-
mar et al., 2021). We provide natural definitions of the augmentation mean and
covariance operators that capture the impact of change in data distribution on model
generalization in Section 3.1, and sharply characterize the ensuing performance for
both regression and classification tasks in Sections 4.3 and 4.4, respectively.

• In Section 5, we apply our theory to provide new interpretations of a broad class of
randomized DA strategies used in practice; e.g., random-masking (He et al., 2022),
cutout (DeVries and Taylor, 2017), noise injection (Bishop, 1995), and group-invariant
augmentations (Chen et al., 2020a). An example is as follows: while the classical noise
injection augmentation (Bishop, 1995) causes only a constant shift in the spectrum,
data masking (He et al., 2022; Assran et al., 2022), cutout (DeVries and Taylor, 2017)
and distribution-preserving augmentations (Chen et al., 2020a) tend to isotropize the
equivalent data spectrum. We also use our framework as a testbed for new approaches
by designing a new augmentation method, inspired by isometries in random feature
rotation (Section 7.1). We show that this augmentation achieves smaller bias than the
least-squared estimator and variance reduction on the order of the ridge estimator.

• In Section 6 we empirically examine the influence of DA in conjunction with data and
model family on generalization. We compare our closed-form expression with augmented
stochastic gradient descent (SGD) (Dao et al., 2019; Chen et al., 2020a,b) and pre-
computed augmentations (Wu et al., 2020; Shen et al., 2022). In addition to verifying
our theoretical insights, our experiments reveal phenomena of independent interest,
including surprising distinctions between pre-computed DA and augmented SGD and
varying robustness to augmentation hyperparameter tuning between regression and
classification tasks.

• We conclude in Section 7 with an extended discussion of the “good, bad and ugly"
ideas of DA. In Section 7.1 we discuss how cleverly designed data-adaptive covariance
modification can reduce both bias and variance, and how a broader class of DA leads to
variance reduction that outweighs bias increase for classification and underparameterized
regression tasks. In Section 7.2 we unpack the suboptimalities of the “isotropizing"
effect of DA, particularly in overparameterized regression where bias is especially
harmful (Muthukumar et al., 2020; Hastie et al., 2019). Finally, in Section 7.3, we
identify strikingly divergent impacts of DA depending on whether the task is regression
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or classification, the model is under or overparameterized, and the augmentation is pre-
computed or applied to SGD. Our findings here corroborate the empirically observed
benefits of DA being primarily applied “on-the-fly", on moderate-dimensional data and
classification tasks (Yuan et al., 2021; Dai et al., 2022).

1.2 Notation

We use n to denote the number of training examples and p to denote the data dimension.
Given a training data matrix X ∈ Rn×p where each row (representing a training example)
is independently and identically distributed (i.i.d.) and has covariance Σ := E[xx⊤], we
denote PΣ

1:k−1 and PΣ
k:∞ as the projection matrices to the top k− 1 and the bottom p− k+1

eigen-subspaces of Σ, respectively. For convenience, we denote the residual Gram matrix by
Ak(X;λ) = λIn +XPΣ

k:∞XT , where λ is some regularization constant. Subscripts denote
the subsets of column vectors when applied to a matrix; e.g. for a matrix V we have
Va:b := [va,va+1, . . . ,vb]. A similar definition applies to vectors; e.g. for a vector x we have
xa:b = [xa,xa+1, . . . ,xb]. The Mahalanobis norm of a vector is defined by ∥x∥H =

√
x⊤Hx.

For a matrix A, diag(A) denotes the diagonal matrix with a diagonal equal to that of A,
Tr(A) denotes its trace and µi(A) its i-th largest eigenvalue. The symbols ≳ and ≲ are used
to denote inequality relations that hold up to universal constants which may depend only on
σx or σε and not on n or p. All asymptotic convergence results are stated in probability.

More specific notation corresponding to our signal model is given in Section 4.1, and some
additional notation that is convenient to define for our analysis is postponed to Section 4.2.

2. Related Work

We organize our discussion of related work into two verticals: a) historical and recent
perspectives on the role of data augmentation, and b) recent analyses of minimum-norm and
ridge estimators in the over-parameterized regime.

2.1 Data augmentation

Classical links between DA and regularization: Early analysis of DA showed that
adding random Gaussian noise to data points is equivalent to Tikhonov regularization (Bishop,
1995) and vicinal risk minimization (Zhang et al., 2017; Chapelle et al., 2001); in the latter,
a local distribution is defined in the neighborhood of each training sample, and new samples
are drawn from these local distributions to be used during training. These results established
an early link between augmentation and explicit regularization. However, the impact of such
approaches on generalization has been mostly studied in the underparameterized regime
of ML, where the primary concern is reducing variance and avoiding overfitting of noise.
Modern ML practices, by contrast, have achieved great empirical success in overparameterized
settings and with a broader range of augmentation strategies (Shorten and Khoshgoftaar,
2019; Iosifidis and Ntoutsi, 2018; Liu et al., 2021b). The type of regularization that is induced
by these more general augmentation strategies is not well understood. Our work provides a
systematic point of view to study this general connection without assuming any additional
explicit regularization, or specific operating regime.
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In-distribution versus out-of-distribution augmentations: Intuitively, if we could
design an augmentation that would produce more virtual but identically distributed samples
of our data, we would expect an improvement in generalization. Based on this insight and
the inherent structure of many augmentations used in vision (that have symmetries), another
set of works explores the common intuition that data augmentation helps insert beneficial
group-invariances into the learning process (Cohen and Welling, 2016; Raj et al., 2017;
Mroueh et al., 2015; Bruna and Mallat, 2013; Yang et al., 2019). These studies generally
consider cases in which the group structure is explicitly present in the model design via
convolutional architectures (Cohen and Welling, 2016; Bruna and Mallat, 2013) or feature
maps approximating group-invariant kernels (Raj et al., 2017; Mroueh et al., 2015). The
authors of Chen et al. (2020a) propose a general group-theoretic framework for DA and
explain that an averaging effect helps the model generalize through variance reduction.
However, they only consider augmentations that do not alter (or alter by minimal amounts)
the original data distribution; consequently, they identify variance reduction as a sole positive
effect of DA. Moreover, their analysis applies primarily to underparameterized or explicitly
regularized models.1

Recent empirical studies have highlighted the importance of diverse stochastic augmenta-
tions (Gontijo-Lopes et al., 2020). They argue that in many cases, it is important to introduce
samples which are out-of-distribution (OOD) (Sinha et al., 2021; Peng et al., 2022) (in the
sense that they do not resemble the original data). In our framework, we allow for cases in
which augmentation leads to significant changes in distribution and provide a path to analysis
for such OOD augmentations that encompass empirically popular approaches for DA (He
et al., 2022; DeVries and Taylor, 2017). We also consider the modern overparameterized
regime (Belkin et al., 2019; Dar et al., 2021). We show that the effects of OOD augmentations
go far beyond variance reduction, and the spectral manipulation effect introduces interesting
biases that can either improve or worsen generalization for overparameterized models.
Analysis of specific types of DA in linear and kernel methods: Dao et al. (2019)
propose a Markov process-based framework to model compositional DA and demonstrate an
asymptotic connection between a Bayes-optimal classifier and a kernel classifier dependent
on DA. Furthermore, they study the augmented empirical risk minimization procedure and
show that some types of DA, implemented in this way, induce approximate data-dependent
regularization. However, unlike our work, they do not quantitatively study the generalization
of these classifiers. Li et al. (2019) also propose a kernel classifier based on a notion of
invariance to local translations, which produces competitive empirical performance. In another
recent analysis, Wu et al. (2020) study the generalization of linear models with DA that
constitutes linear transformations on the data for regression in the overparameterized regime
(but still considering additional explicit regularization). They find that data augmentation
can enlarge the span of training data and induce regularization. There are several key
differences between their framework and ours. First, they analyze deterministic DA, while
we analyze stochastic augmentations used in practice (Grill et al., 2020; Chen et al., 2020a).
Second, they assume that the augmentations would not change the labels generated by the

1. More recent studies of invariant kernel methods, trained to interpolation, suggest that invariance could
either improve (Mei et al., 2021) or worsen (Donhauser et al., 2021) generalization depending on the
precise setting. Our results for the overparameterized linear model (in particular, Corollary 43) also
support this message.
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ground-truth model, thereby only identifying beneficial scenarios for DA (while we identify
scenarios that are both helpful and harmful). Third, they study empirical risk minimization
with pre-computed augmentations, in contrast to our study of augmentations applied on-the-
fly during the optimization process (Dao et al., 2019; Chen et al., 2020a), which are arguably
more commonly used in practice. Our experiments in Section 6.4 identify sizably different
impacts of these methods of application of DA even in simple linear models. Finally, the
role of DA in linear model optimization, rather than generalization, has also been recently
studied; in particular, Hanin and Sun (2021) characterize how DA affects the convergence
rate of optimization.

The impact of DA on nonlinear models: Recent works aim to to understand the role
of DA in nonlinear models such as neural networks. LeJeune et al. (2019) show that certain
local augmentations induce regularization in deep networks via a “rugosity”, or “roughness”
complexity measure. While they show empirically that DA reduces rugosity, they leave open
the question of whether this alone is an appropriate measure of a model’s generalization
capability. Very recently, Shen et al. (2022) showed that training a two-layer convolutional
neural network with a specific permutation-style augmentation can have a novel feature
manipulation effect. Assuming the recently posited “multi-view" signal model (Allen-Zhu
and Li, 2020), they show that this permutation-style DA enables the model to better learn
the essential feature for a classification task. They also observe that the benefit becomes
more pronounced for nonlinear models. Our work provides a similar message, as we also
identify the DA-induced data manipulation effect as key to generalization. However, we
provide a comprehensive general-purpose framework for DA by which we can compare and
contrast different augmentations that can either help or hurt generalization, while Shen
et al. (2022) only analyze a permutation-style augmentation. We believe that combining
our general-purpose framework for DA with a more complex nonlinear model is a promising
future direction, and we discuss possible analysis paths for this in Section 8.

2.2 Interpolation and regularization in overparameterized models

Minimum-norm-interpolation analysis: Our technical approach leverages recent results
in overparameterized linear regression, where models are allowed to interpolate the training
data. Following the definition of Dar et al. (2021), we characterize such works by their
explicit focus on models that achieve close to zero training loss and which have a high
complexity relative to the number of training samples. Specifically, many of these works
provide finite sample analysis of the risk of the least squared estimator (LSE) and the ridge
estimator (Bartlett et al., 2020; Tsigler and Bartlett, 2020; Hastie et al., 2019; Belkin et al.,
2020; Muthukumar et al., 2020). This line of research (most notably, Bartlett et al. (2020);
Tsigler and Bartlett (2020)) finds that the mean squared error (MSE), comprising the bias
and variance, can be characterized in terms of the effective ranks of the spectrum of the data
distribution. The main insight is that, contrary to traditional wisdom, perfect interpolation of
the data may not have a harmful effect on the generalization error in highly overparameterized
models. In the context of these advances, we identify the principal impact of DA as spectral
manipulation which directly modifies the effective ranks, thus either improving or worsening
generalization. We build in particular on the work of Tsigler and Bartlett (2020), who provide
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non-asymptotic characterizations of generalization error for general sub-Gaussian design,
with some additional technical assumptions that also carry over to our framework.2

Subsequently, this type of “harmless interpolation” was shown to occur for classifica-
tion tasks (Muthukumar et al., 2021; Cao et al., 2021; Wang and Thrampoulidis, 2021;
Chatterji and Long, 2021; Shamir, 2022; Deng et al., 2022; Montanari et al., 2019). In
particular, Muthukumar et al. (2021); Shamir (2022) showed that classification can be
significantly easier than regression due to the relative benignness of the 0-1 test loss. Our
analysis also compares classification and regression and shows that the potentially harmful
biases generated by DA are frequently nullified with the 0-1 metric. As a result, we identify
several beneficial scenarios for DA in classification tasks. At a technical level, we generalize
the analysis of Muthukumar et al. (2021) to sub-Gaussian design. We also believe that
our framework can be combined with the alternative mixture model (where covariates are
generated from discrete labels (Chatterji and Long, 2021; Wang and Thrampoulidis, 2021;
Cao et al., 2021)), but we do not formally explore this path in this paper.

Generalized ℓ2 regularizer analysis: Our framework extends the analyses of least squares
and ridge regression to estimators with general Tikhonov regularization, i.e., a penalty of the
form θ⊤Mθ for arbitrary positive definite matrix M. A closely related work is Wu and Xu
(2020), which analyzes the regression generalization error of general Tikhonov regularization.
However, our work differs from theirs in three key respects. First, the analysis of Wu and
Xu (2020) is based on the proportional asymptotic limit (where the sample size n and
data dimension p increase proportionally with a fixed ratio) and provides sharp asymptotic
formulas for regression error that are exact, but not closed-form and not easily interpretable.
On the other hand, our framework is non-asymptotic, and we generally consider p ≫ n
or p≪ n; our expressions are closed-form, match up to universal constants and are easily
interpretable. Second, our analysis allows for a more general class of random regularizers that
themselves depend on the training data; a key technical innovation involves showing that the
additional effect of this randomness is, in fact, minimal. Third, we do not explicitly consider
the problem of determining an optimal regularizer; instead, we compare and contrast the
generalization characteristics of various types of practical augmentations and discuss which
characteristics lead to favorable performance.

In addition to explicitly regularized estimators, Wu and Xu (2020) also analyze the
ridgeless limit for these regularizers, which can be interpreted as the minimum-Mahalanobis-
norm interpolator. In Section 6.1 we show that such estimators can also be realized in the
limit of minimal DA.

The role of explicit regularization and hyperparameter tuning: Research on
harmless interpolation and double descent (Belkin et al., 2019) has challenged conventional
thinking about regularization and overfitting for overparameterized models; in particular,
good performance can be achieved with weak (or even negative) explicit regularization (Kobak
et al., 2020; Tsigler and Bartlett, 2020), and gradient descent trained to interpolation can
sometimes beat ridge regression (Richards et al., 2021). These results show that the scale
of the ridge regularization significantly affects model generalization; consequently, recent

2. As remarked on at various points throughout the paper, we believe that the recent work of McRae et al.
(2022), which weakens these assumptions further, can also be plugged with our analysis framework; we
will explore this in the sequel.
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work strives to estimate the optimal scale of ridge regularization using cross-validation
techniques (Patil et al., 2021, 2022).

As shown in classical work (Bishop, 1995), ridge regularization is equivalent to augmenta-
tion with (isotropic) Gaussian noise, and the scale of regularization naturally maps to the
variance of Gaussian noise augmentation. Our work links DA to a much more flexible class
of regularizers and shows that some types of DA induce an implicit regularization that yields
much more robust performance across the hyperparameter(s) dictating the “strength” of the
augmentation. In particular, our experiments in Section 6.2 show that random mask (He et al.,
2022), cutout (DeVries and Taylor, 2017) and our new random rotation augmentation yield
comparable generalization error for a wide range of hyperparameters (masking probability,
cutout width and rotation angle respectively); the random rotation is a new augmentation
proposed in this work and frequently beats ridge regularization as well as interpolation. Thus,
our flexible framework enables the discovery of DA with appealing robustness properties not
present in the more basic methodology of ridge regularization.

Other types of indirect regularization: We also mention peripherally related but
important work on other types of indirect regularization involving creating fake “knockoff”
features (Candes et al., 2018; Romano et al., 2020) and dropout in parameter space (Cavazza
et al., 2018; Mianjy et al., 2018). The knockoff methodology creates copies of features
(rather than augmenting data points) that are uncorrelated with the target to perform
variable selection. Dropout also induces implicit regularization by randomly dropping out
intermediate neurons (rather than covariates, as does the random mask (He et al., 2022)
augmentation) during the learning process, and has been shown to have a close connection
with sparsity regularization (Mianjy et al., 2018). Overall, these constitute methods of
indirect regularization that are applied to model parameters rather than data. An intriguing
question for future work is whether these effects can also be achieved through DA.

3. Problem Setup

In this section, we introduce the notation and setup for our analysis of generalization with
data augmentation (DA). We review the fundamentals of empirical risk minimization (ERM)
without DA and discuss how augmentations affect the ERM procedure. Then, we derive a
reduction to ridge regression that paves the way for our analysis in Section 4.

3.1 Empirical risk minimization with data augmentation

Traditionally, high-dimensional ML models are commonly trained to minimize a combi-
nation of prediction error on training data and some measure of model complexity. This
is encapsulated in the regularized empirical risk minimization objective, expressed for lin-
ear models fθ(x) = ⟨x,θ⟩ as θ̂ = argminθ [ℓ(Xθ,y) +R(θ)] where ℓ is a loss function,
X =

[
x1 . . . xn

]⊤ ∈ Rn×p is the training data matrix that stacks the n covariates, y ∈ Rn
is the vector of observations/responses, θ ∈ Rp is the linear model parameter that we want
to optimize, and R(θ) is an explicit regularizer applied to the model. We will adopt the
choice of squared loss function ℓ(Xθ,y) = ∥Xθ − y∥22 throughout this work owing to its
mathematical tractability.
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Modern machine learning relies heavily on data augmentation (DA) to achieve state-of-
the-art performance (Shorten and Khoshgoftaar, 2019; Zhang et al., 2021). Augmentations
are typically applied on-the-fly and stochastically to different examples during training (Chen
et al., 2020a; Grill et al., 2020; Chen et al., 2020b). This procedure, known as augmented
stochastic gradient descent (aSGD), is widely used in practice. Chen et al. (2020a) showsed
that aSGD converges to the solution of the following augmented empirical risk minimization
(aERM) problem:

θ̂ = argmin
θ

EG
[
∥G(X)θ − y∥22

]
. (1)

Above, G denotes a stacked data augmentation function applied to each row of the matrix,
i.e., G(X) = [g1(x1) . . . , gn(xn)]

T ; we assume that the transformations gi are stochastic and
are drawn i.i.d. from an augmentation function distribution G. For example, the classical
Gaussian noise injection augmentation (Bishop, 1995) is stochastic and takes the form
g(x) = x+ n, where n is an isotropic Gaussian random variable.

To characterize the impact of different augmentations on our solution, we begin by
defining the first and second-order statistics of an augmentation distribution. We will show
that these quantities appear in the closed-form characterization to the least-squares aERM
problem for any augmentation function.

Definition 1 (Augmentation Mean and Covariance Operator) Consider a stochas-
tic augmentation x 7→ g(x), where g is drawn randomly from an augmentation distribution G.
We then define the augmentation mean and the covariance for a given data point x as

µG(x) := Eg∼G [g(x)], CovG(x) := Eg∼G

[
(g(x)− µG(x)) (g(x)− µG(x))⊤

]
, (2)

where we use the subscript G to emphasize that the expectation is only over the randomness
of the augmentation function g. Similarly, we define the augmentation mean and covariance
operators with respect to the training data set X =

[
x1 . . . xn

]⊤ as:

µG(X) := [µG(x1), µG(x2), . . . , µG(xn)]
⊤, CovG(X) :=

1

n

n∑
i=1

CovG(xi).

Finally, we call an augmentation distribution unbiased on average3 if µG(x) = x.

3.2 Implications of a DA-induced regularizer and connections to ridge regression

With this notation introduced, we now explain why DA gives rise to implicit regularization.
For simplicity, we consider augmentation distributions that are unbiased on average here4.
Then, we can simplify the objective (1) as:

EG[∥G(X)θ − y)∥22] = EG[∥ (G(X)− µ(X))θ + µ(X)θ − y)∥22]
= ∥µ(X)θ − y∥22 + ∥θ∥2nCovG(X)

= ∥Xθ − y∥22 + ∥θ∥2nCovG(X), (3)

3. Note that this definition of bias is completely different from the bias-variance decomposition that manifests
in regression analysis, i.e., (6).

4. We handle biased augmentation distributions in Section 4.3.2.
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where the last two steps used the assumption that the augmentation distribution is unbiased
on average. From this expression, it is clear that DA produces an implicit, data-dependent
regularization ∥θ∥2nCovG(X), defined by the augmentation covariance we just introduced.

The heart of our analysis is a detailed investigation of the implications of this data-
dependent regularization on generalization. As a first step, we unpack the effects of the
DA-induced regularizer ∥θ∥2nCovG(X). Note that the objective (3) can be viewed as a general
Tikhonov regularization problem with a possibly data-dependent regularizer matrix. Using
this observation, we will show that this creates the effects of (i) ℓ2 regularization (i.e. Tikhonov
regularization with an identity regularizer matrix) and (ii) data spectrum modification.

The first step is to explicitly connect the solution to a ridge regression estimator. Since our
focus is on stochastic augmentations, we assume that CovG(X) ≻ 0. Then, the objective (3)
admits a closed-form solution given by θ̂aug = (X⊤X + nCovG(X))−1X⊤y. We use this
solution to link the estimator θ̂aug to a ridge estimator by derivation below. For ease of
exposition, we suppress the dependency of CovG on the training data matrix X.

θ̂aug = (X⊤X+ nCovG(X))−1X)⊤y

= CovG
−1/2(nIp +CovG

−1/2X⊤XCovG
−1/2)−1CovG

−1/2X⊤y

= CovG
−1/2(nIp + X̃⊤X̃)−1X̃⊤y (where X̃ := XCovG

−1/2)

= CovG
−1/2θ̂ridge, where θ̂ridge := (nIp + X̃⊤X̃)−1X̃⊤y. (4)

Recall that Σ := Ex[xx
⊤] denotes the original data covariance. Then, it is easy to see that

the MSE ∥θ̂aug−θ∗∥2Σ is equivalent to ∥θ̂ridge−CovG
1/2θ∗∥2

CovG
−1/2ΣCovG

−1/2 . Suppose, for a
moment, that CovG were fixed (or independent of X). Then, (4) demonstrates an equivalence
between the solution of aERM and a ridge estimator with data matrix X̃, data covariance
CovG

−1/2ΣCovG
−1/2, ridge parameter5 λ = n, and true model CovG1/2θ∗ (in the sense that

both solutions achieve the same MSE).
Therefore, in terms of generalization, we can view DA as inducing a two-fold effect:

a) ℓ2 regularization at a scale that is proportional to the number of training samples
(λreg = n),

b) a modification of the original data covariance from Σ to CovG
−1/2ΣCovG

−1/2, which
can make a sizable impact on the original spectrum.

It is important to note that this equivalence between solutions is only approximate since
CovG itself depends on X. We will justify and formalize this approximation in Section 4.2.

3.3 Application to different augmentations used in practice

Understanding the closed-form expression of the aERM estimator above requires exactly
characterizing the augmentation covariance operator CovG(X). In Table 1, we list several
common augmentations for which the augmentation covariance can be easily characterized
and interpreted, including: White and Correlated Gaussian noise, Unbiased Random Mask,
Pepper noise, and Random Cutout. The derivations for these expressions are in Appendix E.

5. This demonstrates that negative regularization, which is studied in some recent work (Tsigler and Bartlett,
2020; Kobak et al., 2020) is not possible to achieve through the DA framework.

10
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The expressions for CovG(X) in Table 1 reveal that, in many cases, the augmentation
covariance is characterized by an interesting interplay between properties of the training
data matrix X and parameters of the augmentation distribution. For example, in the case
of the unbiased random mask augmentation, CovG(X) is a diagonal matrix whose entries
depend on the covariance matrix of the training data X⊤X and the masking probability β.
The salt-and-pepper augmentation has a similar term appear in its augmentation covariance
(corresponding to the “salt" part of the augmentation), along with a data-independent term
that has the same form as Gaussian noise injection (corresponding to the “pepper" part of
the augmentation). We note that, in general, any regularization of the form ∥θ∥2A(X), where
A(X) is some positive semi-definite matrix dependent on X, can be achieved by a simple
additive correlated Gaussian noise augmentation where g(X) = X+N, N ∼ N (0,A(X)).

Table 1: Examples of common augmentations for which we can compute a closed-form
solution to the aERM objective. Here, M is a circulant matrix defined in Appendix E.

Augmentation function: g(x) Covariance operator: CovG(X)

Gaussian noise injection x+ n, n ∼ N (0, σ2I) σ2I

Correlated noise injection x+ n, n ∼ N (0,W) W

Unbiased random mask b⊙ x, bi ∼ Bernoulli(1− β) β
1−β

1
ndiag(X

⊤X)

Pepper noise injection b⊙ x+ (1− b)⊙N (0, σ2) β
1−β

1
ndiag

(
X⊤X

)
+ βσ2

(1−β)2 I

Random Cutout zero-out k consecutive features p
p−k

1
nM⊙X⊤X

4. Main Results

This section presents our meta theorems for the generalization performance of regression
and classification tasks. We consider estimators for augmentations which are unbiased-in-
average and biased-in-average separately, as they exhibit significant differences in terms of
generalization. The applications of the general theorem will be discussed in detail in Section
7. Table 2 provides the road map of our main results and their applications in this and the
next sections.

4.1 Preliminaries

Recall that X ∈ Rn×p denotes the training data matrix with n i.i.d. rows comprising of
the training data. Each data point x ∈ Rp can be written as x = Σ1/2z, where we assume,
without loss of generality, that Σ is a diagonal matrix with non-negative diagonal elements
λ1 ≥ λ2, · · · ≥ λp, and z is a latent vector which is zero-mean, isotropic (i.e., E[z] = 0,
E
[
zzT

]
= I), and sub-Gaussian with sub-Gaussian norm σz. (Note that the assumption

of diagonal covariance Σ is without loss of generality because sub-Gaussianity is preserved
under any unitary transformation; however, the covariance induced by DA will frequently
not remain diagonal).

11
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Our analysis applies across the classical underparameterized regime (n ≥ p) and the
modern overparameterized regime (p > n); however, much of our discussion of consequences
of DA will be centered on the latter regime. We assume the true data generating model to
be y = xTθ∗ + ε, where ε denotes the noise, which is also isotropic and sub-Gaussian with
sub-Gaussian norm σε and variance σ2. We believe that our non-asymptotic framework can
be extended to more general kernel settings as in the recent work of McRae et al. (2022),
where features are not assumed to be sub-Gaussian, but we leave this extension to future
work.

4.1.1 Error Metrics

In this work, we will focus on the squared loss training objective (1) for both regression and
classification tasks. While we make this choice for relative mathematical tractability, we
note that it is well-justified in practice as recent work (Hui and Belkin, 2020; Muthukumar
et al., 2021; Wang and Thrampoulidis, 2021; Chatterji and Long, 2021) has shown that the
squared loss can achieve competitive results when compared with the cross-entropy loss in
classification tasks6. For the regression task, we use the mean squared error (MSE), defined
for an estimator θ̂ as:

MSE(θ̂) = Ex[(x
T (θ̂ − θ∗))2|X, ε].

Recall in the above that θ∗ denotes the true coefficient vector, ε denotes noise in the observed
data, and x denotes a test example that is independent of the training examples X. For
classification, we will use the probability of classification 0-1 error (POE) as the testing
metric:

POE(θ̂) = Ex[I{sgn(x⊤θ̂) ̸= sgn(x⊤θ∗)}].

4.1.2 Spectral quantities of interest

Recent works studying overparameterized regression and classification tasks (Bartlett et al.,
2020; Tsigler and Bartlett, 2020; Muthukumar et al., 2021; Zou et al., 2021) have discovered
that the spectrum, i.e. eigenvalues, of the data covariance play a central role in characterizing
the generalization error. In particular, two effective ranks, which are functionals of the data
spectrum and act as types of effective dimension, dictate the generalization error of both
underparameterized and overparameterized models. These are defined below.

Definition 2 (Effective Ranks, (Bartlett et al., 2020)) For any covariance matrix (spec-
trum) Σ, ridge regularization scale given by c, and index k ∈ {0, . . . , p− 1}, two notions of
effective ranks are given as below:

ρk(Σ; c) :=
c+

∑
i>k λi

nλk+1
, Rk(Σ; c) :=

(c+
∑

i>k λi)
2∑

i>k λ
2
i

.

6. We also believe that our analysis of the modified spectrum induced by DA suggests that such equivalences
could also be shown for aSGD applied on the cross-entropy v.s. squared loss, but do not pursue this path
in this paper.

12



The implicit spectral regularization of data augmentation

Table 2: Road map of main results.

Regression Classification

Meta-Theorem:

Unbiased Estimator
Theorem 4 Theorem 9

Meta-Theorem:

Biased Estimator
Theorem 7 Theorem 11

Augmentation Case Studies
Cutout: Cor. 15, 17, 16, 34

Compositions: Cor. 18

Cutout: Cor. 17, 42, 45

Group Invariant: Cor. 43

Interplay with Signal Model Corollary 16 Corollary 45

Comparisons Between Under-

& Over-parameterized Regimes
Corollary 15, 42, 43

Comparisons between

Regression & Classification
Proposition 46, 47

Using this notation, the risk for the minimum-norm least squares estimate from Bartlett
et al. (2020); Tsigler and Bartlett (2020) can be sharply characterized as

MSE ≍ ∥θ∗ − Eε[θ̂|X]∥2Σ︸ ︷︷ ︸
Bias

+ ∥θ̂ − Eε[θ̂|X]∥2Σ︸ ︷︷ ︸
Variance

, where

Bias ≲ ∥θ∗
k:∞∥2Σk:∞

+ ∥θ∗
0:k∥2Σ−1

0:k

λ2k+1ρk(Σ; 0)2, Variance ≍ k

n
+

n

Rk(Σ; 0)
.

Here, k ≤ min(n, p) is an index that partitions the spectrum of the data covariance Σ into
“spiked” and residual components and can be chosen in the analysis to minimize the above
upper bounds. We note that the expression for the bias is matched by a lower bound up to
universal constant factors for certain types of signal: either random (Tsigler and Bartlett,
2020) or sparse (Muthukumar et al., 2021).

Intuitively, this characterization implies a two-fold requirement on the data spectrum for
good generalization (in the sense of statistical consistency: MSE→ 0 as n→∞): it must a)
decay quickly enough to preserve ground-truth signal recovery (i.e. ensure that ρk is small,
resulting in low bias), but also b) retain a long enough tail to reduce the noise-overfitting
effect (i.e. ensure that Rk is large, resulting in low variance).

4.2 A deterministic approximation strategy for DA analysis

Our main results show that the DA framework naturally inherits the above principle. In other
words, the impact of DA on generalization (in both underparameterized and overparameterized
regimes) boils down to understanding the effective ranks of a modified, augmentation-induced
spectrum. Our starting point is the approximate connection between the aERM estimator and
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ridge estimator that was established in Section 3.2. Out of the box, this does not establish
a direct equivalence between the MSE of the two estimators. This is because the implicit
regularizer CovG that is induced by DA intricately depends on the data matrix X, which
creates strong dependencies amongst the training examples in the equivalent ridge estimator.
A key technical contribution of our work is to show that, in essence, this dependency turns
out to be quite weak for a large class of augmentations that are used in practice. Our strategy
is to approximate the aERM estimator θ̂aug with an idealized estimator θ̄aug that uses the
expected augmentation covariance (over the original data distribution). The two estimators
are formally defined below:

θ̂aug = (µG(X)⊤µG(X) + nCovG(X))−1µG(X)⊤y,

θ̄aug = (µG(X)⊤µG(X) + nEx[CovG(x)])
−1µG(X)⊤y,

(5)

where x denotes a fresh data point. This admits a decomposition of the MSE into three error
terms, given by

MSE ≲ ∥θ∗ − Eε[θ̄aug|X]∥2Σ︸ ︷︷ ︸
Bias

+ ∥θ̄aug − Eε[θ̄aug|X]∥2Σ︸ ︷︷ ︸
Variance

+ ∥θ̂aug − θ̄aug∥2Σ︸ ︷︷ ︸
Approximation Error

. (6)

The bias and variance terms can be analyzed with relative ease through an extension of
the techniques of Bartlett et al. (2020); Tsigler and Bartlett (2020) to general positive-
semidefinite regularizers that are not dependent on the training data7 X, as we outlined
in Section 3.2. We provide a novel analysis of the approximation error term in Section 4.3
and show, for an arbitrary data covariance Σ and several popular augmentations, that this
approximation error is often dominated by either the bias or variance. As described in more
detail in Section 4.3.1, this domination implies that we can tightly characterize the MSE
with upper and lower bounds that match up to constant factors for these augmentations.
Figure 1 confirms that the approximation error is indeed negligible. In this plot, we show
the decomposition corresponding to the terms in (6) for random mask augmentation with
different masking probabilities denoted by β. We can see that the approximation error is
small compared with the other error components.

That the approximation error is negligible is a surprising observation in the high-
dimensional regime, as the sample data augmentation covariance CovG(X) and its expectation
Ex[Covg(x)] are p-dimensional square matrices and p ≫ n. We critically use the special
structure of the augmentations we study to show that despite this high-dimensional structure,
it is common for CovG(X) to converge to its expectation at a rate that depends mostly on n
and minimally on p.

To show that our deterministic approximation is validated, i.e., the approximation
error term is negligible, we require the following technical assumption, which shows that a
normalized version of the empirical augmentation-induced covariance matrix converges as
n, p→∞.

7. For this case, a related contribution lies in the work of Wu and Xu (2020). Note that Wu and Xu (2020)
provided precise asymptotics for general regularizers in the proportional regime p ∝ n and focused on the
question of the optimal Tikhonov regularizer, while our focus is on more interpretable non-asymptotic
bounds for the general regularizers that are induced by popular augmentations. We believe that our
framework could also yield identical proportional asymptotics for DA under an equivalent version of
Assumption 1 for the proportional regime p ∝ n, but do not pursue this path in this paper.
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Figure 1: Decomposition of MSE into the bias, variance, and approximation error as in Theorem 4. A
random masking augmentation is applied with different dropout probability β and the bias, variance, and
approximation error are computed as a function of the number of training samples. The approximation error
is small compared to the bias and variance and goes to zero quickly with more training data.

Assumption 1 Let the data dimension p grows with n at a polynomial rate p ≍ nα for
some α > 0. Then, we assume that for any sequence of data covariance matrices {Σp}p≥1,
the normalized empirical covariance induced by the augmentation distribution converges to
its expectation as n→∞. More formally, we assume that ∆G → 0 as n→∞ almost surely,
where

∆G :=

∥∥∥∥∥ 1nEx[CovG(x)]
− 1

2

n∑
i=1

CovG(xi)Ex[CovG(x)]
− 1

2 − Ip

∥∥∥∥∥ . (7)

We note here that the above should be interpreted as the limit as both n and p grow together.
For our subsequent results to be meaningful, it is further required that this convergence
is sufficiently fast as n, p → ∞. We will show in Section 4.5 that a wide class of popular

augmentations will satisfy this assumption and converge at the rate O
(√

logn
n

)
. We will

see that this rate is sufficient for our results to be tight in non-trivial regimes.

4.3 Regression analysis

With the connection of DA to ridge regression established in Section 3.2 and the deterministic
approximation method established in Section 4.2, we are ready to present our meta-theorem
for the regression setting. The results for the augmented estimators which are unbiased-
in-average are presented in Section 4.3.1, and biased-in-average augmented estimators are
studied in Section 4.3.2. The applications of the general theorem in this section will be
discussed in detail in Section 7.

4.3.1 Regression analysis for general classes of unbiased augmentations

In this section, we present the meta-theorem for estimators induced by unbiased-on-average
augmentations (i.e., for which µG(x) = x) in Theorem 4. All proofs in this section can be
found in Appendix B. To state the main result of this section, we introduce new notation for
the relevant augmentation-transformed quantities.

Definition 3 (Augmentation-transformed quantities) We define two spectral augmen-
tation transformed quantities, the covariance-of-the-mean-augmentation Σ̄, and augmentation-
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Figure 2: Visualizing the augmented data spectrum and generalization for different forms of DA. On the
left in (A), we visualize the regularized augmented spectrum in Equation (9)), clockwise for Gaussian noise,
pepper noise, random mask, and our novel random rotation introduced in Section 5.5. On the right in (B),
we show their corresponding generalization, where the number indicated for each data point denotes the
strength of its augmentation parameter. The LSE (star) represents the baseline of least-squared estimator
without any augmentation.

transformed data covariance Σaug, by

Σ̄ := Ex[(µG(x)− Ex[µG(x)])(µG(x)− Ex[µG(x)])
⊤], (8)

Σaug := Ex[CovG(x)]
−1/2Σ̄Ex[CovG(x)]

−1/2. (9)

We also denote the eigenvalues of Σaug by λaug1 ≥ λaug2 ≥ · · · ≥ λaugp . Similarly, we define the
augmentation-transformed data matrix Xaug, and augmentation-transformed model parameter
θ∗
aug as

Xaug := µG(X)Ex[CovG(x)]
−1/2, θ∗

aug := Ex[CovG(x)]
1/2θ∗.

Note that since the rows of Xaug are still i.i.d., Xaug can be viewed as a modified data matrix
with covariance Σaug and that Σ̄ = Σ if the augmentation is unbiased in average.

Armed with this notation, we are ready to state our meta-theorem.

Theorem 4 (High probability bound for MSE with unbiased DA) Consider an un-
biased data augmentation g and its corresponding estimator θ̂aug, where ∆G is defined in
Eq. 7 and κ is the condition number of Σaug. Assume for some integers k1, k2, the condition
numbers for the matrices Ak1(Xaug;n), Ak2(Xaug;n) (defined in Section 1.2) are bounded by
L1 and L2 respectively with probability 1 − δ′, and that ∆G ≤ c′ for some constant c′ < 1.
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Then , with probability 1− δ′ − 4n−1, the test mean-squared error is bounded by

MSE ≲ Bias + Variance + ApproximationError, (10)

Bias

L4
1

≲

(∥∥∥PΣaug
k1+1:pθ

∗
aug

∥∥∥2
Σaug

+
∥∥∥PΣaug

1:k1
θ∗aug

∥∥∥2
Σ−1

aug

(ρaug
k1

)2

(λaug
k1+1)

−2 + (λaug
1 )−2(ρaug

k1
)2

)
,

Variance

L2
2

≲

(
k2
n

+
n

Raug
k

)
log n, Approx.Error ≲ κ

1
2∆G

(
∥θ∗∥Σ +

√
Bias + Variance

)
.

Above, we defined ρaug
k := ρk(Σaug;n) and Raug

k := Rk(Σaug;n) as shorthand.

Theorem 4 illustrates the critical role that the spectrum of the augmentation-transformed
data covariance Σaug plays in generalization. In particular, we find that, up to an approxi-
mation error term, the generalization error is characterized by the effective ranks ρaugk and
Raugk (rather than the original effective ranks of the covariance, as in Tsigler and Bartlett
(2020)). Intuitively, we expect an increase in the bias as ρaug increases and variance reduction
as Raug increases.

When is our bound in Theorem 4 tight? A natural question is when and whether our
bound in Theorem 4 is tight. The tightness of the testing error for an estimator with a fixed
regularizer is established (under some additional assumptions on the data distribution, such
as sub-Gaussianity and constant condition number) in Theorem 5 of Tsigler and Bartlett
(2020). Hence, as long as the approximation error in our theorem is dominated by either the
bias or variance, then our bound will also be tight. Roughly speaking this happens when the
convergence of n−1CovG(X) to Ex[CovG(x)] is sufficiently fast with respect to n, i.e. ∆G is
sufficiently small. This condition is formalized in the lemma below.

Lemma 5 (Condition on bias/variance dominating error approximation) Suppose
the conditions of Theorem 4 hold. If

κ
1
2∆G

n
≪ min

(
Bias + Variance,

√
Bias + Variance

)
.

Then there exists c′′ > 0 such that,

1

c′′
≤ Bias(θ̂aug) + Variance(θ̂aug)

Bias(θ̄aug) + Variance(θ̄aug)
≤ c′′.

Proof The lemma follows from Theorem 4 with the observation that

κ
1
2∆G

(
∥θ∗∥Σ +

√
Bias(θ̄aug) +

√
Variance(θ̄aug)

)
n
≪ Bias(θ̄aug) + Variance(θ̄aug).

4.3.2 Regression analysis for general biased-on-average augmentations

All of our analysis thus far has assumed that the augmentation is unbiased on average,
i.e. that µG(x) = x. We now derive and interpret the expression for the estimator that is
induced by a general augmentation that can be biased. We introduce the following additional
definitions.
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Definition 6 We define the augmentation bias and bias covariance induced by the
augmentation g as

ξ(x) := µg(x)− x, Covξ := Ex

[
ξ(x)ξ(x)⊤

]
. (11)

In a similar spirit to ∆G, we define ∆ξ :=
∥∥ 1
n

∑n
i=1(µg(xi)− xi)(µg(xi)− xi)

⊤ − Covξ
∥∥.

Since ξ(x) is not zero for a biased augmentation, the closed-form expression for the
aERM estimator θ̂aug becomes more complicated and we lose the exact equivalence to an
ridge regression in (4). This is because biased DA induces a distribution-shift in the training
data that does not appear in the test data. Our next result for biased estimators, which is
strictly more general than Theorem 4, will show that this distribution-shift affects the test
MSE through both covariate-shift as well as label-shift. To facilitate analysis, we impose the
natural assumption that the mean augmentation µ(x) remains sub-Gaussian.

Assumption 2 For the input data x, the mean transformation µ(x) admits the form µ(x) =

Σ̄
1/2

z̄, where Σ̄ is defined in Definition 3 and z̄ is a centered and isotropic sub-Gaussian
vector with sub-Gaussian norm σz̄.

We also recall the definition of the mean augmentation covariance Σ̄ := Ex[(µG(x) −
Ex[µG(x)])(µG(x) − Ex[µG(x)])

⊤]. Now we are ready to state our theorem for biased aug-
mentations. The proof is deferred to Appendix B.3.

Theorem 7 (Bounds on the MSE for Biased Augmentations) Consider the estima-
tor θ̂aug obtained by solving the aERM in (1). Let MSEo(θ̂aug) denote the unbiased MSE
bound in Eq. (10) of Theorem 4, and ∆G defined in Eq. 7. Suppose the assumptions in
Theorem 4 hold for the mean augmentation µ(x) and that ∆G ≤ c < 1. Then with probability
1− δ′ − 4n−1 we have,

MSE(θ̂aug) ≲ R2
1 ·
(√

MSEo(θ̂aug) +R2

)2

,

where

R1 = 1 + ∥Σ
1
2 Σ̄

− 1
2 − Ip∥ and

R2 =
√
∥Σ̄(Ex[CovG(x)])−1∥

(
1 +

∆G

1− c

)(√
∆ξ∥θ∗∥+ ∥θ∗∥Covξ

)
×

√ 1

λaug
k

+

√
λaug
k+1(1 + ρaugk )

(λaug
1 ρaug0 )2

 .

Our upper bound for the MSE in the biased augmentation case is a generalization of the
bound in Tsigler and Bartlett (2020) to the scenario with distribution-shift. This result shows
that two different factors can cause generalization error over and above the unbiased case: 1.
covariate shift, which is reflected in the multiplicative factor R1; this term occurs because
we are testing the estimator on a distribution with covariance Σ but our training covariates
have covariance Σ̄ instead, 2. label shift, which manifests itself as the additive error given
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by R2. This term arises from the training mismatch between the true covariate observation
and mean augmented covariate (i.e., X v.s. µG(X)). As a sanity check, we can see that
R1 = 1 and R2 = 0 when the augmentation is unbiased-on-average, i.e., µG(x) = x, ∀x, since
Σ = Σ̄, ∆ξ = 0 and Covξ = 0. Thus, we directly recover Theorem 4 in this case. Whether
Theorem 7 is tight in general is an interesting open question for future work.

4.4 Classification analysis

In this subsection, we state the meta-theorem for generalization of DA in the classification
task. We follow a similar path for the analysis as in regression by appealing to the connection
between DA and ridge estimators and the deterministic approximation strategy outlined
above. While the results in this section operate under stronger assumptions, we provide a
similar set of results to the regression case. The primary aim of these results is to compare
the generalization behavior of DA between regression and classification settings, which we do
in depth in Section 7.

4.4.1 Classification analysis setup

We adopt the random signed model from Muthukumar et al. (2021), noting that we expect
similar analysis to be possible for the Gaussian-mixture-model setting of Chatterji and Long
(2021); Wang and Thrampoulidis (2021) (we defer such analysis to a companion paper).
Given a target vector θ∗ ∈ Rd and a label noise parameter 0 ≤ ν∗ < 1/2, we assume the data
are generated as binary labels yi ∈ {−1, 1} according to the signal model

yi =

{
sgn(x⊤

i θ
∗) with probability 1− ν∗

− sgn(x⊤
i θ

∗) with probability ν∗
. (12)

Just as in Muthukumar et al. (2021), we make a 1-sparse assumption on the true signal
θ∗ = 1√

λt
et. We denote xsig := xt to emphasize the signal feature. Motivated by recent

results which demonstrate the effectiveness of training with the squared loss for classification
tasks (Hui and Belkin, 2020; Muthukumar et al., 2021), we study the classification risk of
the estimator θ̂ which is computed by solving the aERM objective on the binary labels yi
with respect to the squared loss (Eq. (1)).

Muthukumar et al. (2021) showed that two quantities, survival and contamination, play
key roles in characterizing the risk, akin to the bias and variance in the regression task (in
fact, as shown in the proof of Lemma 37, the contamination term scales identically to the
variance from regression analysis). The definitions of these quantities are given below.

Definition 8 (Survival and contamination (Muthukumar et al., 2021)) Given an es-
timator θ̂, its survival (SU) and contamination (CN) are defined as

SU(θ̂) =
√
λtθ̂t, CN(θ̂) =

√√√√ p∑
j=1,j ̸=t

λj θ̂
2

j .
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For Gaussian data, Muthukumar et al. (2021) derived the following closed-form expression
for the Probability-of-Error (POE):

POE(θ̂) =
1

2
− 1

π
tan−1 SU(θ̂)

CN(θ̂)
. (13)

Thus, the POE depends on the ratio between survival SU and contamination CN, essentially
a kind of signal-to-noise ratio for the classification task. In this work, we prove that a similar
principle arises when we consider training with data augmentation in more general correlated
input distributions. Formally, we make the following assumption on the true signal and input
distribution for our classification analysis.

Assumption 3 Assume the target signal is 1-sparse and given by θ∗ = 1√
λt
et. Additionally,

assume the input can be factored as x = Σ
1
2z, where Σ ⪰ 0 is diagonal, and z is a sub-

Gaussian random vector with norm σz and uniformly bounded density. We denote xsig = xt
and xnoise = [x1, . . . ,xt−1,xt+1, . . . ,xp]

T . We further assume that the signal and noise
features are independent and are augmented independently8, i.e., xsig ⊥ xnoise.

Similar to the regression case, our classification analysis consists of 1) expressing the excess
risk in terms of θ̄aug, the estimator corresponding to the averaged augmented covariance
Ex[Covg(x)], 2) arguing that the survival and contamination can be viewed as the equivalent
quantities for a ridge estimator with a modified data spectrum, and 3) upper and lower
bounding the survival and contamination of this ridge estimator. As in the case of regression
analysis, step 1) is the most technically involved.

4.4.2 Classification analysis for unbiased-on-average augmentations

Now, we present our main theorem for the classification task under the setting in Assumption
3. The proof of this theorem is deferred to Appendix C.

Theorem 9 (Bounds on Probability of Classification Error) Let t ≤ n be the index
(arranged according to the eigenvalues of Σaug) of the non-zero coordinate of θ∗, Σ̃aug be the
leave-one-out modified spectrum corresponding to index t, and X̃aug be the leave-one-column-
out data matrix corresponding to column t. Suppose there exists a t ≤ k ≤ n such that with
probability at least 1−δ, the condition numbers of nI+X̃aug

k+1:p(X̃
aug
k+1:p)

⊤, nI+Xaug
k+1:p(X

aug
k+1:p)

⊤,
and X̃k+1:pΣk+1:pX̃

T
k+1:p are at most L. Then as long as ∥θ̄aug − θ̂aug∥Σ = O(SU) and

∥θ̄aug − θ̂aug∥Σ = O(CN),

POE(θ̂) ≲
CN

SU

(
1 + σz

√
log

SU

CN

)
, (14)

8. As mentioned earlier, we expect that our framework can be extended beyond sub-Gaussian features to
more general kernel settings. Under the slightly different label model used in McRae et al. (2022), we
believe that the independence between signal and noise features can also be relaxed.
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with probability at least 1− δ − exp(−
√
n)− 5n−1, where

λaug
t (1− 2ν∗)

(
1− k

n

)
L
(
λaug
k+1ρk(Σaug;n) + λaug

t L
) ≲ SU︸︷︷︸

Survival

≲
Lλaug

t (1− 2ν∗)

λaug
k+1ρk(Σaug;n) + L−1λaug

t

(
1− k

n

) ,
√√√√ λ̃augk+1ρk(Σ̃

2
aug; 0)

L2(λaug1 )2(1 + ρ0(Σaug;λ))2
≲ CN︸︷︷︸

Contamination

≲

√√√√(1 + SU2)L2

(
k

n
+

n

Rk(Σ̃aug;n)

)
log n

Furthermore, if x is Gaussian, then we obtain even tighter bounds:

1

2
− 1

π
tan−1 c

SU

CN
≤ POE(θ̂aug) ≤

1

2
− 1

π
tan−1 1

c

SU

CN
≲

CN

SU
,

where c is a universal constant.

Remark 10 Based on the expression for the classification error for Gaussian data, we see
that the survival needs to be asymptotically greater than the contamination for the POE to
approach 0 in the limit as n, p→∞. We note that the general upper bound we provide matches
the tight upper and lower bounds for the Gaussian case up a log factor. Furthermore, the
condition ∥θ̄aug − θ̂aug∥Σ = O(SU) and ∥θ̄aug − θ̂aug∥Σ = O(CN) is related to our condition
for the tightness of our regression analysis, but a bit stronger (because our regression analysis
only requires one of these relations to be true). We characterize when this stronger condition
is met in Lemma 40.

Based on the upper and lower bounds provided for SU and CN, we see that these
quantities depend crucially on the effective ranks of the induced covariance matrix Σaug.
In particular, we note that SU is large when ρaugk is small and CN is small when Raugk is
large; good generalization relies on having a careful balance of these two factors to ensure
that the ratio of CN to SU is small. For favorable classification performance, Theorem 9
also requires t ≤ n. This is a necessary product of our analogy to a ridge estimator and is
equivalent to requiring that θ∗aug lies within the eigenspace corresponding to the dominant
eigenvalues of the spectrum Σaug. Such requirements have also been used in past analyses of
both regression (Tsigler and Bartlett, 2020) and classification (Muthukumar et al., 2021).

4.4.3 Classification analysis for general biased-on-average augmentations

As a counterpart of our regression analysis for estimators induced by biased-on-average
augmentations (i.e. µg(x) ̸= x), we would also like to understand the impact of augmentation-
induced bias on classification. Interestingly, the effect of this bias in classification turns
out to be much more benign than that in regression. As a simple example, consider a
scaling augmentation of the type g(x) := 2x. The induced bias is µg(x)− x = x, and the
trained estimator θ̂aug is just half the estimator trained with x, which, however, predicts the
same labels in a classification task. Therefore, we conclude that even with a large bias, the
resultant estimator might be equivalent to the original one for classification tasks. In fact, as
we show in the next result, augmentation bias is benign for the classification error metric
under relatively mild conditions. The proof of this result is provided in Appendix C.3.
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Theorem 11 (POE of biased estimators) Consider the 1-sparse model θ∗ = et. and let
θ̂aug be the estimator that solves the aERM in (1) with biased augmentation (i.e., µ(x) ̸= x).
Let Assumption 2 holds, and the assumptions of Theorem 9 be satisfied for data matrix µ(X).
If the mean augmentation µ(x) modifies the t-th feature independently of other features and
the sign of the t-th feature is preserved under the mean augmentation transformation, i.e.,
sgn (µ(x)t) = sgn (xt) , ∀x, then, the POE(θ̂aug) is upper bounded by

POE(θ̂aug) ≤ POEo(θ̂aug),

where POEo(θ̂aug) is any bound in Theorem 9 with X and Σ replaced by µ(X) and Σ̄,
respectively.

At a high level, this result tells us that as long as the signal feature preserves the sign
under the mean augmentation, the classification error is purely determined by the modified
spectrum induced by DA. Note that the sign preservation is only required in expectation and
not for every realization of the augmentation, i.e., we only require Eg [g(x)t] has the same
sign as xt, rather than requiring that g(x)t have the same sign as xt for every realization of
g. The latter label-preserving property is is much more stringent and has been studied in
Wu et al. (2020).

4.5 Classes of augmentations for which our theory applies

In this section, we delineate important classes of augmentations for which our theory provides
a sharp characterization of their impact on generalization. More formally, we show under
these classes of augmentations that the approximation error term of Theorem 4 is negligible
with respect to the bias/variance terms and our analysis is tight, i.e. Lemma 5 holds and
Theorem 4 is tight up to constant/logarithmic factors. Recall that Lemma 5 requires the
(normalized) error of the “sample" augmentation covariance, denoted by ∆G, to be sufficiently
small with respect to the sum of the bias and variance terms. This section shows that the
value of ∆G inherently depends on the extent of correlation between the augmentations
across features (where the correlation is defined for fixed data, and only with respect to the
stochasticity in the augmentations). At a high level, we show that: a) ∆G is negligible as
long as the correlations between the feature augmentations are weak enough, and that b)
this sufficiently weak level of correlation is indeed the case for several popular classes of
augmentations.

We first analyze the simplest case of uncorrelated feature augmentations, and then
generalize our analysis to regionally correlated feature augmentations and augmentations
with “small” off-diagonal component.

Uncorrelated-feature augmentations: Many augmentations involve independently
augmenting each of the features (or, more generally, applying an augmentation which is
uncorrelated across features). This class subsumes many prevailing augmentations like
random mask and salt-and-pepper noise. Because the augmentation covariance CovG(x) is
diagonal for such augmentations, we can show that ∆G is small.

Proposition 12 (Uncorrelated Feature Augmentations) Let the augmentation g be
composed of p uncorrelated feature augmentation maps, i.e., g(x) =

[
g1(x1) . . . gd(xd)

]
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where {gi(·)}i∈[p] are uncorrelated (with respect to the randomness in the augmentation). If
the variance of each feature augmentation Vargi(gi(xi)) (which is a random variable due to
the randomness in xi) is sub-exponential with sub-exponential norm σ2i and mean σ̄2i for all
i ∈ [p], then we have

∆G ≲ max
i

(
σ2i
σ̄2i

)√
log n

n
.

with probability at least 1− 1
n .

Proposition 12 is proved in Appendix B.4 and gives a bound on ∆G of the order

O(
√

logn
n ). However, one might wonder whether the approximation error still vanishes

for stochastic augmentations that include dependencies between features, i.e. the random
variables {gi(xi)}pi=1 are not necessarily uncorrelated for a fixed value of x. To address this
question, the following subsection describes two techniques to bound ∆G for two important
types of such “feature-dependent" augmentations.

Regionally correlated feature augmentations: First, we consider a popular class of
augmentations that are correlated to a limited extent across features. This encompasses
many “patch”-based augmentations used in image applications, such as the PatchShuffle
augmentation of Kang et al. (2017)9. To define this type of augmentation, we categorize the
features into k groups denoted by B1, . . . , Bk ⊂ [p]. In image applications, each group Bj
can represent a local region of an image. We assume that only the augmentations within a
group can be correlated, meaning that E[gj1(xj1)gj2(xj2)] ̸= 0 only if j1, j2 ∈ Bj for some
j ∈ [k], i.e. if the features belong to the same group. We then overload notation and
write the augmentation in block form as g(x) = [g1(x1), g2(x2), . . . , gk(xk)], where gj ∼ Gj .
In this notation, each sub-feature xj has smaller dimensionality xj ∈ R|Bj | (and we have∑

j∈[k] |Bj | = p by definition) and the augmentation covariance for the jth block is denoted
CovGj (xj). Note that our assumption on correlations being only within the blocks {Bj}j∈[k]
implies that the covariance matrix CovG(x) will have a block-diagonal structure for any data
point x.

We have the following proposition for regionally correlated feature augmentations. The
proof is contained in Appendix B.5.

Proposition 13 Consider a correlated-feature augmentation of the form described above.
Further, assume that the smallest eigenvalue of ExCovGk

(x) is lower bounded by σ for every
k, and gk is component-wise bounded, i.e., ∥gk(xk)∥∞ ≤M for any k. Then, we have

∆G ≲
M2maxk |Bk|

σ

√
log p

n

with probability at least 1− 1
p .

9. We derive CovG for this augmentation in Appendix E.
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Augmentations with a “small” off-diagonal component: At this stage, it is natural to
ask whether any guarantees are possible for augmentations that do not enjoy the properties
of independence or weak correlation. While we do not provide a guarantee for arbitrary
augmentations on high-dimensional data, we present a general technique that we later use to
show that the approximation error is indeed vanishing for many popularly used augmentations
that include more complex dependencies between features. Specifically, we state and prove
the following result.

Proposition 14 Consider the decomposition CovG(X) = D +Q, where D is a diagonal
matrix representing the independent feature augmentation part. Then, we have

∆G ≲
∥D− ED∥+ ∥Q− EQ∥

µp(ExCovG(x))
. (15)

The proof of Proposition 14 is provided in Section B.6, along with further discussion
on the approximation error for dependent feature augmentations. We use Eq. (15) to show
that even if the quantity ∥Q − EQ∥ is large (due to dependencies among features in the
augmentations), it can be mitigated by the denominator of Eq. (15) for augmentations for
which µp(ExCovG(x)) is large. We use this in Appendix F to characterize the approximation
error for two examples of augmentations that induce global dependencies between features:
a) the new random-rotation augmentation that we introduced in Section 5.5, b) the cutout
augmentation which is popular in deep learning practice (DeVries and Taylor, 2017).

5. Case Studies: Applying Our Theory to Study Different Classes of DA

In this section, we will use the meta-theorems established in Section 4.3 and 4.4 to get
further insight into the impact of DA on generalization. In particular, we present and
interpret generalization guarantees for commonly used augmentations including: Gaussian
noise injection, randomized mask, cutout, salt-and-pepper noise, and our newly proposed
random-rotation augmentation.

5.1 Gaussian noise injection

As a preliminary example, we note that Theorem 4 generalizes and recovers the existing
bounds on the ridge and ridgeless estimators (Bartlett et al., 2020; Tsigler and Bartlett, 2020).
This is consistent with classical results (Bishop, 1995) that show an equivalence between
augmented ERM with Gaussian noise injection and ridge regularization. Specifically, an
application of the theorem to Gaussian noise injection with variance σ2 recovers existing
bounds for ridge estimators with regularization parameter λ = nσ2, where the number of
samples n controls the amount of regularization applied to the estimator. For completeness,
we include this bound in Appendix B.7.

5.2 Randomized masking

Next, we consider the popular randomized masking augmentation (both the biased and
unbiased variants), in which each coordinate of each data vector is set to 0 with a given
probability, denoted by the masking parameter β ∈ [0, 1]. The unbiased variant of randomized

24



The implicit spectral regularization of data augmentation

masking rescales the features so that the augmented features are unbiased in expectation. This
type of augmentation has been widely used in practice (He et al., 2022; Konda et al., 2015),10

and is a simplified version of the popular cutout augmentation (DeVries and Taylor, 2017).
The following corollary characterizes the generalization error arising from the randomized
mask augmentation in regression tasks.

Corollary 15 (Regression bounds for unbiased randomized mask) Consider the un-
biased randomized masking augmentation g(x) = [b1x1, . . . , bpxp]/(1− β), where bi are i.i.d.
Bernoulli(1 − β). Define ψ = β

1−β ∈ [0,∞). Let L1, L2, κ, δ′ be universal constants as
defined in Theorem 4. Then, for any set K ⊂ {1, 2, . . . , p} consisting of k1 elements and
some choice of k2 ∈ [0, n], the regression MSE is upper-bounded by

MSE ≲ ∥θ∗K∥
2
ΣK

+ ∥θ∗Kc∥2ΣKc

(ψn+ p− k1)2

n2 + (ψn+ p− k1)2︸ ︷︷ ︸
Bias

+

(
k2
n

+
n(p− k2)

(ψn+ p− k2)2

)
log n︸ ︷︷ ︸

Variance

+σ2z

√
log n

n
∥θ∗∥Σ︸ ︷︷ ︸

Approx.Error

with probability at least 1− δ′ − n−1.

Note that ψ = β
1−β increases monotonically in the mask probability β, Corollary 15

shows that bias increases with the mask intensity β, while the variance decreases. Figure 1
empirically illustrates these phenomena through a bias-variance decomposition. In fact, the
regression MSE is proportional to the expression for MSE of the least-squares estimator (LSE)
on isotropic data, suggesting that randomized masking essentially has the effect of isotropizing
the data. As prior work on overparameterized linear models demonstrates (Muthukumar
et al., 2020; Hastie et al., 2019; Bartlett et al., 2020), the LSE enjoys particularly low variance,
but particularly high bias when applied to isotropic, high-dimensional data. For this reason,
random masking turns out to be superior to Gaussian noise injection in reducing variance,
but much more inferior in mitigating bias. We also note that the approximation error is

relatively minimal, of the order
√

logn
n . It is easily checked that the approximation error

is dominated by the bias and variance as long as p ≪ n2 (and hence the lower bounds of
Tsigler and Bartlett (2020) imply tightness of our bound in this range).

We also derive guarantees for regression with the biased variant of random masking in
Corollary 34 in Appendix B.7. In Appendix C.4, we provide bounds for unbiased random
mask in the classification setting (note that Theorem 11 implies the biased and unbiased
case behave similarly for classification).

5.2.1 Feature-adaptive random masking

We consider, as in Corollary 16, the case of a nonuniform random masking augmentation in
which the features that encode signal are masked with a lower probability than the remaining

10. We note that a superficially similar implicit regularization mechanism is at play in dropout (Bouthillier
et al., 2015), where the parameters of a neural network are set to 0 at random. In contrast to random
masking, dropout zeroes out model parameters rather than data coordinates.
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features. Specifically, we consider the k-sparse model where θ∗ =
∑

i∈IS αiei and |IS | = k.
Define the parameter ψ := β

1−β where β is the probability of masking a given feature. Suppose
that we employ a nonuniform mask across features, i.e. ψi = ψ1 if i ∈ IS and is equal to ψ0

otherwise. Conceptually, a good mask should retain the semantics of the original data as
much as possible while masking the irrelevant parts. We can study this principle analytically
through the regression and classification generalization bounds for this type of non-uniform
masking. Below we present the regression result, and defer the proofs to Appendix B.7 and
the analogous classification result to Corollary 45 in Appendix C.4.

Corollary 16 (Non-uniform random mask in k-sparse model) Consider the k−sparse
model and the non-uniform random masking augmentation where ψ = ψ1 if i ∈ IS and ψ0

otherwise. Then, if ψ1 ≤ ψ0, we have with probability at least 1− δ − exp(−
√
n)− 5n−1

Bias ≲

(
ψ1n+ ψ1

ψ0
(p− |IS |)

)2
n2 +

(
ψ1n+ ψ1

ψ0
(p− |IS |)

)2 ∥θ∗∥2Σ, Variance ≲
|IS |
n

+
n (p− |IS |)

(ψ0n+ p− |IS |)2
,

Approx.Error ≲

√
ψ1

ψ0
σ2z

√
log n

n
∥θ∗∥Σ.

On the other hand, if ψ1 > ψ0, we have (with the same probability)

Bias ≲ ∥θ∗∥Σ2 , Variance ≲

(
ψ1

ψo

)2
+ |IS |

n(
ψ1

ψo
+ |IS |

n

)2 , Approx.Error ≲

√
ψ0

ψ1
σ2z

√
log n

n
∥θ∗∥Σ.

We can see that the bias decreases as the mask ratio ψ1/ψ0 between the signal part (IS)
and the noise part decreases. This corroborates the idea that a successful augmentation
should retain semantic information as compared to the noisy parts of the data. Corollary 16
implies that for consistency as n, p→∞, we require 1

n ≪
ψ1

ψ0
≪ n

p . This is because we must
mask the noise features sufficiently more than the the signal feature for the bias to be small,
but the two mask probabilities cannot be too different to allow the approximation error to
decay to zero. We note that the bound has a sharp transition—if we mask the signal more
than the noise, the bias bound becomes proportional to the null risk (i.e. the bias of an
estimator that always predicts 0).

5.3 Random cutout

Next, we consider the popularly used cutout augmentation (DeVries and Taylor, 2017), which
picks a set of k (out of p) consecutive data coordinates at random and sets them to zero.
Interestingly, our analysis shows that the effect of the cutout augmentation is very similar
to the simpler-to-analyze random mask augmentation. The following corollary shows that
the generalization error of cutout is equivalent to that of randomized masking with dropout
probability β = k

p . The proof of this corollary can be found in Appendix B.7.

Corollary 17 (Generalization of random cutout) Let θ̂
cutout
k denote the random cutout

estimator that zeroes out k consecutive coordinates (the starting location of which is chosen

26



The implicit spectral regularization of data augmentation

uniformly at random). Also, let θ̂
mask
β be the random mask estimator with the masking

probability given by β. We assume that k = O(
√

n
log p). Then, for the choice β = k

p we have

MSE(θ̂
cutout
k ) ≍ MSE(θ̂

mask
β ), POE(θ̂

cutout
k ) ≍ POE(θ̂

mask
β ).

This result is consistent with our intuition, as the cutout augmentation zeroes out k
p

coordinates on average.

5.4 Composite augmentation: Salt-and-pepper

Our meta-theorem can also be applied to compositions of multiple augmentations. As a
concrete example, we consider a “salt-and-pepper” style augmentation in which each coordinate
is either replaced by random Gaussian noise with a given probability, or otherwise retained.
Specifically, salt-and-pepper augmentation modifies the data as g(x) = [x′

1, . . . ,x
′
p], where

x′
i = xi/(1−β) with probability 1−β and otherwise x′

i = N (µ, σ2)/(1−β). This is clearly a
composite augmentation made up of randomized masking and Gaussian noise injection. For
simplicity, we only consider the case where µ = 0, since it results in an augmentation which
is unbiased on average. The regression error of this composite augmentation is described in
the following corollary, which is proved in Appendix B.7.

Corollary 18 (Generalization of Salt-and-Pepper augmentation in regression) The
bias, variance and approximation error of the estimator that are induced by salt-and-pepper
augmentation (denoted by θ̂pepper(β, σ

2)) are respectively given by:

Bias[θ̂pepper(β, σ
2)] ≲

(
λ1(1− β) + σ2

σ2

)2

Bias

[
θ̂gn

(
βσ2

(1− β)2

)]
,

Variance[θ̂pepper(β, σ
2)] ≲ Variance

[
θ̂gn

(
βσ2

(1− β)2

)]
,

Approx.Error[θ̂pepper(β, σ
2)] ≍ Approx.Error[θ̂rm(β)].

where θ̂gn(z
2) and θ̂rm(γ) denotes the estimators that are induced by Gaussian noise injection

with variance z2 and random mask with dropout probability γ, respectively. Moreover, the
limiting MSE as σ → 0 reduces to the MSE of the estimator induced by random masking
(denoted by θ̂rm(β)):

lim
σ→0

MSE[θ̂pepper(β, σ
2)] = MSE[θ̂rm(β)].

Corollary 18 clearly indicates that the generalization performance of the salt-and-pepper
augmentation interpolates between that of the random mask and Gaussian noise injections,
in the sense that it reduces to random mask in the limit of σ → 0, and also has a comparable
bias and variance to Gaussian noise injection. More precisely, as we show in the proof of
this corollary, this interpolation property is a result of the fact that the eigenvalues of the
augmented covariance are the harmonic mean of the eigenvalues induced by random mask
and Gaussian noise injection respectively, i.e.

λpepper(β, σ
2)−1 = λrm(β)

−1 + β−1λgn(σ
2)−1.
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5.5 A new “random-rotation" augmentation

Our framework can also serve as a testbed for designing new augmentations that have desired
properties in terms of how they effect the spectrum. As an example, we introduce a novel
augmentation that performs multiple rotations in random planes. Specifically, for an input
x ∈ Rp and user specified rotation angle α, we perform the following steps:

1. Pick an orthonormal basis [u1,u2, . . . ,up] for the entire p-dimensional space uniformly
at random, i.e. from the Haar measure.

2. Divide the basis into sets of p
2 orthogonal planes U1,U2, . . . ,U p

2
, where Ui =

[u2i−1,u2i] and i = 1, 2, . . . , p2 .
3. Rotate x by an angle α in each of these planes Ui, i = 1, 2, . . . , p2 .

Note that in an implementation of aSGD, we would pick an independent orthonormal basis
for each iteration and each training example in Step 1. Ultimately, the augmentation mapping
is given by

g(x) =

p
2∏
i=1

[
I+ sinα(u2i−1u

⊤
2i − u2iu

⊤
2i−1) + (cosα− 1)(u2iu

⊤
2i + u2i−1u

⊤
2i−1)

]
x

=

I+ p
2∑
i=1

sinα(u2i−1u
⊤
2i − u2iu

⊤
2i−1) + (cosα− 1)(u2iu

⊤
2i + u2i−1u

⊤
2i−1)

x.

The induced augmentation covariance is given by

CovG(X) =
4(1− cosα)

np

(
Tr
(
X⊤X

)
I−X⊤X

)
.

The full derivation is deferred to Appendix E.
We can use our theory to study the generalization error for our proposed augmentation and

compare it with ridge regression. Interestingly, this augmentation enjoys good generalization
performance, regardless of the signal model. This result is summarized through the following
Corollary.

Corollary 19 (Generalization of random-rotation augmentation) Let θ̂rot denote the
estimator induced by the random-rotation augmentation with angle parameter α. An applica-
tion of Theorem 4 yields Bias(θ̂rot) ≍ Bias(θ̂lse), for sufficiently large p (overparameterized
regime), as well as the variance bound Var(θ̂rot) ≲ Var(θ̂ridge,λ). Let θ̂lse and θ̂ridge,λ denote
the least squared estimator and ridge estimator with ridge intensity λ = np−1(1− cosα)

∑
j λj.

The approximation error can also be shown to decay as

Approx. Error(θ̂rot) ≲ max

(
1

n
,

λ1∑
j>1 λj

)
.

The proof of the bias and variance expressions are provided in Appendix C.4, and the
proof of the approximation error is provided in Appendix F (this is the most involved step as
random-rotation augmentations induce strong dependencies among features). Corollary 19
shows that, surprisingly, this simple augmentation leads to an estimator not only having the
best asymptotic bias that matches that of LSE, but also reduces variance on the order of
ridge regression.
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6. Experiments

In this section, we complement our theoretical analysis with empirical investigations. In
particular, we explore: 1. Differences between aSGD which is used in practice and the closed-
form aERM solution analyzed in this paper, 2. Comparisons between the generalization of
different types of augmentations studied in this work, 3. Multiple factors that influence the
efficacy of DA, including signal structure and covariate spectrum, and 4. Comparisons between
different augmentation strategies, namely precomputed augmentations versus aERM. We
provide our Python implementations in https://github.com/nerdslab/augmentation-theory.

6.1 Convergence of aSGD to the closed-form aERM solution

In this paper, we mathematically study a-ERM (the solution in Equation (1)); however,
the solution used in practice is obtained by running a-SGD (Algorithm 1). In this set of
experiments, we investigate the convergence of Algorithm 1 to the solution of Eq. 1 to
verify that our theory reflects the solutions obtained in practice. To this end, we use an
example in the overparameterized regime with p = 128 ≥ n = 64 with the random isotropic
signal θ∗ ∼ N (0, Ip) and the observation noise ϵ ∼ N (0, 0.25). We choose a decaying
covariate spectrum of the form Σii ∝ γi, where γ is chosen such that µp(Σ) = 0.6µ1(Σ). We
want to understand the interplay between the convergence rate of aSGD with batch and
augmentation size (formally, the augmentation size is the number of augmentations made for
each draw of the training examples). We run the aSGD algorithm with different batch sizes
and augmentation sizes in the range given by (64, 1), (32, 2), . . . , (2, 32), (1, 64). Note that
the computation cost is proportional to the (batch size) × (augmentation size) per backward
pass. Fig. 3 illustrates the convergence rate in terms of the number of backward passes.
We observe that the convergence rates are fairly robust to different choices of batch and
augmentation sizes.

Algorithm 1: Augmented Stochastic Gradient Descent (aSGD)
input : Data xi, i = 1, . . . , n; Learning rates ηt, t = 1, . . . ; transformation

distribution G; batch size B; aug size H;
init θ̂ ← θ̂0

while termination condition not satisfied do
for k=1,...,n

B do
for i=1,...,B in the batch Bk do

Draw H augmentations gij ∼ G, j = 1, . . . ,H
end

θ̂t+1 ← θ̂t − ηt
B∑
i=1

H∑
j=1
∇θ(⟨θ, gij(xi)⟩ − yi)22|θ=θ̂t

end
end
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Figure 3: Convergence of augmented stochastic gradient descent (a-SGD, Algorithm 1) as a function of the
number of backward passes to the closed-form solution of the a-ERM objective (Equation (1)). The result
shows fairly stable convergence across different batch sizes and augmentation copies per sample.

6.2 Comparisons of different types of augmentations

In this section, we compare the generalization of: 1) Gaussian noise injection (Bishop,
1995), 2) random mask (He et al., 2022), and 3) random rotation (which we introduced
in Section 5.5). As in Section 6.1, we consider the random isotropic signal θ∗ ∼ N (0, Ip).
We compare regression and classification tasks; in the former, we set the noise standard
deviation as σε = 0.5 while in the latter, we set the label noise parameter as ν∗ = 0.1. We
consider diagonal covariance Σ and two choices of spectrum: 1. isotropic (i.e. Σ = Ip) and 2.
decaying spectrum where Σii ∝ γi with γ = 0.95.

Figure 4 illustrates different trade-offs (bias/variance for regression, contamination/sur-
vival for classification) for the three canonical augmentations. The hyperparameters for
the respective augmentations are: 1) the standard deviation σ ∈ R+ of the Gaussian noise
injection, 2) the masking probability β ∈ [0, 1] of the random mask, and 3) the rotation angle
α ∈ [0, 90]. We can make the following observations from Figure 4:

1. For isotropic data, all three augmentations achieve similar results in terms of generaliza-
tion, while for the case of decaying spectrum, Gaussian injection and random rotation
outperform random mask when their respective hyperparameters are optimally tuned.

2. For regression, Gaussian injection requires careful hyperparameter tuning in the range
[0, 1.8], while random mask and random rotation are fairly robust in performance in
the entire tested hyperparameter range. A possible explanation for this observation is
that the random mask and rotation hyperparameters are scale free of the data (while
the noise injection hyperparameter is not).

3. In the classification task, all the augmentations enjoy relatively robust generalization
with respect to their hyperparameters. This verifies our theoretical observations in
Propositions 46 and 47.

4. Our novel random rotation augmentation achieves the best of both worlds across
different data distributions and tasks, achieving comparable generalization to noise
injection when optimally tuned, while also being robust with respect to hyperparameter
choice (like random mask). This observation is consistent with the theoretical prediction
of Corollary 19.
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(a) Bias and variance distribution comparison in uniform covariate spectrum.

(b) Log survival and contamination distribution comparison in uniform covariate spectrum.

(c) Bias and variance distribution comparison in decaying covariate spectrum, γ = 0.95.

(d) Log survival and contamination for decaying covariate spectrum, γ = 0.95

Figure 4: Visualizing the generalization error for different augmentations, across regression and classification
tasks. In this figure we plot the bias/variance (a), (c) and contamination/survival distributions (b), (d)
of Gaussian noise injection, random mask, and random rotation. The numbers reflect the respective
hyperparameters σ, β, α.
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Figure 5: Bias and variance decomposition for non-uniform random masking. We vary the relative mask
intensities (βsig/β) across the signal and noise features. The result suggests that noise features can be
augmented more heavily in comparison to the signal features.

Figure 6: Bias and variance decomposition of random masking for a bi-level spectrum. We investigate the
bi-level random mask strategies in data with decaying spectrum ∝ 0.95i. The first half of features are masked
with probability β1 while the rest are with βp. We vary the ratio between the intensity βp/β1. We observe
that augmenting more for features with higher variance benefits generalization.

6.3 Studying the interactions between the original covariance and augmentations

In this section, we try to understand the impact of the true model θ∗ and the data covariance
Σ on the efficacy of different augmentations, focusing on the nonuniform random mask
introduced in Section 7.1. We set the ambient dimension to p = 128 and consider the noise
standard deviation σϵ = 0.5.

Effect of the true model: We study the impact of nonuniform masking on the 1-sparse
model θ∗ = e1, as depicted in Section 4.1 in the regression task and consider isotropic
covariance Σ = Ip. We vary the probability of the signal feature mask βsig while keeping the
probability of the noise feature mask β fixed at 0.2. The results are summarized in Fig. 5
and verify our analysis in Corollary 16 that noise features should be masked more compared
to signal features so that the semantic component in the data is preserved. Furthermore, we
observe that the differences manifest primarily in the bias, and the variance remains roughly
the same. This is consistent with our variance bound in Corollary 16, which depends only on
the probability of the noise mask β.

Effect of the covariance spectrum: Next, to understand the impact of the covariance
spectrum, we consider a setting with a decaying data spectrum Σii ∝ 0.95i. We generate
the true model using the random isotropic Gaussian θ∗ ∼ N (0, Ip) and run the experiment
100 times, reporting the average result. We consider a bilevel masking strategy where the
masking probability for the first half of features is set to β1, and the second half of features is
set to βp. We vary the ratio between βp and β1 to investigate whether a feature with larger
eigenvalue should be augmented with stronger intensity or not. The result is presented in
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(a) Normal adding Gaussian noise with σ = 1.

(b) Normal random mask with β = 0.3.

Figure 7: Pre-computed augmentations versus aERM. The estimators based on aERM have monotonicity in
generalization error with respect to the number of training samples, while the pre-computing methods exhibit
the double-descent phenomenon like least-squared estimators. We note that the pre-computing methods
shifts the error peak left compared with LSE. Also, the peak appears approximately at the sample number
equals to p

k
, where k is the augmentation size.

Fig. 6. We observe from this figure that it is more beneficial to augment more for features
with smaller eigenvalues.

6.4 Comparisons of pre-computing samples vs. augmented ERM

In our final set of experiments, we dig into the differences between pre-computing augmented
samples and creating augmentations on-the-fly. For this experiment, we generate isotropic
random signal θ∗ ∼ N (0, I128) and observation noise with standard deviation σ = 0.5. For
simplicity, we choose the isotropic covariate spectrum Σ = I128. In Figs. 7 (a)-(b), we
observe the well-known double descent peaks (Belkin et al., 2020; Nakkiran et al., 2020)
when the training number approaches the ambient dimension n = p = 128 for LSE, and
observe that adding pre-computed augmentation shifts these peaks to the left. The peak
for a pre-computing method with an augmentation size k is observed to be approximately
at n = 128/k. Intuitively, this mode of augmentation virtually increases the size of the
training data: in particular, if we had 128/k original data points the induced total training
size (including original data points and augmentations) becomes equal to (128/k)× k = 128.

Interestingly, both the magnitude of the peak and the width decrease as we increase the
augmentation size, and the peak almost disappears when k > 8. The general behavior of
pre-computing is observed to approach aERM as k increases. Another interesting observation
is that, unlike LSE which only has a double descent peak in the variance, pre-computing
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augmentations induces peaks in both the bias and the variance. A possible explanation for
peaks appearing even in the bias term is that the variance induced by a finite number of
augmentations is itself embedded in the bias term.

7. The good, the bad and the ugly sides of data augmentation

In this section, we will dive into specific implications of our theory and experiments, and
list key properties through which augmentations can be good (improve learning), bad (hurt
learning), or “ugly” (have unexpected/surprising outcomes).

7.1 The good: when DA helps generalization

1) Data-adaptive spectral modification: Section 3.2 provided an interpretable and
succinct characterization of the impact of any augmentation: namely, that it modifies the
entire spectrum of the data covariance. We show that this modification to the covariance can
be translated into modifications to the two effective ranks, as defined in Bartlett et al. (2020),
and used to derive generalization bounds that reveal the impact of a given augmentation.
This modification can itself be data-adaptive and lead to rich types of Tikhonov-style
spectral regularization. Our analysis of several augmentations (including but not exclusive
to the examples listed in Table 1) reveals that DA can have a much richer impact on the
covariance spectrum, leading to unique benefits in generalization. For example, our theoretical
and empirical analysis of the non-uniform random mask (Cor. 16) and random-rotation
augmentation (Cor. 19) reveals that it is possible to generate data-adaptive regularizers
through DA that reduce variance without a harmful increase in bias.

2) Variance reduction: Our analysis in Section 3.2 implies that any stochastic augmen-
tation will reduce variance. Thus, in situations where the bias (of the original, unaugmented
estimator) is already minimal or has a minimal impact on task performance, we expect many
types of DA to be beneficial through this form of variance reduction. For example, Section 6.2
revealed that the random masking augmentation leads to stable improvements in classification
performance for any choice of masking rate. We also see in Figure 4 that Gaussian noise
injection, random mask and random rotation all improve overall generalization for both
classification and moderately overparameterized regression (p = 2n), where bias is either
minimal or does not significantly impact task performance. The improvement is maximal for
the random rotation augmentation and Gaussian noise injection, both of which incur less
bias than the random masking augmentation. An interesting result of our experiments is
that our proposed random-rotation augmentation achieves a good generalization performance
for a wide range of hyperparameters (rotation angles).

3) Reducing effective overparameterization and mitigating “double descent" be-
havior: The variance reduction effect is especially beneficial in overparameterized scenarios
where d exceeds n but not by much, which is a scenario that often arises in ML practice.
Here, the variance of the original estimator would be very large, leading to the “peak"
observed in the double descent curve (Belkin et al., 2019). In these regimes, DA reduces the
effective dimension of the data and effectively creates a synthetic underparameterized regime.
As shown in Figure 7, this benefit takes place for both the pre-computed augmentation
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implementation and the aERM implementation. These results support the perspective that
augmentations can act as “virtual samples” (Balestriero et al., 2022b).

7.2 The bad: when DA hurts generalization

1) Augmentations can erase helpful data structure by “isotropizing” the spectrum
An important ingredient for generalization of ridge estimators in high-dimensional settings is
low-dimensional structure in the data. One key data structure that is often used to restrict
the solution space, is to assume that the data have low-rank structure, or that the data
covariance has a sufficiently fast rate of decay in its eigenvalues with the bulk of the signal
energy contained in the top eigenvectors (Muthukumar et al., 2020; Tsigler and Bartlett,
2020; Muthukumar et al., 2021). Our theory reveals that some popular augmentations, such
as random-masking and group-invariant augmentations, begin to erase all of this helpful data
structure by isotropizing the “equivalent” data covariance in expectation. Putting this in the
language of Section 7.2.1, such isotropization has the benefit of variance reduction but this
comes at a cost of increased bias. While we believe this isotropization effect might be specific
to high-dimensional linear models and may not occur even for nonlinear kernel methods, it is
an important factor that our theory identifies as, overall, pessimistic for generalization.

2) Increase in bias could offset variance reduction: Our theory demonstrates that
augmentations can have the undesired effect of increasing the bias of the aERM estimator.
This increase in bias is particularly acute when the data are high-dimensional (Hastie
et al., 2019; Muthukumar et al., 2020). Figure 4 illustrates that in this regime, certain
augmentations like Gaussian noise injection and random mask can lead to poor performance
due to high bias. Moreover, since bias increases with increased augmentation intensity, these
augmentations can even hurt performance if applied too strongly!

Another class of augmentations for which we show counterintuitive effects is the class of
group-invariant augmentations, i.e. augmentations that are created with the ostensible aim
of inducing invariance in prediction within a specific algebraic group (for example, for the
rotation or translation group, augmentations would consist of rotations or translations of
images). In previous work Chen et al. (2020a), the authors show that such group-invariant
augmentations always improves generalization through variance reduction; however, they
primarily considered the underparameterized regime where bias is much less significant. We
show in Appendix C.4, such augmentations may generalize poorly in the overparameterized
regime.

3) Augmentations can induce distribution shift between training and test data
Finally, we show that augmentations that are biased-on-average, meaning that E[g(x)] ̸= x,
can induce an undesirable distribution shift between training and test data that is harmful,
particularly for regression tasks. For example, comparing the regression error bounds for the
unbiased variant of randomized mask (Corollary 15) and its biased variant (Corollary 34),
reveals that the biased variant incurs an additional penalty due to distribution shift. On the
other hand, as predicted in Corollary 11, the impact of bias in augmentation on classification
tasks might not be as pronounced. Thus, our results highlight the importance of debiasing
augmentations when applied to regression tasks.
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7.3 The ugly: discrepancies in DA’s effect under multiple factors

The previous two subsections highlight ways in which augmentations can both help and harm
learning. Now we will discuss a few ways that augmentations can give rise to what we call
“ugly” behavior, impacting performance in curious and unexpected ways.

1) Differences in under and overparameterized settings Our results also highlight
ways in which augmentations will impact models differently in the under vs. overparameterized
regimes. Corollary 15 shows that when applying random masking for regression tasks, the
bias and the variance are given by O

(
(ψn+p)2

(n+p)2

)
and O

(
min(np ,

p
n)
)
, respectively (recall that

p is the data dimension and n is the number of training examples). From this, we can
draw the following insights: 1. the variance is vanishing in both regimes, and 2. the bias
can be controlled in the underparameterized regime p≪ n by adjusting ψ but is otherwise
non-vanishing in the overparameterized regime p≫ n. Said another way, the isotropization
effect described in Section 7.2.2 can be beneficial in the underparameterized regime, as the
contribution of bias is relatively minimal, but harmful in the overparameterized regime where
the contribution of bias can be substantial. This supports the benefits of group-invariant
augmentations shown by Chen et al. (2020a) in the underparameterized regime.

2) Differences between augmentations that are precomputed or generated on-
the-fly. Our experiments also demonstrated interesting subtleties between precomputing
and on-the-fly-generated augmentations (Fig. 7). While a small number of pre-computed
augmentations induces a similar double-descent behavior to the original LSE, the aERM error
gracefully decreases without any interpolation peak. We also note that the double descent
MSE peak shifts for different numbers of pre-computed samples, appearing approximately at
the location n = p

k , where p and k denote the data augmentation and number of pre-computed
aumgentations per sample, respectively. The complete mitigation of double descent by aERM
can be explained by our theory and is directly connected to the beneficial effect of variance
reduction in mitigating double descent (previously observed for ridge regularization (Hastie
et al., 2019)). On the other hand, we believe pre-computed augmentation has a different effect
of adding “virtual samples", therefore leading to the observed effect of shifting the effective
interpolation threshold to the right. Proving this rigorously will require novel random matrix
theory tools due to the synthetic but correlated nature of the virtual samples. We defer
mathematical analysis of this phenomenon to future work.

3) The effect of weak DA Our analysis framework also allows us to understand a
counterintuitive phenomenon that emerges for “weak” augmentations. It is well-known
that Gaussian noise injection approximates the LSE when the variance of the added noise
approaches zero. Surprisingly, however, this does not imply that all kinds of DA approach
the LSE in the limit of decreasing augmentation intensity. Suppose that the augmentation g
is characterized by some hyperparameter ξ that reflects the intensity of the augmentation
(for e.g., mask probability β in the case of randomized mask, or Gaussian noise standard
deviation σ in the case of Gaussian noise injection), and that CovG(X)/ξ−→Cov∞ as ξ → 0
for some positive semidefinite matrix Cov∞ that does not depend on ξ. Then, the limiting
aERM estimator when the augmentation intensity ξ approaches zero is given by

θ̂aug
ξ→0−→ Cov−1

∞ X⊤
(
XCov−1

∞ X⊤
)†

y.
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It can be easily checked that this estimator is the minimum-Mahalanobis-norm interpolant
of the training data where the positive semi-definite matrix used for the Mahalanobis norm
is given by Cov∞. Thus, the choice of augmentation impacts the specific interpolator that
we obtain in the limit of minimally applied DA. For example, the above formula can be
applied to random mask with Cov∞ = n−1diag(XTX) ≈ Σ. Our empirical results in Figure
8 confirm this effect as well, where we find a gap between the LSE and even very weak
augmentations. We discuss this effect further in Appendix G.1.

8. Conclusions and Future Work

In this paper, we established a new framework to analyze the generalization error for linear
models with data augmentation in underparameterized and overparameterized regimes. We
characterized generalization error for both regression and classification tasks in terms of
the interplay between the characteristics of the data augmentation and spectrum of the
data covariance. As a side product, our results also generalize the recent line of research
on harmless interpolation from ridge/ridgeless regression to settings where the learning
objectives are penalized by data dependent regularizers.

While we do not formally study nonlinear models in this paper, we believe our analysis
provides powerful tools that we could build on to handle the nonlinear case in future work. Our
approach extends most naturally to the case of kernel methods (Schölkopf and Smola (2002)),
random features or last-layer retuning (Mei et al. (2021)), and the neural tangent kernel
regime (Jacot et al. (2018)). In these cases, the primary technical challenge is understanding
the effect of the augmentation covariance CovG(X), which can be very different than in our
analysis, as the feature map in kernel methods is typically nonlinear in the data. Nevertheless,
we believe our generalization analysis can be applied in a plug-and-play manner with such
covariance calculations, by combining the insights of our work with tools established, e.g.,
in McRae et al. (2022).

While our current analysis focuses on the effect of augmentations on supervised learning,
understanding how augmentation impacts self-supervised and contrastive learning is an
important area for future work. In these approaches, the choice of augmentations can have
even more harmful effects on learning and in some cases, cause representational collapse
Cabannes et al. (2023). Thus, we hope that our results on the implicit spectral manipulation
induced by DA can also be applied to study SSL in the future.

Acknowledgements

We would like to thank Mehdi Azabou and Max Dabagia for feedback on the work at various
stages and many helpful discussions. This work was funded through NSF IIS-2212182, NSF
IIS-2039741, a NSF Graduate Research Fellowship (DGE-2039655), NIH 1R01EB029852,
and the support from the Canadian Institute for Advanced Research (CIFAR) through the
Global Scholars Program (ELD).

37



Lin, Kaushik, Dyer, Muthukumar

Appendix

Contents

A General Auxiliary Lemmas 39

B Proofs of Regression Results 41
B.1 Regression Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
B.2 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.3 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.4 Proof of Proposition 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
B.5 Proof of Proposition 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.6 Proof of Proposition 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.7 Proofs of Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

C Proofs of Classification Results 58
C.1 Classification Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
C.2 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
C.3 Proof of Theorem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
C.4 Proofs of Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

D Comparisons between Regression and Classification 70
D.1 Proof of Proposition 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
D.2 Classification/regression separation for non-uniform random mask . . . . . . . 72

E Derivations of Common Augmented Estimators 72

F Approximation Error for Dependent Feature Augmentation 76
F.1 Approximation error of random rotations . . . . . . . . . . . . . . . . . . . . . 76
F.2 Approximation error of random cutout . . . . . . . . . . . . . . . . . . . . . . 77

G Additional experiments 79
G.1 The implicit bias of minimal or “weak” DA . . . . . . . . . . . . . . . . . . . . 79

38



The implicit spectral regularization of data augmentation

Appendix A. General Auxiliary Lemmas

Notation For a data matrix X ∈ Rn×p with i.i.d. rows with covariance Σ, recall we
denote PΣ

1:k−1 and PΣ
k:∞ as the projection matrices to the first k − 1 and the remaining

eigen-subspaces of Σ, respectively. In addition, we have defined two effective ranks ρk(Σ; c) =
c+

∑
i>k λi

nλk+1
, Rk(Σ; c) =

(c+
∑

i>k λi)
2∑

i>k λ
2
i

. For convenience, we denote the residual Gram matrix

by Ak(X;λ) = λIn +XPΣ
k:∞XT .

Lemma 20 (A useful identity for the ridge estimator (Tsigler and Bartlett, 2020))
For any matrix V ∈ Rp×k composed of k independent orthonormal columns (therefore, V
represents a k-dimensional subspace), the ridge estimator θ̂ = (X⊤X+ λIp)

⊤X⊤y has the
property:

(Ik +V⊤X⊤P−1
k XV)V⊤θ̂ = V⊤X⊤P−1

k y, (16)

where Pk := λIn +XV⊥(V⊥)⊤X⊤ and V⊥ is a p by p− k matrix satisfying (V⊥)⊤V = 0
and (V⊥)⊤V⊥ = Ip−k.

Lemma 21 (Bernstein-type inequality for sum of sub-exponential variables) Let
x1, . . . ,xn be independent zero-mean sub-exponential random variables with sub-exponential
norm at most σ2x. Then for every a = (a1, . . . , an) ∈ Rn and every t ≥ 0, we have

P

{∣∣∣∣∣
n∑
i=1

aixi

∣∣∣∣∣ ≥ t
}
≤ 2 exp

[
−cmin

(
t2

σ4x∥a∥22
,

t

σ2x∥a∥∞

)]
where c > 0 is an absolute constant.

Lemma 22 (Concentration of regularized truncated empirical covariance, Lemma
21 in Tsigler and Bartlett (2020)) Suppose Z = [z1, z2, . . . , zp] ∈ Rn×p is a matrix with
independent isotropic sub-gaussian rows with norm σ. Consider Σ = diag (λ1, . . . , λp) for
some positive non-increasing sequence {λi}pi=1.

Denote Ak = λIn +
∑

i>k λiziz
⊤
i for some λ ≥ 0. Suppose that it is known that for some

δ, L > 0 independent of n, p and some k < n with probability at least 1 − δ, the condition
number of the matrix Ak is at most L. Then, for some absolute constant c with probability at
least 1− δ − 2 exp(−ct)

(n− tσ2)
L

λk+1ρk(Σ;λ) ≤ µn (Ak) ≤ µ1 (Ak) ≤
(
n+ tσ2

)
Lλk+1ρk(Σ;λ)

Lemma 23 (Concentration of leave-one-out empirical covariance) Under the same
notations and assumptions in Lemma 22, denote A−t := λIn +

∑
i ̸=t λiziz

⊤
i for some λ ≥ 0.

Then for any t ≤ k ≤ n such that the condition number of Ak is bounded by L, we have

(n− tσ2)
L

λk+1ρk(Σ;λ) ≤ µn(A−t) ≤ µ1(A−t) ≤
(
n+ tσ2

)
Lλ1ρ0(Σ;λ)
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Proof The lemma follows by Lemma 22 and the observations of µ1(A−t) ≤ µ1(A0)) and
A−t ⪰ Ak.

Lemma 24 (Concentration of matrix with independent sub-gaussian rows, Theo-
rem 5.39 in Vershynin (2010)) Let X be an n× k matrix (with n > k) whose rows xi are
independent sub-gaussian isotropic random vectors in Rk. Then for every t ≥ 0 such that√
n−C

√
k− t > 0 for some constant C > 0, we have with probability at least 1−2 exp

(
−ct2

)
that √

n− C
√
k − t ≤ smin(X) ≤ smax(X) ≤

√
n+ C

√
k + t

Here smin and smax denotes the minimum and maximum singular values and C, c > 0 are
some constants depend only on the sub-gaussian norm of the rows.

Lemma 25 (Concentration of the sum of squared norms, Lemma 17 in Tsigler and
Bartlett (2020)) Suppose Z ∈ Rn×p is a matrix with independent isotropic sub-gaussian
rows with norm σ. Consider Σ = diag (λ1, . . . , λp) for some positive non-decreasing sequence
{λi}pi=1. Then for some absolute constant c and any t ∈ (0, n) with probability at least
1− 2 exp(−ct)

(
n− tσ2

)∑
i>k

λi ≤
n∑
i=1

∥∥∥Σ1/2
k:∞Zi,k:∞

∥∥∥2 ≤ (n+ tσ2
)∑
i>k

λi

Lemma 26 (Applications of Hanson-Wright inequality as done in Muthukumar
et al. (2021)) Let ε be a random vector composed of n i.i.d. zero-mean sub-gaussian variables
with norm 1. Then,

1. there exists universal constant c > 0 such that for any fixed positive semi-definite
matrix A, with probability 1− 2 exp(−

√
n), we have∣∣∣ε⊤Aε− E
[
ε⊤Aε

]∣∣∣ ≤ c∥A∥n 3
4 .

2. there exists some universal constant C > 0 such that with probability at least 1− 1
n

ε⊤Aε ≤ C tr(A) log n.

Lemma 27 (Operator norm bound of matrix with sub-gaussian rows (Tsigler and
Bartlett, 2020)) Suppose {zi}ni=1 is a sequence of independent sub-gaussian vectors in Rp
with ∥zi∥ ≤ σ. Consider Σ = diag (λ1, . . . , λp) for some positive non-decreasing sequence
{λi}pi=1 . Denote X to be the matrix with rows Σ1/2zi. Then for some absolute constant c,
for any t > 0 with probability at least 1− 4e−t/c

∥X∥ ≤ cσ

√√√√λ1(t+ n) +

p∑
j=1

λj .
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Appendix B. Proofs of Regression Results

In this section, we will include essential lemmas in B.1 to prove the main theorems for
regression analysis in the sections B.2 and B.3. Then, we will use these theorems to prove
the propositions and corollaries in sections B.4 and B.7, respectively.

B.1 Regression Lemmas

Lemma 28 (Sharpened bias of ridge regression, extension of Tsigler and Bartlett
(2020))

Bias

CxL4
1

≲
∥∥PΣ

k1+1:pθ
∗∥∥2

Σ
+
∥∥PΣ

1:k1θ
∗∥∥2

Σ−1

ρ2k1(Σ;n)

(λk1+1)−2 + (λ1)−2ρ2k1(Σ;n)
(17)

Remark 29 The reason we modify the bound from Tsigler and Bartlett (2020) is twofold:
1. We consider non-diagonal covariance matrix Σ. This is because even if the original data
covariance is diagonal, the equivalent spectrum might become non-diagonal after the data
augmentation. Therefore, we modify the bound so that the eigenspaces of the data covariance
matrix do not have to be aligned with the standard basis. 2. As we show in our work, some
augmentations, e.g. random mask, have the effect of making the equivalent data spectrum
isotropic. However, in this case, the bias bound in Tsigler and Bartlett (2020), as shown
below, can be vacuous as being almost the same as the null estimator so we modify the bound
to remedy the case.

Bias bound ≍
∥∥PΣ

k1+1:pθ
∗∥∥2

Σ
+
∥∥PΣ

1:k1θ
∗∥∥2

Σ−1 λ
2
k1+1ρ

2
k1(Σ;n)

=
∥∥PΣ

k1+1:pθ
∗∥∥2 + ∥∥PΣ

1:k1θ
∗∥∥2 p− k1

n
≳ ∥θ∗∥22,

Proof This lemma is a modification to Theorem 1 in Tsigler and Bartlett (2020), where
we only change slightly in the estimation of the lower tail of the bias. For self-containment,
we illustrate where we make the change. Consider the diagonalization Σ = VDV⊤. Let
V1, V2 be the matrices with columns consisting of the top k eigenvectors of Σ and the
remaining eigenvectors, respectively. Note that we have V = [V1,V2], PΣ

1:k−1 = V1V
⊤
1 ,

and PΣ
k:∞ = V2V

⊤
2 . Moreover, we have V1V

⊤
1 +V2V

⊤
2 = VV⊤ = Ip. Now, for the ridge

estimator θ̂ = (X⊤X+ λIp)
−1X⊤y, apply Lemma 20 with V = V1 to obtain

(Ik +V⊤
1 X

⊤Ak(Σ;λ)−1XV1)V
⊤
1 θ̂ = V⊤

1 X
⊤Ak(Σ;λ)−1y, (18)

where Ak(Σ;λ) := λIp +XV2V
⊤
2 X

⊤. As there will be no ambiguity of which covariance
matrix the residual spectrum corresponds to, we will just write Ak from now on.

To bound the bias, we split it into

Bias ≤ 2∥V1V
⊤
1 (Eε[θ̂]− θ∗)∥2Σ + 2∥V2V

⊤
2 (Eε[θ̂]− θ∗)∥2Σ, (19)

where the expectations are over the noise ε. Observe that the averaged estimator is Eε[θ̂] =
(X⊤X+ λIp)

−1X⊤y, so we can apply Lemma 20 with θ̂ and y replaced by Eε[θ̂] and Xθ∗,
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respectively. As a result, we can write

(Ik +V⊤
1 X

⊤A−1
k XV1)V

⊤
1 Eε[θ̂] = V⊤

1 X
⊤A−1

k Xθ∗

= V⊤
1 X

⊤A−1
k X(V1V

⊤
1 +V2V

⊤
2 )θ

∗.

Now, subtracting V⊤
1 θ

∗ + V⊤
1 X

⊤A−1
k XV1V

⊤
1 θ

∗ from both sides of the above equation
followed by a left multiplication of V1 gives

V1V
⊤
1 (Eεθ̂ − θ∗) +V1V

⊤
1 X

⊤A−1
k XV1V

⊤
1 (Eεθ̂ − θ∗)

= V1V
⊤
1 X

⊤A−1
k XV2V

⊤
2 θ

∗ −V1V
⊤
1 θ

∗,

where we use the identity Ip = V1V
⊤
1 +V2V

⊤
2 .

Now multiply both sides with (Eεθ̂ − θ∗)⊤, the R.H.S. is

= (Eεθ̂ − θ∗)⊤V1V
⊤
1 Σ

1/2Σ−1/2X⊤A−1
k XV2V

⊤
2 θ

∗ − (Eεθ̂ − θ∗)⊤V1V
⊤
1 Σ

1/2Σ−1/2θ∗

≤ ∥V1V
⊤
1 (Eεθ̂ − θ∗)∥Σµn(Ak)

−1

√
µ1

(
V1V⊤

1 Σ
−1/2X⊤XΣ−1/2V1V⊤

1

)
∥XV2V

⊤
2 θ

∗∥

+ ∥V1V
⊤
1 (Eεθ̂ − θ∗)∥Σ∥V1V

⊤
1 θ

∗∥Σ−1 . (20)

Note that in the last term of the inequality, we have use the fact that

(Eεθ̂ − θ∗)⊤V1V
⊤
1 Σ

1/2Σ−1/2θ∗ = (Eεθ̂ − θ∗)⊤V1V
⊤
1 Σ

1/2Σ−1/2(V1V
⊤
1 +V2V

⊤
2 )θ

∗

= (Eεθ̂ − θ∗)⊤V1V
⊤
1 Σ

1/2Σ−1/2V1V
⊤
1 θ

∗.

On the other hand, the L.H.S. is

≥ λ−1
1 ∥V1V

⊤
1 (Eεθ̂ − θ∗)∥2Σ + (Eεθ̂ − θ∗)⊤V1V

⊤
1 X

⊤A−1
k XV1V

⊤
1 (Eεθ̂ − θ∗), (21)

in which the second term is

= (Eεθ̂ − θ∗)⊤V1V
⊤
1 Σ

1/2V1V
⊤
1 Σ

−1/2X⊤A−1
k XΣ−1/2V1V

⊤
1 Σ

1/2V1V
⊤
1 (Eεθ̂ − θ∗)

≥ ∥V1V
⊤
1 (Eεθ̂ − θ∗)∥2Σ∥V1V

⊤
1 Σ

−1/2X⊤A−1
k XΣ−1/2V1V

⊤
1 ∥

≥ ∥V1V
⊤
1 (Eεθ̂ − θ∗)∥2Σµk(V⊤

1 Σ
−1/2X⊤A−1

k XΣ−1/2V1)

≥ ∥V1V
⊤
1 (Eεθ̂ − θ∗)∥2Σµ1(Ak)

−1µk(V
⊤
1 Σ

−1/2X⊤XΣ−1/2V1). (22)

Therefore, combining e.q. (20), (21) and (22), we have

∥V1V
⊤
1 (Eεθ̂ − θ∗)∥Σ

≤
µ−1
n (Ak)

√
µ1

(
V⊤

1 Σ
−1/2X⊤XΣ−1/2V1

)
∥XV2V

⊤
2 θ

∗∥+ ∥V1V
⊤
1 θ

∗∥Σ−1

λ−1
1 + µ−1

1 (Ak)µk(V
⊤
1 Σ

−1/2X⊤XΣ−1/2V1)
.

Now, we turn to bound ∥V2V
⊤
2 (Eεθ̂− θ∗)∥2Σ. The proof follows the same step as Tsigler

and Bartlett (2020) except we use projection matrices to accommodate for the non-diagonal
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covariance:

∥V2V
⊤
2 (Eεθ̂ − θ∗)∥2Σ ≲ ∥PΣ

k:∞θ∗∥2Σ︸ ︷︷ ︸
T1

+ ∥V2V
⊤
2 X

⊤(XX⊤ + λIn)
−1XV2V

⊤
2 θ

∗∥2Σ︸ ︷︷ ︸
T2

+ ∥V2V
⊤
2 X

⊤(XX⊤ + λIn)
−1XV1V

⊤
1 θ

∗∥2Σ︸ ︷︷ ︸
T3

T2 is bounded by

µ−2
n (Ak)∥XV2V

⊤
2 ΣV2V

⊤
2 X

⊤∥∥XV2V
⊤
2 θ

∗∥2Σ. (23)

For T3 on the other hand, recall XX⊤ + λIp = XV1V
⊤
1 X

⊤ +Ak. Then by the
Sherman–Morrison–Woodbury formula, we have

(XX⊤ + λIp)
−1XV1

=
(
A−1
k −A−1

k XV1(Ik +V⊤
1 X

⊤A−1
k XV1)

−1V⊤
1 X

⊤A−1
k

)
XV1

= A−1
k XV1(Ik +V⊤

1 X
⊤A−1

k XV1)
−1.

Therefore,

∥V2V
⊤
2 X

⊤(XX⊤ + λIp)
−1XV1V

⊤
1 θ

∗∥2Σ
≤ µ−2

n (Ak)∥XV2V
⊤
2 ΣV2V

⊤
2 X

⊤∥∥XV1(Ik +V⊤
1 X

⊤A−1
k XV1)

−1V⊤
1 θ

∗∥22,

where

XV1(Ik +V⊤
1 X

⊤A−1
k XV1)

−1V⊤
1 θ

∗

(a)
= XV1(V

⊤
1 Σ

−1/2)(Σ1/2V1)(Ik +V⊤
1 X

⊤A−1
k XV1)

−1(V⊤
1 Σ

1/2)(Σ−1/2V1)V
⊤
1 θ

∗

(b)
= XΣ−1/2(Σ1/2V1)(Ik +V⊤

1 X
⊤A−1

k XV1)
−1(V⊤

1 Σ
1/2)(Σ−1/2V1)V

⊤
1 θ

∗

(c)
= XΣ−1/2V1(V

⊤
1 Σ

−1V1 +V⊤
1 Σ

−1/2X⊤A−1
k XΣ−1/2V1)

−1Σ−1/2V1V
⊤
1 θ

∗,

where (a) follows from V⊤
1 V1 = Ik, (b) from

XV1(V
⊤
1 Σ

−1/2)(Σ1/2V1) = X(V1V
⊤
1 +V2V

⊤
2 )Σ

−1/2Σ1/2V1 = XΣ−1/2Σ1/2V1

as V⊤
1 V2 = 0 and V1V

⊤
1 +V2V

⊤
2 = Ip, and (c) follows from the facts

XΣ−1/2Σ1/2V1 = XΣ−1/2V1

(
V⊤

1 Σ
1/2V1

)
(V⊤

1 Σ
1/2V1)

−1 = V⊤
1 Σ

−1/2V1.

Therefore, we have

∥XV1(I+V⊤
1 X

⊤A−1
k XV1)

−1V⊤
1 θ

∗∥22

≤
µ1

(
V⊤

1 Σ
−1/2X⊤XΣ−1/2V1

)
λ−2
1 + µ−2

1 (Ak)µ
2
k(V

⊤
1 Σ

−1/2X⊤XΣ−1/2V1)
∥PΣ

1:k−1θ
∗∥Σ−1 .
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Now, adding all the terms above together, the bias is

Bias ≲
µ−2
n (Ak)µ1

(
V⊤

1 Σ
−1/2X⊤XΣ−1/2V1

)
∥XV2V

⊤
2 θ

∗∥22 + ∥V1V
⊤
1 θ

∗∥2
Σ−1

λ−2
1 + µ−2

1 (Ak)µ
2
k(V

⊤
1 Σ

−1/2X⊤XΣ−1/2V1)

+ ∥XV2V
⊤
2 ΣV2V

⊤
2 X

⊤∥
µ−2
n (Ak)µ1

(
V⊤

1 Σ
−1/2X⊤XΣ−1/2V1

)
∥V1V

⊤
1 θ

∗∥2
Σ−1

λ−2
1 + µ−2

1 (Ak)µk

(
V⊤

1 Σ
−1/2X⊤XΣ−1/2V1

)2
+ ∥XV2V

⊤
2 ΣV2V

⊤
2 X

⊤∥µ−2
n (Ak)∥XV2V

⊤
2 θ

∗∥2Σ + ∥PΣ
k:∞θ∗∥2Σ,

where for the diagonal covariance Σ, the first two terms are sharpened with additional λ−2
1

in the denominators as compared to Tsigler and Bartlett (2020). As in Tsigler and Bartlett
(2020), these terms can be bounded by concentration bounds: µi

(
V⊤

1 Σ
−1/2X⊤XΣ−1/2V1

)
by Lemma 24, µj(Ak) by Lemma 22, ∥XV2V2∥22 and ∥XV2V

⊤
2 ΣV2V

⊤
2 X

⊤∥ by Lemma 25.
The details can be found in the proof of MSE bound of Tsigler and Bartlett (2020).

Lemma 30 (Variance bound of ridge regression for non-diagonal covariance data
(Tsigler and Bartlett, 2020)) Consider the regression task with the model setting in
Section 3 where the input variable x possibly has non-diagonal covariance Σ with eigenvalues
λ1 ≥ λ2 . . . λp. Given a ridge estimator θ̂ = (X⊤X+ λI)−1X⊤y and λ ≥ 0, if we know that
for some k2, the condition number of Ak2(X;λ) is bounded by L2 with probability 1− δ, where
δ < 1− exp(−n/c2x), then there exists some constant C̃x depending only on σx such that with
probability at least 1− δ − n−1,

Variance

σ2εL
2
2C̃x

≲

(
k2
n

+
n

Rk2(Σ;n)

)
log n. (24)

Lemma 31 (Generalization bound of ridge regression for non-diagonal covariance
data, extension of Tsigler and Bartlett (2020)) Consider the regression task with the
model setting in Section 3 where the input variable x has possibly non-diagonal covariance Σ
with eigenvalues λ1 ≥ λ2 . . . . Then, given a ridge regression estimator θ̂ = (X⊤X+λI)−1X⊤y
and λ ≥ 0, suppose we know that for some k1 and k2, the condition numbers of Ak1(X;λ)
and Ak2(X;λ) are bounded by L1 and L2 with probability 1− δ, where δ < 1− exp(−n/c2x),
then there exists some constants Cx, C̃x depending only on σx such that with probability at
least 1− n−1,

MSE ≲ CxL
4
1

(∥∥PΣ
k1+1:pθ

∗∥∥2
Σ
+
∥∥PΣ

1:k1θ
∗∥∥2

Σ−1

ρ2k1(Σ;n)

(λk1+1)−2 + (λ1)−2ρ2k1(Σ;n)

)
︸ ︷︷ ︸

Bias

+ σ2εL
2
2C̃x

(
k2
n

+
n

Rk2(Σ;n)

)
log n︸ ︷︷ ︸

Variance

(25)
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Proof The statement is a direct combination of Lemma 28, 30 and the bias-variance
decomposition of MSE from Tsigler and Bartlett (2020).

Lemma 32 (Bounds on the approximation error for regression) Denote

θ̂aug := (X⊤X+ nCovG(X))−1X⊤y, θ̄aug := (X⊤X+ nExCovG(x))
−1X⊤y,

and κ the condition number of Σaug. Assume for some constant c < 1 that

∆G := ∥Ex[CovG(x)]
− 1

2CovG(X)Ex[CovG(x)]
− 1

2 − I∥ ≤ c.

Then the approximation error is bounded by,

∥θ̂aug − θ̄aug∥Σ ≲ κ
1
2∆G

(
∥θ∗∥Σ +

√
Bias(θ̄aug) +

√
Variance(θ̄aug)

)
.

Proof For ease of notation, we denote D = CovG , D̄ = Ex[CovG(x)], and ∆ = D̄− 1
2DD̄− 1

2−
I. Then

∥θ̂aug − θ̄aug∥Σ = ∥(X⊤X+ nD)−1X⊤y − (X⊤X+ nD̄)−1X⊤y∥Σ
= ∥(X⊤X+ nD)−1(X⊤X+ nD̄−X⊤X− nD)(X⊤X+ nD̄)−1X⊤y∥Σ
= n∥Σ

1
2 D̄− 1

2 D̄
1
2 (X⊤X+ nD)−1D̄

1
2∆D̄

1
2 θ̄aug∥2,

≲ n∥Σ
1
2 D̄− 1

2 ∥∥D̄
1
2 (X⊤X+ nD)−1D̄

1
2 ∥∥∆∥∥D̄

1
2Σ− 1

2 ∥∥θ̄aug∥2
≲ nκ

1
2∆G∥θ̄aug∥Σ∥D̄

1
2 (X⊤X+ nD)−1D̄

1
2 ∥ (26)

By (30), ∥θ̄aug∥Σ can be bounded as,

∥θ̄aug∥Σ ≤ ∥θ∗∥Σ + ∥θ̄aug − θ∗∥Σ ≲ ∥θ∗∥Σ +
√

Bias(θ̄aug) +
√
Variance(θ̄aug).

It remains to bound ∥D̄
1
2 (X⊤X+ nD)−1D̄

1
2 ∥.

Now, observe

∥D̄
1
2 (X⊤X+ nD)−1D̄

1
2 ∥ =

(
µp

(
D̄

1
2 (X⊤X+ nD)−1D̄

1
2

)−1
)−1

=
(
µp

(
D̄− 1

2 (X⊤X+ nD)D̄− 1
2

))−1

≤
(
µp

(
D̄− 1

2 (X⊤X+ nD̄)D̄− 1
2

)
− ∥D̄− 1

2 (X⊤X+ nD̄−X⊤X− nD)D̄− 1
2 ∥
)−1

.

However, (
D̄

1
2 (X⊤X+ nD̄)−1D̄

1
2

)−1
= (X̃⊤X̃+ nI),
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where X̃ has sub-gaussian rows with covariance Σaug. Hence, the first term is at least n,
while the second term is just n∆G by definition. So by the assumption that ∆G < c for some
c < 1, we have,

∥D̄
1
2 (X⊤X+ nD)−1D̄

1
2 ∥ ≲ 1

n
,

and finally we have,

∥θ̂aug − θ̄aug∥Σ ≲ κ
1
2∆G

(
∥θ∗∥Σ +

√
Bias(θ̄aug) +

√
Variance(θ̄aug)

)
.

B.2 Proof of Theorem 4

Theorem 4 (High probability bound for MSE with unbiased DA) Consider an un-
biased data augmentation g and its corresponding estimator θ̂aug, where ∆G is defined in
Eq. 7 and κ is the condition number of Σaug. Assume for some integers k1, k2, the condition
numbers for the matrices Ak1(Xaug;n), Ak2(Xaug;n) (defined in Section 1.2) are bounded by
L1 and L2 respectively with probability 1 − δ′, and that ∆G ≤ c′ for some constant c′ < 1.
Then , with probability 1− δ′ − 4n−1, the test mean-squared error is bounded by

MSE ≲ Bias + Variance + ApproximationError, (10)

Bias

L4
1

≲

(∥∥∥PΣaug
k1+1:pθ

∗
aug

∥∥∥2
Σaug

+
∥∥∥PΣaug

1:k1
θ∗aug

∥∥∥2
Σ−1

aug

(ρaug
k1

)2

(λaug
k1+1)

−2 + (λaug
1 )−2(ρaug

k1
)2

)
,

Variance

L2
2

≲

(
k2
n

+
n

Raug
k

)
log n, Approx.Error ≲ κ

1
2∆G

(
∥θ∗∥Σ +

√
Bias + Variance

)
.

Above, we defined ρaug
k := ρk(Σaug;n) and Raug

k := Rk(Σaug;n) as shorthand.

Proof

MSE = Ex[(x
⊤(θ̂aug − θ∗))2|X, ε] = ∥θ̂aug − θ∗∥2Σ. (27)

Because the possible dependency of CovG(X) on X, we approximate the θ̂aug with the
estimator θ̄aug := (X⊤X+ nEx[CovG(x)])

−1X⊤y. Now, by the triangle inequality, the MSE
can be bounded as

MSE ≤ 2∥θ̄aug − θ∗∥2Σ + 2∥θ̂aug − θ̄aug∥2Σ (28)

We can bound the first term by using its connection to ridge regression:

θ̂aug = (X⊤X+ nEx[CovG(x)])
−1X⊤y

= Ex[CovG(x)]
−1/2(nIp + Ex[CovG(x)]

−1/2X⊤XEx[CovG(x)]
−1/2)−1Ex[CovG(x)]

−1/2X⊤y

= Ex[CovG(x)]
−1/2(nIp + X̃⊤X̃)−1X̃⊤y (X̃ := XEx[CovG(x)]

−1/2)

= Ex[CovG(x)]
−1/2θ̂ridge, (θ̂ridge := (nIp + X̃⊤X̃)−1X̃⊤y). (29)
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So the MSE becomes ∥θ̂ridge − Ex[CovG(x)]
1/2θ∗∥2Ex[CovG(x)]−1/2ΣEx[CovG(x)]−1/2 . These ob-

servations have shown an approximate equivalence to a ridge estimator with data matrix
X̃, which has data covariance = Ex[CovG(x)]

−1/2ΣEx[CovG(x)]
−1/2, ridge intensity λ = n,

and true model parameter Ex[CovG(x)]
1/2θ∗. Hence, we can apply Lemma 31 to bound

∥θ̄aug − θ∗∥2Σ, where ∥Eε[θ̄aug] − θ∗∥2Σ and ∥Eε[θ̄aug] − θ̄aug∥2Σ are exactly the bias and
variance in Theorem 4, respectively. Specifically, we have,

∥Eε[θ̄aug]− θ∗∥2Σ ≲

CxL
4
1

(∥∥∥PΣaug
k1+1:pθ

∗
aug

∥∥∥2
Σaug

+
∥∥∥PΣaug

1:k1
θ∗aug

∥∥∥2
Σ−1

aug

ρ2k1(Σaug;n)

(λaug
k1+1)

−2 + (λaug
1 )−2ρ2k1(Σaug;n)

)
, (30)

∥Eε[θ̄aug]− θ̄aug∥2Σ ≲ σ2ε tL
2
2C̃x

(
k2
n

+
n

Rk2(Σaug;n)

)
. (31)

For the second error term ∥θ̂aug − θ̄aug∥2Σ, we apply Lemma 32.

B.3 Proof of Theorem 7

Theorem 7 (Bounds on the MSE for Biased Augmentations) Consider the estima-
tor θ̂aug obtained by solving the aERM in (1). Let MSEo(θ̂aug) denote the unbiased MSE
bound in Eq. (10) of Theorem 4, and ∆G defined in Eq. 7. Suppose the assumptions in
Theorem 4 hold for the mean augmentation µ(x) and that ∆G ≤ c < 1. Then with probability
1− δ′ − 4n−1 we have,

MSE(θ̂aug) ≲ R2
1 ·
(√

MSEo(θ̂aug) +R2

)2

,

where

R1 = 1 + ∥Σ
1
2 Σ̄

− 1
2 − Ip∥ and

R2 =
√
∥Σ̄(Ex[CovG(x)])−1∥

(
1 +

∆G

1− c

)(√
∆ξ∥θ∗∥+ ∥θ∗∥Covξ

)
×

√ 1

λaug
k

+

√
λaug
k+1(1 + ρaugk )

(λaug
1 ρaug0 )2

 .

Proof

MSE(θ̂aug) = ∥θ̂aug − θ∗∥2Σ ≤

∥θ̂aug − θ∗∥Σ̄︸ ︷︷ ︸
L1

+
∣∣∣∥θ̂aug − θ∗∥Σ − ∥θ̂aug − θ∗∥Σ̄

∣∣∣︸ ︷︷ ︸
L2


2

.
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Now we will bound L2 and L1 in a sequence. For the L2, denote ∆ = θ̂aug − θ∗, then∣∣∣∥θ̂aug − θ∗∥Σ − ∥θ̂aug − θ∗∥Σ̄
∣∣∣ = ∣∣∣√∆⊤Σ∆−

√
∆⊤Σ̄∆

∣∣∣
=

∣∣∆⊤(Σ− Σ̄)∆
∣∣

∥∆∥Σ + ∥∆∥Σ̄
≤ ∥∆

⊤(Σ
1
2 − Σ̄

1
2 )∥∥(Σ

1
2 + Σ̄

1
2 )∆∥

∥∆∥Σ + ∥∆∥Σ̄
≤ ∥∆⊤(Σ

1
2 − Σ̄

1
2 )∥ ≤ ∥∆∥Σ̄∥Σ

1
2 Σ̄

− 1
2 − Ip∥ = ∥θ̂aug − θ∗∥Σ̄∥Σ

1
2 Σ̄

− 1
2 − Ip∥.

Hence, it remains to bound ∥θ̂aug − θ∗∥Σ̄ because

L1 + L2 ≤ (1 + ∥Σ
1
2 Σ̄

− 1
2 − Ip∥)∥θ̂aug − θ∗∥Σ̄. (32)

Now observe that ∥θ̂aug − θ∗∥Σ̄ is just like the test error of an estimator where the covariate
has the distribution of µG(x). However, recall the caveat that when g is biased, there will be
both a covariate shift and a misalignment of the observations in the estimator. Therefore, we
have to take the latter into account. Specifically, recall that our observations y are, in fact,
Xθ∗ + n. To match the covariate distribution µG(x), we define ỹ = µ(X)θ∗ + n. Although
we do not actually observe ỹ, we can bound the error between observing y and ỹ. Therefore,
we denote θ̃aug := (µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤ỹ. This is the biased estimator that
uses the biased augmentation g and also has an observation distribution that matches the
covariate distribution. Then,

∥θ̂aug − θ∗∥Σ̄ ≲ ∥θ̃aug − θ∗∥Σ̄︸ ︷︷ ︸
L3

+ ∥θ̂aug − θ̃aug∥Σ̄︸ ︷︷ ︸
L4

. (33)

Now, since θ̃aug has observations matching its covariate distribution µG(x), we can apply
Theorem 4 to bound L3:

∥θ̃aug − θ∗∥Σ̄ ≤
√
MSEo, (34)

where MSEo is the bound in E.q. (10). It remains to bound L4. Note that this error arises
from the additive error between y and ỹ. Recall C̄ := Ex[CovG(x)], then,

∥θ̂aug − θ̃aug∥Σ̄ = ∥(µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤(y − ỹ)∥Σ̄
= ∥Σ̄

1
2 (µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤(y − ỹ)∥

≤ ∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤∥︸ ︷︷ ︸

L5

∥(y − ỹ)∥︸ ︷︷ ︸
L6

.

We first bound L5,

∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤∥

≤ ∥Σ̄
1
2 (µ(X)⊤µ(X) + nC̄)−1µ(X)⊤∥︸ ︷︷ ︸

L7

+ ∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤ − Σ̄

1
2 (µ(X)⊤µ(X) + nC̄)−1µ(X)⊤∥︸ ︷︷ ︸

L8

.
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Observe that

L7 = ∥Σ̄
1
2 (µ(X)⊤µ(X) + nC̄)−1µ(X)⊤∥ = ∥Σ̄

1
2 C̄− 1

2 (X̃X̃⊤ + nIn)
−1X̃∥

≤ ∥Σ̄
1
2 C̄− 1

2 (X̃X̃⊤ + nIn)
−1X̃1:k∥︸ ︷︷ ︸

L9

+ ∥Σ̄
1
2 C̄− 1

2 (X̃X̃⊤ + nIn)
−1X̃k+1:p∥︸ ︷︷ ︸

L10

,

where X̃ has sub-gaussian rows with covariance Σaug as defined in E.q. (9).
Now, we bound L9 and L10. For convenience, denote A = X̃X̃⊤ + nIn and Ak =

X̃k+1:pX̃
⊤
k+1:p + nIn. By Woodbury matrix identity, we have

A−1X̃1:k = A−1
k X̃1:k(Ip + X̃⊤

1:kA
−1
k X̃1:k)

−1.

Hence, L9 is bounded by

∥Σ̄
1
2 C̄− 1

2 (X̃X̃⊤ + nIn)
−1X̃1:k∥ = ∥Σ̄

1
2 C̄− 1

2A−1
k X̃1:k(Ip + X̃⊤

1:kA
−1
k X̃1:k)

−1∥

≤ µn(Ak)
−1∥Σ̄

1
2 C̄− 1

2 ∥∥X̃1:k(Ip + X̃⊤
1:kA

−1
k X̃1:k)

−1∥

= µn(Ak)
−1∥Σ̄

1
2 C̄− 1

2 ∥∥Z̃1:k(Σ
−1
aug,1:k + Z̃⊤

1:kA
−1
k Z̃1:k)

−1Σ
− 1

2
aug, 1:k∥

≤ µn(Ak)
−1∥Σ̄

1
2 C̄− 1

2 ∥∥Σ− 1
2

aug,1:k∥∥Z̃1:k(Σ
−1
aug,1:k + Z̃⊤

1:kA
−1
k Z̃1:k)

−1∥, (35)

where Z̃ has sub-gaussian rows with isotropic covariance Ip. Now applying Lemma 24, we
have, with probability 1− 5n−3,

∥Z̃1:k(Σ
−1
aug,1:k + Z̃⊤

1:kA
−1
k Z̃1:k)

−1∥ ≲ ∥Z̃1:k∥µ−1
k (Z̃⊤

1:kA
−1
k Z̃1:k)

≲ µ1(Ak)

√
n

µ−1
k (Z̃⊤

1:kZ̃1:k)
≲

µ1(Ak)√
n

.

Combining the above and E.q. (35) with Lemma 22, we have with probability 1− δ − 2n−3

that

L9 = ∥Σ̄
1
2 C̄− 1

2 (X̃X̃⊤ + nIn)
−1X̃1:k∥ ≲

√
∥Σ̄C̄−1∥
λaug
k n

, (36)

where λaug
k is the k-th eigenvalue of Σaug. On the other hand, by Lemma 22 and 27,

L10 = ∥Σ̄
1
2 C̄− 1

2 (X̃X̃⊤ + nIn)
−1X̃k+1:p∥ ≲

1

λaug
1 ρ0(Σaug;n)

√
∥Σ̄C̄−1∥(λaug

k+1n+
∑

j>k λ
aug
j )

n2

=

√
∥Σ̄C̄−1∥λaug

k+1(1 + ρk(Σaug;n))

n(λaug
1 ρ0(Σaug;n))2

,

with probability 1− δ′ − exp(−ct) (where we set t := log n for the final theorem statement).
Hence,

L7 ≤ L9 + L10 ≲

√
∥Σ̄C̄−1∥

n

√ 1

λaug
k

+

√
λaug
k+1(1 + ρk(Σaug;n))

(λaug
1 ρ0(Σaug;n))2

 . (37)
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Next, we bound L8:

∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤ − Σ̄

1
2 (µ(X)⊤µ(X) + nC̄)−1µ(X)⊤∥

= n∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1

(
n−1CovG(X)− C̄

)
(µ(X)⊤µ(X) + nC̄)−1µ(X)⊤∥

≲ n ∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1C̄

1
2 ∥︸ ︷︷ ︸

L11

∥n−1C̄− 1
2CovG(X)C̄− 1

2 − Ip∥

· ∥C̄
1
2 (µ(X)⊤µ(X) + nC̄)−1µ(X)⊤∥︸ ︷︷ ︸

L12

.

The term L11 is identical to (37) and can be bounded with that inequality. In the meantime,
the term L12 = ∥Σ̄

1
2 (µ(X)⊤µ(X) + CovG(X))−1C̄

1
2 ∥ can be bounded by noting that,

µp

((
C̄

1
2 (µ(X)⊤µ(X) + CovG(X))−1C̄

1
2

)−1
)

≳ µp

((
C̄

1
2 (µ(X)⊤µ(X) + nC̄)−1C̄

1
2

)−1
)

− ∥C̄− 1
2 (µ(X)⊤µ(X) + nC̄)C̄− 1

2 − C̄− 1
2 (µ(X)⊤µ(X) + CovG(X))C̄− 1

2 ∥.

Here, by Lemma 22

µp

((
C̄

1
2 (µ(X)⊤µ(X) + nC̄)−1C̄

1
2

)−1
)

= µp

((
X̃⊤X̃+ nIp

))
≥ n (38)

Also,

∥C̄− 1
2 (µ(X)⊤µ(X) + nC̄)C̄− 1

2 − C̄− 1
2 (µ(X)⊤µ(X) + CovG(X))C̄− 1

2 ∥

= ∥C̄− 1
2CovG(X)C̄− 1

2 − nIp∥ = n∆G

Adding the above inequalities together, L8 is bounded by

∥Σ̄
1
2µ(X)(µ(X)⊤µ(X) + CovG(X))−1C̄

1
2 − Σ̄

1
2µ(X)(µ(X)⊤µ(X) + nC̄)−1C̄

1
2 ∥

≲
∆G

1−∆G

√
∥Σ̄C̄−1∥

n

√ 1

λaug
k

+

√
λaug
k+1(1 + ρk(Σaug;n))

(λaug
1 ρ0(Σaug;n))2

 , (39)

by our assumption that ∆G ≤ c for some c < 1. E.q. (37) and (39) now imply

L5 = ∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤∥ ≤ L7 + L8

≲

√
∥Σ̄C̄−1∥

n

√ 1

λaug
k

+

√
λaug
k+1(1 + ρk(Σaug;n))

(λaug
1 ρ0(Σaug;n))2

 · (1 + ∆G

1− c

)
. (40)

On the other hand,

L6 = ∥y − ỹ∥ = ∥(µ(X)−X)θ∗∥ =
√
n∥θ∗∥n−1(µ(X)−X)(µ(X)−X)⊤

≤
√
n

(
∥θ∗∥

√
∥n−1(µ(X)−X)(µ(X)−X)⊤ − Covξ ∥+ ∥θ∗∥Covξ

)
≤
√
n
(√

∆ξ∥θ∗∥+ ∥θ∗∥Covξ

)
, (41)
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where Covξ is defined in Definition 6.
Combining E.q. (40) and (41), we obtain the following:

L4 = ∥θ̂aug − θ̃aug∥Σ̄ = L5 · L6 ≲
√
∥Σ̄C̄−1∥

(
1 +

∆G

1− c

)(√
∆ξ∥θ∗∥+ ∥θ∗∥Covξ

)
·

√ 1

λaug
k

+

√
λaug
k+1(1 + ρk(Σaug;n))

(λaug
1 ρ0(Σaug;n))2

 (42)

Finally, putting together the results of Eq. (32), (33), (34) and (42) completes the proof.

B.4 Proof of Proposition 12

Proposition 12 (Uncorrelated Feature Augmentations) Let the augmentation g be
composed of p uncorrelated feature augmentation maps, i.e., g(x) =

[
g1(x1) . . . gd(xd)

]
where {gi(·)}i∈[p] are uncorrelated (with respect to the randomness in the augmentation). If
the variance of each feature augmentation Vargi(gi(xi)) (which is a random variable due to
the randomness in xi) is sub-exponential with sub-exponential norm σ2i and mean σ̄2i for all
i ∈ [p], then we have

∆G ≲ max
i

(
σ2i
σ̄2i

)√
log n

n
.

with probability at least 1− 1
n .

Proof For independent feature augmentation, Ex[CovG(x)] is a diagonal matrix. Since the
original covariance Σ is also diagonal by our model assumption, the augmentation modified
spectrum Σaug is diagonal. Furthermore, the diagonal implies the projections to Σaug’s first
k − 1 and the rest eigenspaces are to the features π(1 : k − 1) and π(k, p). Lastly, because
PΣaug commutes with Ex[CovG(x)], we have∥∥∥PΣaug

k1+1:pθ
∗
aug

∥∥∥2
Σaug

= (θ∗aug)
⊤P

Σaug
k1+1:pθ

∗
aug

= (θ∗)⊤D̄1/2P
Σaug
k1+1:pD̄

−1/2ΣD̄−1/2P
Σaug
k1+1:pD̄

1/2θ∗

= (θ∗)⊤P
Σaug
k1+1:pD̄

1/2D̄−1/2ΣD̄−1/2D̄1/2P
Σaug
k1+1:pθ

∗

= ∥PΣaug
k1+1:pθ

∗∥2Σ =
∥∥∥θ∗π(k1+1:p)

∥∥∥2
Σπ(k1+1:p)

,∥∥∥PΣaug
1:k1

θ∗aug

∥∥∥2
Σ−1

aug

= (θ∗)⊤P
Σaug
1:k1

D̄1/2D̄1/2Σ−1D̄1/2D̄1/2P
Σaug
1:k1

θ∗

=
∥∥∥θ∗π(1:k1)∥∥∥2Ex[CovG(x)]2Σ

−1
π(1:k1)

,

where D̄ = Ex[CovG(x)].
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To prove the approximation error bound, we proceed as follows. By independence
assumption on feature augmentation, CovG(X) is diagonal. Hence, to bound ∆G, we only
need to control the diagonals of Q := n−1Ex[CovG(x)]

− 1
2CovG(X)Ex[CovG(x)]

− 1
2 − I. Now,

denoting D = n−1Ex[CovG(x)]
− 1

2CovG(X)Ex[CovG(x)]
− 1

2 , we have Q = D − I. For any
i ∈ {1, 2, . . . , p}, Dii = n−1

∑n
j=1

Vargi (xji)

Ex[Vargi (x)]
, where xji is the i-th element of the j-th row

of X. By our assumptions of Vargi(xji), j = 1, 2, . . . , n, being identical and independent
sub-exponential random variables with sub-exponential norm σ2i and mean σ̄2i . we can apply
concentration bounds to Qii =

1
σ̄i2

(
n−1

∑n
j=1Vargi(xj)− Ex[Vargi(x)]

)
as it is a sum of

i.i.d. sub-exponential random variables with sub-exponential norm σi
2/σ̄2i . Specifically, we

apply the Bernstein inequality in Lemma 21 with t ∝ σ2i
√

logn
n to conclude that there exists

a constant c′ such that, with probability 1− n−1, we have,

Qii =
1

σ̄i2

n−1
n∑
j=1

Vargi(xj)− Ex[Vargi(x)]

 ≤ c′σ2i
σ̄2i

√
log n

n
. (43)

Then, we apply a union bound over i and obtain

∥∆G∥ ≤ max
i
∥Qii∥ ≲ max

i

(
σ2i
σ̄2i

)√
log n

n
,

with probability 1− n−1. Note that we can get the same error rate after the union bound as
long as p grows polynomially with n.

B.5 Proof of Proposition 13

Proposition 13 Consider a correlated-feature augmentation of the form described above.
Further, assume that the smallest eigenvalue of ExCovGk

(x) is lower bounded by σ for every
k, and gk is component-wise bounded, i.e., ∥gk(xk)∥∞ ≤M for any k. Then, we have

∆G ≲
M2maxk |Bk|

σ

√
log p

n

with probability at least 1− 1
p .

Proof We begin by bounding ∆Gk
, which is the component of ∆G corresponding to the kth

block of CovG . Specifically, we have

∆Gk
:=

∥∥∥∥∥ 1nEx[CovGk
(x)]−

1
2

n∑
i=1

CovGk
(xi)Ex[CovGk

(x)]−
1
2 − I|Bk|

∥∥∥∥∥
=

∥∥∥∥∥Ex[CovGk
(x)]−

1
2

(
1

n

n∑
i=1

CovGk
(xi)− Ex[CovGk

(x)]

)
Ex[CovGk

(x)]−
1
2

∥∥∥∥∥
≤ σ−1

∥∥∥∥∥ 1n
n∑
i=1

CovGk
(xi)− Ex[CovGk

(x)]

∥∥∥∥∥ ,
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where the last inequality uses the assumption that µp(ExCovGk
(x)) ≥ σ. Note that∥∥ 1

n

∑n
i=1 CovGk

(xi)− Ex[CovGk
(x)]

∥∥ is the norm of a sum of n independent, zero-mean,
bounded random matrices. In particular, note that

λmax(CovGk
(xi)− ExCovGk

(x)) ≤ ∥CovGk
(xi)∥+ Ex∥CovGk

(xi)∥
≤ 2E∥(g(xi)− µg(xi))(g(xi)− µg(xi))⊤∥
≤ 2E∥g(xi)− µg(xi)∥22
≤ 2|Bk|E∥g(xi)− µg(xi)∥2∞
≤ 8|Bk|M2

where the last inequality follows from the assumption that ∥gk(xk)∥∞ ≤M almost surely.
Moreover, we have∥∥∥∥∥

n∑
i=1

E[CovGk
(xi)− ExCovGk

(x)]2

∥∥∥∥∥ ≤
n∑
i=1

E∥CovGk
(xi)− ExCovGk

(x)∥2

≤ 64|Bk|2M4n

We can then apply the Matrix Bernstein inequality, e.g., (Tropp, 2012, Theorem 1.4) with
t = 32|Bk|M2

√
n log p, to conclude that

∆Gk
≲
|Bk|M2

σ

√
log p

n

with probability at least 1− 1
p2

. Finally, applying a union bound over each of the Bk (i.e. at
most p events) yields the result.

B.6 Proof of Proposition 14

Proposition 14 Consider the decomposition CovG(X) = D +Q, where D is a diagonal
matrix representing the independent feature augmentation part. Then, we have

∆G ≲
∥D− ED∥+ ∥Q− EQ∥

µp(ExCovG(x))
. (15)

Proof This proof proceeds by partition the augmented covariance operator into diagonal and
nondiagonal parts D and Q (i.e., CovG(X) = D+Q). We then bound the terms separately
as below:

∆G = ∥ExCovG(x)
−1/2(D+Q)ExCovG(x)

−1/2 − Ip∥
= ∥ExCovG(x)

−1/2(D+Q− ExCovG(x))ExCovG(x)
−1/2∥

≤ ∥D− ED∥+ ∥Q− EQ∥
µp(ExCovG(x))

, ∵ ED+ EQ = ExCovG(x).
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B.7 Proofs of Corollaries

Corollary 33 (Generalization of Gaussian Noise Injection ) Consider the data aug-
mentation which adds samples with independent additive Gaussian noise: g(x) = x + n,
where n ∼ N (0, σ2). The estimator is given by θ̂ = (X⊤X+ σ2nIp)

−1X⊤y. Let L denote
the condition number of nσ2I+X1:kX

⊤
1:k. Then, we can bound the error as MSE ≤ Bias +

Variance, where with high probability

MSE ≲ ∥θ∗
k:∞∥2Σk:∞

+ ∥θ∗
0:k∥2Σ−1

0:k

λ2k+1ρ
2
k(Σ;nσ2) +R−1

k (Σ;nσ2) + kn−1.

Proof Since this belongs to the independent feature augmentation class, we can apply
Corollary 12. Below are the quantities in the corollary.

Ex[CovG(x)] = σ2I, θ∗
aug = σθ∗, Σaug = σ−2Σ, λaug = σ−2λ,

hence,

ρaug
k = ρk(Σaug;n) =

n+
p∑

i=k+1

λaug
i

nλaug
k+1

=

nσ2 +
p∑

i=k+1

λi

nλk+1
= ρk(Σ;nσ2),

Raug
k = Rk(Σaug;n) =

(
n+

p∑
i=k+1

λaug
i

)2

p∑
i=k+1

(λaug
k+1)

2

=

(
nσ2 +

p∑
i=k+1

λi

)2

n
p∑

i=k+1

λ2k+1

= Rk(Σ;nσ2).

Note that Rk(Σ;nσ2) and ρk(Σaug;nσ
2) are the effective dimensions of the original spectrum

for ridge regression with regularization parameter nσ2, as defined in Tsigler and Bartlett
(2020). Finally, the approximation error term is zero because ∆G = 0.

Corollary 15 (Regression bounds for unbiased randomized mask) Consider the un-
biased randomized masking augmentation g(x) = [b1x1, . . . , bpxp]/(1− β), where bi are i.i.d.
Bernoulli(1 − β). Define ψ = β

1−β ∈ [0,∞). Let L1, L2, κ, δ′ be universal constants as
defined in Theorem 4. Then, for any set K ⊂ {1, 2, . . . , p} consisting of k1 elements and
some choice of k2 ∈ [0, n], the regression MSE is upper-bounded by

MSE ≲ ∥θ∗K∥
2
ΣK

+ ∥θ∗Kc∥2ΣKc

(ψn+ p− k1)2

n2 + (ψn+ p− k1)2︸ ︷︷ ︸
Bias

+

(
k2
n

+
n(p− k2)

(ψn+ p− k2)2

)
log n︸ ︷︷ ︸

Variance

+σ2z

√
log n

n
∥θ∗∥Σ︸ ︷︷ ︸

Approx.Error

with probability at least 1− δ′ − n−1.
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Proof Random mask belongs to independent feature augmentation class, so we can apply
Proposition 12. We calculate the quantities used in the corollary.

Ex[CovG(x)] = ψdiag(Σ) = ψΣ, θ∗
aug = ψ1/2Σ1/2θ∗, Σaug = ψ−1I, λaug = ψ−1.

The effective ranks of the augmentation modified spectrum are

ρaug
k =

ψn+ p− k
n

, (44)

Raug
k =

(ψn+ p− k)2

p− k
. (45)

Now, we apply Proposition 12. Because random mask has effectively isotropized the
spectrum, the mapping π in the proposition can be chosen arbitrarily. Hence, we can chose
π(1 : k1) to be any set with k elements. For the approximation error term, we first note that
κ = 1. Furthermore, Vargi(xj) = ψx2

j . So, its subexponential norm is bounded by ψλjσ2z ,
and its expectation is given by ψλj . Putting all the pieces together, we derive the MSE
bound as

Bias ≲ ∥θ∗K∥
2
ΣK

+ ∥θ∗Kc∥2ΣKc

(ψn+ p− k1)2

n2 + (ψn+ p− k1)2
,

Variance ≲
k2
n

+
n(p− k2)

(ψn+ p− k2)2
,

Approx. Error ≲ σ2z

√
log n

n
∥θ∗∥Σ.

Corollary 17 (Generalization of random cutout) Let θ̂
cutout
k denote the random cutout

estimator that zeroes out k consecutive coordinates (the starting location of which is chosen
uniformly at random). Also, let θ̂

mask
β be the random mask estimator with the masking

probability given by β. We assume that k = O(
√

n
log p). Then, for the choice β = k

p we have

MSE(θ̂
cutout
k ) ≍ MSE(θ̂

mask
β ), POE(θ̂

cutout
k ) ≍ POE(θ̂

mask
β ).

Proof This can be verified directly by noticing that for random cutout

ExCovG(x) =
k

p− k
diag(Σ),

while for random mask
ExCovG(x) = ψdiag(Σ).

Furthermore, the approximation is negligible when k ≪ min(
√

n
log p ,

p√
n
) as shown in Ap-

pendix F.2. Now, setting ψ = k
d−k gives β = k

p .
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Corollary 16 (Non-uniform random mask in k-sparse model) Consider the k−sparse
model and the non-uniform random masking augmentation where ψ = ψ1 if i ∈ IS and ψ0

otherwise. Then, if ψ1 ≤ ψ0, we have with probability at least 1− δ − exp(−
√
n)− 5n−1

Bias ≲

(
ψ1n+ ψ1

ψ0
(p− |IS |)

)2
n2 +

(
ψ1n+ ψ1

ψ0
(p− |IS |)

)2 ∥θ∗∥2Σ, Variance ≲
|IS |
n

+
n (p− |IS |)

(ψ0n+ p− |IS |)2
,

Approx.Error ≲

√
ψ1

ψ0
σ2z

√
log n

n
∥θ∗∥Σ.

On the other hand, if ψ1 > ψ0, we have (with the same probability)

Bias ≲ ∥θ∗∥Σ2 , Variance ≲

(
ψ1

ψo

)2
+ |IS |

n(
ψ1

ψo
+ |IS |

n

)2 , Approx.Error ≲

√
ψ0

ψ1
σ2z

√
log n

n
∥θ∗∥Σ.

Proof Let Ψ denote the diagonal matrix with Ψi,i = ψ1 if i ∈ IS and ψ0 otherwise. Then,
we apply Corollary 12 with:

Ex[CovG(x)] = Ψdiag(Σ) = ΨΣ, θ∗
aug = Ψ1/2Σ1/2θ∗, Σaug = Ψ−1.

Now as in the proof of Proposition 15, we calculate the effective ranks. For the k∗ partitioning
the spectrum, we choose k∗ = |IS | when ψ1 ≤ ψ0, while k∗ ≍ n for ψ1 > ψ0. The proof for
the approximation error term is identical to in the uniform random mask case.

Corollary 18 (Generalization of Salt-and-Pepper augmentation in regression) The
bias, variance and approximation error of the estimator that are induced by salt-and-pepper
augmentation (denoted by θ̂pepper(β, σ

2)) are respectively given by:

Bias[θ̂pepper(β, σ
2)] ≲

(
λ1(1− β) + σ2

σ2

)2

Bias

[
θ̂gn

(
βσ2

(1− β)2

)]
,

Variance[θ̂pepper(β, σ
2)] ≲ Variance

[
θ̂gn

(
βσ2

(1− β)2

)]
,

Approx.Error[θ̂pepper(β, σ
2)] ≍ Approx.Error[θ̂rm(β)].

where θ̂gn(z
2) and θ̂rm(γ) denotes the estimators that are induced by Gaussian noise injection

with variance z2 and random mask with dropout probability γ, respectively. Moreover, the
limiting MSE as σ → 0 reduces to the MSE of the estimator induced by random masking
(denoted by θ̂rm(β)):

lim
σ→0

MSE[θ̂pepper(β, σ
2)] = MSE[θ̂rm(β)].
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Proof Proposition 12 is applicable to salt/pepper augmentation. The related quantities in
the proposition are:

Ex[CovG(x)] = ψΣ+
ψσ2

1− β
I, θ∗

aug =

√
ψΣ+

ψσ2

1− β
Iθ∗, λaug

i =
λi

ψ(λi +
σ2

1−β )
.

Observe that the expression of λaug
i implies that the augmented eigenvalues of salt/pepper

augmentation is a harmonic sum of that of random mask and Gaussian noise injection,

λpepper(β, σ
2)−1 = λrm(β)

−1 + β−1λgn(σ
2)−1. (46)

Hence, the statement of MSE limit is clear as we take σ → 0 in (46) along with the fact that
λgn→∞. Now we prove the bias statement. By Proposition 12,

θ̂pepper(β, σ) ≲ ∥θ∗
k+1:p∥2Σk+1:p

+
∥∥∥θ∗π(1:k1)∥∥∥2Ex[CovG(x)]2Σ

−1
π(1:k1)

(λaug
k+1ρ

aug
k )2. (47)

In particular,

∥∥∥θ∗π(1:k1)∥∥∥2Ex[CovG(x)]2Σ
−1
π(1:k1)

=
∑
i≤k

(
ψλi +

ψσ2

1−β

)2
λi

(θ∗
i )

2, (48)

λaug
k+1ρ

aug
k =

n+
∑
i>k

λi

ψ(λi+
σ2

1−β
)

n
≤
n+

∑
i>k

λi

ψ σ2

1−β

n
. (49)

Now the result follows by combining Eq. (47), (48) and (49).
The variance statement can be proved using similar calculations. From Corollary 12, we

only need to compare Rk of salt/pepper with that of Gaussian noise injection. Without lose
of generality, we assume k is chosen in the corollary such that λi ≤ c′ σ

2

1−β for all i ≥ k for
some constant c′. Then,

Rk ≥

(
n+

∑
i≥k

λi

ψ(λi+
σ2

1−β
)

)2

∑
i≥k

(
λi

ψ(λi+
σ2

1−β
)

)2 ≥

(
n+

∑
i≥k

λi

ψ((c′+1) σ2

1−β
)

)2

∑
i≥k

(
λi

ψ( σ2

1−β
)

)2 ≥ 1

(c′ + 1)2

(
n+

∑
i≥k

λi
βσ2

(1−β)2

)2

∑
i≥k

(
λi
βσ2

(1−β)2

)2 ,

The statement now follows by noting that the last quantity is the Rk of Gaussian noise
injection with noise variance βσ2

(1−β)2 up to a constant scaling factor.
Finally, the approximation error statement holds because the augmented covariance is

that of random mask summed with a constant matrix.

Corollary 34 (Generalization of biased mask augmentation) Consider the biased ran-
dom mask augmentation g(x) = [b1x1, . . . , bpxp], where bi are i.i.d. Bernoulli(1-β). Define
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ψ = β
1−β ∈ [0,∞). Assume the assumptions in Corollary 15 hold. Then with probability

1− δ′ − 3pn−5, the generalization error is upper bounded by

MSE(θ̂aug) ≤
(√

MSEo + ψ

(
1 +

log n

n

)
·
((

λ1 +

∑
j λj

n

)
∥θ∗∥+ ∥θ∗∥Σ

))2

,

where MSEo is the bound given in Corollary 15.

Proof This proof is a direct application of Theorem 7 by the two steps: First, plugging in

Σaug =
1− β
β

I, Σ̄ = (1− β)2Σ, ExCovG(x) = β(1− β)Σ.

Secondly, observing δ(x) = −βx, Covδ = β2Σ, so concentration bound in Lemma 27 gives
that

∆δ ≲ β2
(
λ1n+

∑
j λj

n

)
.

Appendix C. Proofs of Classification Results

C.1 Classification Lemmas

Lemma 35 (Upper bound on probability of classification error for correlated
sub-Gaussian input) Consider the 1-sparse model θ∗ = 1√

λt
et described in Section 4.4

and input distribution satisfying Assumption 3, where xsig = xt is the feature corresponding
to the non-zero coordinate of θ∗. Given any estimator θ̂ having θ̂t ≥ 0, the probability of
classification error (POE) is upper bounded by

POE(θ̂) ≲
CN

SU

(
1 + σz

√
log

SU

CN

)
. (50)

Furthermore, if we assume x is Gaussian, then

POE(θ̂) =
1

2
− 1

π
tan−1 SU(θ̂)

CN(θ̂)
≤ CN(θ̂)

SU(θ̂)
. (51)

Proof
We first note that the assumption that θ̂t ≥ 0 is satisfied in the situations we consider,

based on the lower bounds on survival which we provide in Lemma 36. Assume without loss
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of generality that xsig = xt = x1.

POE(θ̂) = P
(
sgn(xsig) ̸= sgn(⟨x, θ̂⟩)

)
= P

(
sgn(xsig) ̸= sgn(xsig(θ̂1 +

x2

xsig
θ̂2 + · · ·+

xp
xsig

θ̂p))

)
= P

(
θ̂1 +

x2

xsig
θ̂2 + · · ·+

xp
xsig

θ̂p < 0

)
= ExsigP

(
x2

xsig
θ̂2 + · · ·+

xp
xsig

θ̂p < −|θ̂1|
)
.

Now, because z′ := [ x2√
λ2
, x3√

λ3
, . . . ,

xp√
λp
] is a sub-Gaussian vector with norm σz, ⟨z′,u⟩ is a sub-

Gaussian variable with norm ∥u∥ for any fixed u. Let u = 1
xsig

[
√
λ2θ̂2,

√
λ3θ̂3, . . . ,

√
λpθ̂p],

which, by assumption, is independent of z′. Then,

ExsigP
(

x2

xsig
θ̂2 + · · ·+

xp
xsig

θ̂p < −|θ̂1|
)

= ExsigP
(
⟨z′,u⟩ ≤ −|θ̂1|

)
≤ Exsig exp

− θ̂
2

1∑
j≥2 λj(

θ̂j

xsig
)2σ2z


= Exsig exp

(
−

x2
sig

λ1σ2z

SU(θ̂)2

CN(θ̂)2

)

≤ P(x2
sig < δ) + 3 exp

(
− δ

λ1σ2z

SU(θ̂)2

CN(θ̂)2

)

≲

√
δ

λ1
+ 3 exp

(
− δ

λ1σ2z

SU(θ̂)2

CN(θ̂)2

)
,

where the last inequality follows from the assumption that zsig has bounded density and
a small ball probability bound from (Vershynin, 2010, Exercise 2.2.10). Choosing δ =

λ1σ
2
z log

SU
CN /

(
SU
CN

)2 yields the result.
The second statement follows from Proposition 17 in Muthukumar et al. (2021) and the

bound tan−1(x) ≥ π
2 −

1
x , for all x > 0.

Lemma 36 (Survival of ridge estimator for dependent features) Consider the
classification task under the model and assumption described in Section 4.4 where Σ =
diag(λ1, . . . , λp) and the true signal θ∗ = 1√

λt
et is 1-sparse in coordinate t. Let θ̂ =

X⊤(XX⊤ + λI)−1y be a ridge estimator. Suppose for some t ≤ k ≤ n that λk+1ρk(Σ;λ) ≥ c
for some constant c > 0, and with probability at least 1 − δ that the condition number of
λI+Xk+1:pX

T
k+1:p is at most L, then with probability 1− δ − exp(−

√
n), we have:

λt(1− 2ν∗)
(
1− k

n

)
L (λk+1ρk(Σ;λ) + λtL)

≲ SU(θ̂) ≲
Lλt(1− 2ν∗)

λk+1ρk(Σ;λ) + L−1λt
(
1− k

n

) . (52)
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Proof Our bound is a generalization to Theorem 22 in Muthukumar et al. (2021) for
correlated features and ridge estimator. We only require the signal and noise features to be
independent.

Denote X̃ to be the matrix consisting of the columns of X except for the t-th column,
and A−t := X̃X̃T + λI. As the proof in Muthukumar et al. (2021), our proof begins with
writing the SU in terms of a quadratic form of signal vector and applying Hanson-Wright
inequality, Lemma 26, by invoking the independence between the signal and noise. The
result is that, with probability 1− exp(−

√
n),

SU ≳
λt ·

(
(1− 2ν∗) tr

(
A−1

−t
)
− 2c1

∥∥A−1
−t
∥∥ · n3/4)

1 + λt
(
tr
(
A−1

−t
)
+ c1

∥∥A−1
−t
∥∥ · n3/4) and (53)

SU ≲
λt ·

(
(1− 2ν∗) tr

(
A−1

−t
)
+ 2c1

∥∥A−1
−t
∥∥ · n3/4)

1 + λt
(
tr
(
A−1

−t
)
− c1

∥∥A−1
−t
∥∥ · n3/4) , (54)

Now observe ∥A−1
−t ∥ = µn(A−t)

−1, so by Lemma 23, we have

∥A−1
−t ∥ ≲

L

nλk+1ρk(Σ;λ)
. (55)

By our assumption λk+1ρk(Σ;λ) ≥ c, we have

λ1ρ0(Σ;λ) = n−1
k∑
i=1

λi + λk+1ρk(Σ;λ) ≤ λk+1ρk(Σ;λ)(1 +
kλ1
nc

). (56)

Also, using the same Lemma and (56),

(1− k/n)(1 + kλ1
nc )

−1

Lλk+1ρk(Σ;λ)
≲

1− k/n
Lλ1ρ0(Σ;λ)

≲
n− k

µk+1(A−t)
≲ tr

(
A−1

−t
)
=

n∑
i=1

1

µi(A−t)
≲

n

µn(A−t)

≲
L

λk+1ρk(Σ;λ)
. (57)

Finally, plugging in the bounds in (57) and (55) into (53) completes the proof.

Lemma 37 (Contamination of ridge estimator for dependent features ) Consider
the classification task under the model and assumption described in Section 4.4 where
Σ = diag(λ1, . . . , λp) and the true signal θ∗ = 1√

λt
et is 1-sparse in coordinate t. Denote

the leave-signal-out covariance and data matrix as Σ̃ = diag(λ1, . . . , λt−1, λt+1, . . . , λp) =

diag(λ̃1, . . . , λ̃p−1) and X̃ = [X:1, . . . ,X:t−1,X:t+1, . . . ,X:p], respectively. Let θ̂ = X⊤(XX⊤+
λI)−1y be a ridge regression estimator. Suppose for some k ≤ n, with probability at least
1− δ, the condition numbers of X̃k+1:pΣk+1:pX̃

T
k+1:p and λI+ X̃k+1:pX̃

T
k+1:p are at most L′

and L, respectively. Then with probability 1− δ − 5n−1, we have:

√
λ̃k+1ρk(Σ̃

2
; 0)

L′2λ21(1 + ρ0(Σ;λ))2
≲ CN(θ̂) ≲

√
(1 + SU(θ̂)

2
)L2

(
k

n
+

n

Rk(Σ̃;λ)

)
log n. (58)
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Proof We begin with the same argument as in Lemma 28 in Muthukumar et al. (2021)
to write the CN as a quadratic form of signal vector. For notation convenience, we denote
the columns of X to be X:i, i ∈ {1, 2, . . . , p}, and define the leave-one-out quantities X̃ :=
[X:1, . . . ,X:t−1,X:t+1, . . . ,X:p], Σ̃ = diag(λ1, . . . , λt−1, λt+1, . . . , λp), and Ã := X̃X̃⊤ + λI,.
Then,

CN(θ̂)
2 ≤ 2y⊤C̃y + 2SU2z⊤C̃z,

where z = λ
−1/2
t X:t and C̃ := Ã−1X̃Σ̃X̃Ã−1. Because of the sparsity assumption and the

independence between signal and noise features in Assumption 2, y and z are independent of
C̃. Furthermore, y and z are both sub-Gaussian random vector with norm 1 and independent
features.

Now consider an ridge estimator with the observation vector ε without looking at the
t-feature:

θ̂−t(ε) = (X̃X̃⊤ + λI)−1X̃⊤ε.

The first key observation here is that

y⊤C̃y = ∥θ̂−t(y)∥2Σ̃, z⊤C̃z = ∥θ̂−t(z)∥2Σ̃, (59)

so we can bound CN as long as we bound the ∥θ̂−t(ε)∥2Σ̃ for any sub-Gaussian vector ε
independent of X̃ and has unit norm. The second key observation is that ∥θ̂−t(ε)∥2Σ̃ is in
fact the variance in the regression analysis.

As shown in Lemma 12 of Tsigler and Bartlett (2020),

∥θ̂−t(ε)∥2Σ̃ ≤
ε⊤Ã−1

k X̃0:kΣ̃
−1
0:kX̃

⊤
0:kÃ

−1
k ε

µn

(
Ã−1
k

)2
µk

(
Σ̃

−1/2
0:k X̃⊤

0:kX̃0:kΣ̃
−1/2
0:k

)2 + ε⊤Ã−1X̃k:∞Σ̃k:∞X̃⊤
k:∞Ã−1ε, (60)

where Ãk = X̃k+1:pX̃
⊤
k+1:p + λI. For self-containment, we sketch the proof on the variance

bound. For the first term, by Lemma 26, for some constant c1, with probability 1− 2n−1,

ε⊤Ã−1
k X̃0:kΣ̃

−1
0:kX̃

⊤
0:kÃ

−1
k ε ≲ tr

(
Ã−1
k X̃0:kΣ̃

−1
0:kX̃

⊤
0:kÃ

−1
k

)
log n

≲ µn(Ãk)
−2tr

(
X̃0:kΣ̃

−1
0:kX̃

⊤
0:k

)
log n ≲ µn(Ãk)

−2 · nk log n,

where the last follows from the concentration of sum of sub-Gaussian variables. On the other
hand, by Lemma 24, for some constant c2 > 0,

µn

(
Ã−1
k

)2
µk

(
Σ̃

−1/2
0:k X̃⊤

0:kX̃0:kΣ̃
−1/2
0:k

)2
= µ1

(
Ãk

)−2
µk

(
Σ̃

−1/2
0:k X̃⊤

0:kX̃0:kΣ̃
−1/2
0:k

)2
≳ µ1

(
Ãk

)−2
· (n)2,

with probability 1− 8 exp(−c2t).
So the first term is, for some constant c3 > 0, bounded by L2 k

n with probability 1 −
16 exp(−c3t). Similarly for the second term, again by Lemma 26, Lemma 22, and Lemma 25,
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we have for some constant c4 > 0,

ε⊤Ã−1X̃k:∞Σ̃k:∞X̃⊤
k:∞Ã−1ε ≲ tr

(
Ã−1X̃k:∞Σ̃k:∞X̃⊤

k:∞Ã−1
)
log n

≲
L2

n2
1

λ̃2k+1ρ
2
k(Σ̃;λ)

· n
∑
i>k

λ̃2i log n ≲
L2n

Rk(Σ̃;λ)
log n,

with probability 1− 16 exp(−c4t).
Combining all above, we deduce that

CN(θ̂)
2
≲ (1 + SU(θ̂)

2
)L2

(
k

n
+

n

Rk(Σ̃;λ)

)
log n. (61)

For the lower bound of CN(θ̂)
2
, as shown in Muthukumar et al. (2021),

CN(θ̂)
2
= y⊤Cy ≥ µn(C)∥y∥22 = nµn(C), (62)

where C = (XX⊤ + λI)−1X̃Σ̃X̃T (XX⊤ + λI)−1. Now, by Lemma 27, we have

µ1(XX⊤ + λI)−2 ≲
1

(λ1n+
∑p

j=1 λj + λ)2
≲

1

λ21n
2(1 + ρ0(Σ;λ))2

. (63)

Also, by the boundness assumption on the condition number of X̃Σ̃X̃⊤ and Lemma 22 we
have

µn(X̃Σ̃X̃⊤) ≳
n

L′ λ̃k+1ρk(Σ̃
2
;λ), (64)

with probability 1 − δ − n−1. Finally, the lower bound in the theorem is established by
combining eq. (63) and (64):

µn(C) ≥ µ1(XX⊤ + λI)−2µn(X̃Σ̃X̃⊤) ≳
λ̃k+1ρk(Σ̃

2
; 0)

L′2nλ21(1 + ρ0(Σ;λ))2
.

Lemma 38 (Probability of classification error of ridge estimator for dependent fea-
tures) Consider the classification task under the model and assumption described in Section
4.4 where Σ = diag(λ1, . . . , λp) and the true signal θ∗ = 1√

λt
et is 1-sparse in coordinate t. De-

note the leave-one-out covariance and data matrix as Σ̃ = diag(λ1, . . . , λt−1, λt+1, . . . , λp) =

diag(λ̃1, . . . , λ̃p−1) and X̃ = [X:1, . . . ,X:t−1,X:t+1, . . . ,X:p], respectively. Let θ̂ = X⊤(XX⊤+
λI)−1y be a ridge estimator. Suppose for some t ≤ k ≤ n, with probability at least 1 − δ,
the condition numbers of X̃k+1:pΣk+1:pX̃

T
k+1:p and λI+ X̃k+1:pX̃

T
k+1:p are at most L′ and L,

respectively and λk+1ρk(Σ;λ) ≥ c for some constant c > 0. Then with probability 1−δ−5n−1,
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we have:

POE(θ̂) ≲
CN(θ̂)

SU(θ̂)

(
1 + σz

√
log

SU(θ̂)

CN(θ̂)

)
, (65)

λt(1− 2ν∗)
(
1− k

n

)
L (λk+1ρk(Σ;λ) + λtL)

≲ SU(θ̂)︸ ︷︷ ︸
Survival

≲
Lλt(1− 2ν∗)

λk+1ρk(Σ;λ) + L−1λt
(
1− k

n

) , (66)

√
λ̃k+1ρk(Σ̃

2
; 0)

L′2λ21(1 + ρ0(Σ;λ))2
≲ CN(θ̂)︸ ︷︷ ︸

Contamination

≲

√
(1 + SU(θ̂)

2
)L2

(
k

n
+

n

Rk(Σ̃;λ)

)
log n.

(67)

Furthermore, if the distribution of the covariate x is Gaussian with independent features,
then

POE(θ̂) =
1

2
− 1

π
tan−1 SU(θ̂)

CN(θ̂)
≤ CN(θ̂)

SU(θ̂)
.

Proof This is a direct combination of Lemma 35, 36, and 37.

Lemma 39 (Bounds on the survival-to-contamination ratio between θ̂aug and θ̄aug)
Consider an estimator θ̂aug that solves the objective (1). Denote its averaged approximation
θ̄aug as in (5). Suppose ∥θ̂aug − θ̄aug∥Σ = O(SU(θ̄aug)) and ∥θ̂aug − θ̄aug∥Σ = O(CN(θ̄aug)).
Then, the probability of classification error of θ̂aug can be bounded by:

1

EM

SU(θ̄aug)

CN(θ̄aug)
≤ SU(θ̂aug)

CN(θ̂aug)
≤ EM

SU(θ̄aug)

CN(θ̄aug)
, (68)

where EM:= exp
((

1 +
∥θ̂aug−θ̄aug∥Σ

CN(θ̄aug)

)(
1 +

∥θ̂aug−θ̄aug∥Σ
SU(θ̄aug)

)
− 1
)
∈ [1,∞] denotes the error

multiplier.

Proof Without ambiguity, we will denote θ̂aug and θ̄aug as θ̂ and θ̄, respectively. Define
f(θ) = log ∥VT θ∥

∥UT θ∥ , where V = e1 and U = [e2, e3, · · · , ep]. Then, for any estimator θ,
SU(θ)
CN(θ) = exp(f(Σ1/2θ̂)) By the mean value theorem we have

f(Σ1/2θ̂) = f(Σ1/2θ̄) +∇f(Σ1/2η)Σ1/2(θ̂ − θ̄), (69)

where η is on the line segment between θ̂ and θ̄. Our goal is to show that ∥∇f(Σ1/2η)∥∥θ̂−θ̄∥Σ
is small. To this end, firstly, observe that the norm of f ’s gradient has a clean expression,

∥∇f(θ)∥ = 1

∥U⊤θ∥∥V⊤θ∥

∥∥∥∥∥U⊤θ∥VV⊤θ

∥V⊤θ∥
− ∥V

⊤θ∥UU⊤θ

∥U⊤θ∥

∥∥∥∥ (70)

=
1

∥U⊤θ∥∥V⊤θ∥

√
∥U⊤θ∥2
∥V⊤θ∥2

∥VV⊤θ∥2 + ∥V
⊤θ∥2

∥U⊤θ∥2
∥UU⊤θ∥2 (71)

=
∥θ∥

∥UT θ∥∥VTθ∥
. (72)
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Hence,

∥∇f(Σ1/2η)∥∥θ̂ − θ̄∥Σ ≤
(∥Σ1/2θ̄∥+ t∥Σ1/2(θ̂ − θ̄)∥)∥θ̂ − θ̄∥Σ

(∥UTΣ1/2θ̄∥ − t∥UTΣ1/2(θ̂ − θ̄)∥)(∥VTΣ1/2θ̄∥ − t∥VTΣ1/2(θ̂ − θ̄)∥)

≤ (∥θ̄∥Σ + t∥θ̂ − θ̄∥Σ)∥θ̂ − θ̄∥Σ
(∥UTΣ1/2θ̄∥ − t∥θ̂ − θ̄∥Σ)(∥VTΣ1/2θ̄∥ − t∥θ̂ − θ̄∥Σ)

, (73)

for some t ∈ [0, 1]. Secondly, we use the assumption that CN(θ̄) = ∥UTΣ1/2θ̄∥ ≫ ∥θ̂ − θ̄∥Σ
and SU(θ̄) = ∥VTΣ1/2θ̄∥ ≫ ∥θ̂ − θ̄∥Σ for large enough n. Then, using the fact that
∥θ̄∥Σ ≍ SU(θ̄) + CN(θ̄), eq. (73) is bounded by

≲

(
1

SU(θ̄)
+

1

CN(θ̄)
+
∥θ̂ − θ̄∥Σ

CN(θ̄)SU(θ̄)

)
∥θ̂ − θ̄∥Σ

=

(
1 +
∥θ̂ − θ̄∥Σ
CN(θ̄)

)(
1 +
∥θ̂ − θ̄∥Σ
SU(θ̄)

)
− 1. (74)

Hence,

f(Σ1/2θ̂) ≥ f(Σ1/2θ̄)−

(
1 +
∥θ̂ − θ̄∥Σ
CN(θ̄)

)(
1 +
∥θ̂ − θ̄∥Σ
SU(θ̄)

)
+ 1, (75)

and

SU(θ̂)

CN(θ̂)
≥ SU(θ̄)

CN(θ̄)
exp

(
1−

(
1 +
∥θ̂ − θ̄∥Σ
CN(θ̄)

)(
1 +
∥θ̂ − θ̄∥Σ
SU(θ̄)

))
:=

SU(θ̄)

CN(θ̄)

1

EM
. (76)

The upper bound follows by an identical argument.

Lemma 40 Let θ̂aug and θ̄aug be defined as in (5) for a classification task. Recall

∆G := ∥Ex[CovG(x)]
− 1

2CovG(X)Ex[CovG(x)]
− 1

2 − I∥,

and let κ be the condition number of Σaug. Assume ∆G < c for some constant c < 1. Then,

∥θ̄aug − θ̂aug∥2Σ ≤ κ∆2
G

(
SU(θ̄aug)

2
+CN(θ̄aug)

2
)
. (77)

Proof For ease of notation, we denote D̄ := Ex[CovG(x)] and D = CovG[X]. Then,

∥θ̄aug − θ̂aug∥2Σ = ∆2
G∥Σ1/2(X⊤X+D)−1D̄1/2nD̄1/2(X⊤X+ D̄)−1X⊤y∥22

= n2∆2
G∥Σ1/2(X⊤X+D)−1Σ− 1

2Σ
1
2 (X⊤X+ D̄)−1X⊤y∥22

= n2∆2
G∥Σ1/2(X⊤X+D)−1D̄1/2D̄1/2Σ− 1

2Σ
1
2 θ̄aug∥22

≤
κ∆2

Gn
2

µp((X⊤X+D) D̄−1)2
∥θ̄aug∥2Σ ≤ κ∆2

G∥θ̄aug∥2Σ,
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where, by the assumption ∆G < c, one can prove µp(
(
X⊤X+D

)
D̄−1)2 ≳ n2 similarly as in

Lemma 32. Finally, recalling Definition 8, we observe that

∥θ̄aug∥2Σ =

p∑
i=1

λi(θ̄aug)
2
i = SU(θ̄aug)

2
+CN(θ̄aug)

2
.

Remark 41 Comparing with Lemma 32, we see that the error between θ̂aug and θ̄aug for
classification and regression are exactly the same with SU2 and CN2 replaced by Bias and
Var.

C.2 Proof of Theorem 9

Theorem 9 (Bounds on Probability of Classification Error) Let t ≤ n be the index
(arranged according to the eigenvalues of Σaug) of the non-zero coordinate of θ∗, Σ̃aug be the
leave-one-out modified spectrum corresponding to index t, and X̃aug be the leave-one-column-
out data matrix corresponding to column t. Suppose there exists a t ≤ k ≤ n such that with
probability at least 1−δ, the condition numbers of nI+X̃aug

k+1:p(X̃
aug
k+1:p)

⊤, nI+Xaug
k+1:p(X

aug
k+1:p)

⊤,
and X̃k+1:pΣk+1:pX̃

T
k+1:p are at most L. Then as long as ∥θ̄aug − θ̂aug∥Σ = O(SU) and

∥θ̄aug − θ̂aug∥Σ = O(CN),

POE(θ̂) ≲
CN

SU

(
1 + σz

√
log

SU

CN

)
, (14)

with probability at least 1− δ − exp(−
√
n)− 5n−1, where

λaug
t (1− 2ν∗)

(
1− k

n

)
L
(
λaug
k+1ρk(Σaug;n) + λaug

t L
) ≲ SU︸︷︷︸

Survival

≲
Lλaug

t (1− 2ν∗)

λaug
k+1ρk(Σaug;n) + L−1λaug

t

(
1− k

n

) ,
√√√√ λ̃augk+1ρk(Σ̃

2
aug; 0)

L2(λaug1 )2(1 + ρ0(Σaug;λ))2
≲ CN︸︷︷︸

Contamination

≲

√√√√(1 + SU2)L2

(
k

n
+

n

Rk(Σ̃aug;n)

)
log n

Furthermore, if x is Gaussian, then we obtain even tighter bounds:

1

2
− 1

π
tan−1 c

SU

CN
≤ POE(θ̂aug) ≤

1

2
− 1

π
tan−1 1

c

SU

CN
≲

CN

SU
,

where c is a universal constant.

Proof We can prove the theorem by carefully walking through the proofs of Lemma 35, 36,
37, and 39 and noting that the error multiplier defined in Lemma 39 is on the order of a
constant under the assumptions made in this theorem.
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C.3 Proof of Theorem 11

Theorem 11 (POE of biased estimators) Consider the 1-sparse model θ∗ = et. and let
θ̂aug be the estimator that solves the aERM in (1) with biased augmentation (i.e., µ(x) ̸= x).
Let Assumption 2 holds, and the assumptions of Theorem 9 be satisfied for data matrix µ(X).
If the mean augmentation µ(x) modifies the t-th feature independently of other features and
the sign of the t-th feature is preserved under the mean augmentation transformation, i.e.,
sgn (µ(x)t) = sgn (xt) , ∀x, then, the POE(θ̂aug) is upper bounded by

POE(θ̂aug) ≤ POEo(θ̂aug),

where POEo(θ̂aug) is any bound in Theorem 9 with X and Σ replaced by µ(X) and Σ̄,
respectively.

Proof First, from Lemma 35, we know that the POE can be written as a function of the
SU and CN of θ̂aug. Next, recall that from the analysis in Section 3.2, the biased estimator
is given by

θ̂aug = (µG(X)TµG(X) + nCovG(X))−1µG(X)Ty.

Now, observe that this estimator is almost equivalent to the one with training covariates

µ(x1), µ(x2), . . . , µ(xn),

except that the observation vector y consists of the signs of x1,t,x2,t, . . . ,xn,t instead of ỹ,
the signs of µ(x1,t), µ(x2,t), . . . , µ(xn,t). However, y equals ỹ by our assumption that the
sign of the t-th feature is preserved under the mean augmentation transform. So we can
bound the SU and CN of θ̂aug by using the bounds in Theorem 9 with X and Σ replaced by
µ(X) and Σ̄, respectively.

C.4 Proofs of Corollaries

Corollary 42 (Classification bounds for uniform random mask augmentation) Let
θ̂aug be the estimator computed by solving the aERM objective on binary labels with mask
probability β, and denote ψ := β

1−β . Assume p ≪ n2. Then, with probability at least
1− δ − exp(−

√
n)− 5n−1

POE ≲ Q−1(1 +
√
logQ) where (78)

Q = (1− 2ν)

√
n

p log n

(
1 +

n

nψ + p

)−1

. (79)

In addition, if we assume the input data has independent Gaussian features, then we have
tight generalization bounds

POE ≍ 1

2
− 1

π
tan−1Q (80)

with the same probability.
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Proof We first note the following key quantities:

Ex[CovG(x)] = ψdiag(Σ) = ψΣ, θ∗
aug = ψ1/2Σ1/2θ∗, Σaug = ψ−1I, λaug = ψ−1,

and the effective ranks of the augmentation modified spectrum are

ρaug
k =

ψn+ p− k
n

, (81)

Raug
k =

(ψn+ p− k)2

p− k
. (82)

Substituting into Theorem 9 yields the formulas for the components of POE

SU ≍ (1− 2ν)
n

nψ + n+ p
, (83)√

np

(nψ + p)2
≲ CN ≲

√
(1 + SU2)

np log n

(nψ + p)2
(84)

(85)

It remains to check when the conditions ∥θ̂aug − θ̄aug∥Σ = O(SU) and ∥θ̂aug − θ̄aug∥Σ =

O(CN) are met. When p grows faster than n, we will have SU ≍ n
p and CU ≲

√
n
p . Then,

using Lemma 40, we have

∥θ̂aug − θ̄aug∥Σ ≲ κ1/2∆G(SU + CN) (86)

≲ σ2z

√
log n

n

√
n

p
(87)

So, the condition is met for p≪ n2.

Corollary 43 (Group invariant augmentation) An augmentation class G is said to be
group-invariant if g(x) d

= x, ∀g ∈ G. For such a class, the augmentation modified spectrum
Σaug in Theorem 9 is given by

0 ⪯ Σaug = Σ− Ex[µG(x)µG(x)]
⊤ ⪯ Σ.

Consider the case where the input covariates satisfy x ∼ N (0,Σ). Let x′ be i.i.d. with x
and consider the group-invariant augmentation given by g(x) = 1√

2
x+ 1√

2
x′. Then, under

the assumptions of 9 and with probability at least 1− δ − exp(−
√
n)− 5n−1, this augmented

estimator has generalization error

POE ≍ 1

2
− 1

π
tan−1 SU

CN
, where (88)

SU ≍ (1− 2ν)
n

2n+ p
,

√
np

(n+ p)2
≲ CN ≲

√
(1 + SU2)

np log n

(n+ p)2
. (89)
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Proof By definition and the assumption of group invariance,

Σaug = Ex[CovG(x)] = ExEg[g(x)g(x)⊤ − Eg[g(x)]Eg[g(x)]⊤]
= EgEx[g(x)g(x)

⊤ − µG(x)µG(x)⊤] = EgEx[xx
⊤ − µG(x)µG(x)⊤]

= Σ− Ex[µG(x)µG(x)]
⊤.

The change of the expectation order follows from the Tonelli’s theorem, while the last
inequality is by the group invariance assumption. Now applying Theorem 9 completes the
proof for Σaug.

Now, for the example in this corollary, first note that this is a group-invariant augmenta-
tion as g(x) is Gaussian with the same mean and covariance as x. Direct calculations show
that µG(x) = 1√

2
x and Σaug = 1

2Σ. Furthermore, CovG(X) = 1
2Σ is a constant matrix so

∆G = 0 and the approximation error is zero. Now applying Theorem 9 and 11 yields the
result.

Corollary 19 (Generalization of random-rotation augmentation) Let θ̂rot denote the
estimator induced by the random-rotation augmentation with angle parameter α. An applica-
tion of Theorem 4 yields Bias(θ̂rot) ≍ Bias(θ̂lse), for sufficiently large p (overparameterized
regime), as well as the variance bound Var(θ̂rot) ≲ Var(θ̂ridge,λ). Let θ̂lse and θ̂ridge,λ denote
the least squared estimator and ridge estimator with ridge intensity λ = np−1(1− cosα)

∑
j λj.

The approximation error can also be shown to decay as

Approx. Error(θ̂rot) ≲ max

(
1

n
,

λ1∑
j>1 λj

)
.

Proof The proof is based on the application of Theorem 4, where

ExCovG(x) =
4(1− cosα)

p
(Tr(Σ)I−Σ), Σaug =

p

4(1− cosα)
Σ(Tr(Σ)I−Σ)−1.

Hence, λaug
i ≍ p

4(1−cosα)
λi∑
j λj

, and

Bias(θ̂rot)

≲ ∥θ∗
k+1:∞∥2Σk+1:∞

+

k∑
i=1

(θ∗
i

∑
j ̸=i λj)

2

λi

(
1 +

p

4(1− cosα)n

∑
j>k λj∑
j λj

)2(
4(1− cosα)

p

)2

≲ ∥θ∗
k+1:∞∥2Σk+1:∞

+
k∑
i=1

(θ∗
i

∑
j ̸=i λj)

2

λi

(∑
j>k λj

n
∑

j λj

)2

, for sufficiently large p

≍ ∥θ∗
k+1:∞∥2Σk+1:∞

+ ∥θ∗
1:k∥2Σ−1

1:k

λ2k+1ρk(Σ; 0)2 = Bias(θ̂lse),

where the last equality is by Corollary 33 with λ = 0. The variance part can be proved
similarly. The approximation error bound is proved in Appendix F.
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Corollary 44 (Classification bounds for Gaussian noise injection) Consider the in-
dependent, additive Gaussian noise augmentation: g(x) = x+ n, where n ∼ N (0, σ2). Let
Σ̃ be the leave-one-out spectrum corresponding to index t. Then, with probability at least
1− exp(

√
n)− 5n−1,

SU ≍ (1− 2ν∗)
λt

λk+1ρk(Σ;nσ2) + λt
, (90)

CN ≲

√
(1 + SU2)

(
k

n
+

n

Rk(Σ̃;nσ2)

)
log n, (91)

(92)

and EM = 1.
Proof As in the regression analysis, we note that in this case, the key quantities are given
by

Ex[CovG(x)] = σ2I, θ∗
aug = σθ∗, Σaug = σ−2Σ, λaug = σ−2λ,

and the effective ranks are given by

ρk(Σaug;n) = ρk(Σ;nσ2),

Rk(Σaug;n) = Rk(Σ;nσ2).

Finally, log(EM) is zero because ∆G = 0. Substituting the above quantities into the
Theorem 9 yields the result.

Corollary 45 (Classification bounds for non-uniform random mask) Consider the
case where the dropout parameter ψj =

βj
1−βj is applied to the j-th feature, and assume the

conditions of Theorem 9 are met. For simplicity, we consider the bi-level case where ψj = ψ
for j ̸= t. Then, with probability at least 1− δ − exp(

√
n)− 5n−1,

SU ≍ 1

ψ1 +
pψt

nψ + 1
(93)

CN ≲

√
(1 + SU2)

np log n

(nψ + p)2
(94)

Proof
Let Ψ denote the diagonal matrix with Ψi,i = ψ if i ̸= t and Ψt,t = ψt.
We can then compute the following key quantities:

Ex[CovG(x)] = ΨΣ, θ∗
aug = Ψ1/2Σ1/2θ∗, Σaug = Ψ−1,

and the effective ranks of the augmentation modified spectrum are

ρaug
k =

ψn+ p− k
n

, (95)

Raug
k =

(ψn+ p− k)2

p− k
. (96)
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The approximation error bound proceeds as in the uniform random mask case. Substituting
the above quantities into Theorem 9 completes the proof.

Appendix D. Comparisons between Regression and Classification

D.1 Proof of Proposition 46

Proposition 46 (DA is easier to tune in classification than regression) Consider the
1-sparse model θ∗ =

√
1
λt
et for Gaussian covariate with independent components and an

independent feature augmentation. Suppose that the approximation error is not dominant in
the bounds of Theorem 4 (simple sufficient conditions can be found in Lemma 5 in Appendix
A) and the assumptions in the two theorems hold, then,

POE(θ̂aug) ≲

√
(λaug
k+1ρk(Σaug;n))2 ·

(
n

Rk(Σaug;n)
+
k

n

)
log n,

MSE(θ̂aug) ≳ (λaug
k+1ρk(Σaug;n))

2 +

(
n

Rk(Σaug;n)
+
k

n

)
.

As a consequence, the regression risk serves as a surrogate for the classification risk up to a
log-factor:

POE(θ̂aug) ≲ MSE(θ̂aug)
√

log n. (97)

As concrete examples of the regression risk being a surrogate of classification risk, consider
Gaussian noise injection augmentation with noise standard deviation σ and random mask
with dropout probability β to train the 1-sparse model in the decaying data spectrum Σii =
γi, ∀i ∈ {1, 2, . . . , p}, where γ is some constant satisfying 0 < γ < 1. Let θ̂gn and θ̂rm be
the corresponding estimators, then

lim
n→∞

lim
σ→∞

POE(θ̂gn) = 0 while lim
n→∞

lim
σ→∞

MSE(θ̂gn) = 1. (98)

Also, when p log n≪ n,

lim
n→∞

lim
β→1

POE(θ̂rm) = 0 while lim
n→∞

lim
β→1

MSE(θ̂rm) = 1. (99)

Furthermore, the augmentation of Gaussian injection has gone through significant distribu-
tional shift where

W 2
2 (g(x),x)

p

n,σ−→∞, (100)

in which W2 denotes the 2-Wasserstein distance between the pre- and post-augmented distri-
bution of the data by the Gaussian noise injection.

Proof We begin with proving the first statement. By our assumption that the approximation
error and error multiplier are not dominant terms in generalization errors, we can only consider
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bias/variance and survival/contamination. By Proposition 12, the regression testing risk is
bounded by

MSE(θ̂aug) ≲ (λaug
k+1ρk(Σaug;n))

2 +

(
n

Rk(Σaug;n)
+
k

n

)
.

However, by the independence of the original data feature components and their augmenta-
tions and the boundness assumption on ρk, Lemma 2, Lemma 3 and Theorem 5 in Tsigler
and Bartlett (2020) shows that there is a matching lower bound such that

MSE(θ̂aug) ≳ (λaug
k+1ρk(Σaug;n))

2 +

(
n

Rk(Σaug;n)
+
k

n

)
, (101)

for some k. On the other hand, by Theorem 9, we know that

POE(θ̂aug) ≲

√
(λaug
k+1ρk(Σaug;n))2 ·

(
n

Rk(Σaug;n)
+
k

n

)
log n, (102)

for any k. Now combining E. q. (101) and (102) along with the inequality x+ y ≥ 2
√
xy for

any x, y ≥ 0 proves the first statement.
To prove the second statement about θ̂gn, note that θ̂gn = (X⊤X+ σ2nI)−1X⊤y → 0

almost surely as σ →∞, so

MSE(θ̂gn) = ∥θ∗ − θ̂gn∥Σ
a.s.−→ ∥θ∗∥Σ = 1.

On the other hand, by Theorem 9, choose k = 0, then

SU(θ̂gn) ≳
n λt
σ2

n+
∑
λj
σ2 + nλt

σ2

, CN(θ̂gn) ≲
1

σ2

√√√√(
∑
λ2j )n log n

(n+
∑ λj

σ2 )2
,

So,

POE(θ̂gn) ≤
CN(θ̂gn)

SU(θ̂gn)
≍ 1

λt

√
(
∑
λ2j ) log n

n
×
n+

∑ λj
σ2 + nλt

σ2

n+
∑ λj

σ2

, (103)

lim
n→∞

lim
σ→∞

POE(θ̂gn) = lim
n→∞

1

λt

√
log n

n(1− γ2)
= 0. (104)

We can prove the statement for θ̂rm similarly. When β → 1, θ̂rm = (X⊤X+ β
1−β diag[X

⊤X])−1X⊤y→
0 almost surely. So MSE approaches 1 almost surely. But by Corollary 42, we have

lim
n→∞

lim
β→1

POE(θ̂rm) = lim
n→∞

√
p log n

n
= 0. (105)

Finally, by the closed-form formula of Wasserstein distance between Gaussian distributions,

W2(g(x),x) = ∥(Σ+ σ2I)
1
2 −Σ

1
2 ∥2F = Ω(pσ2). (106)
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D.2 Classification/regression separation for non-uniform random mask

Proposition 47 (Non-uniform random mask is easier to tune in classification)
Consider the 1-sparse model θ∗ =

√
1
λt
et. Suppose the approximation error is not dominant

in the bounds of Theorem 4 (simple sufficient conditions can be found in Lemma 5 in Appendix
A) and the assumptions in the two theorems hold. Suppose we apply the non-uniform random
mask augmentation and recall the definitions of ψ and ψt as in Corollary 45. Then, if√

p
n ≪

ψ
ψt
≪ p

n , we have

POE(θ̂rm)
n−→ 0 while MSE(θ̂rm)

n−→ 1. (107)

Proof From Corollary 16, we have that the bias scales as

Bias ≲
(ψtn+ ψtp

ψ )2

n2 + (ψtn+ ψtp
ψ )2

≍
(ψtn+ ψtp

ψ )2

(ψtn+ ψtp
ψ )2

= 1,

where the second asymptotic equality uses the assumption that ψtp
ψ ≫ n. Hence the

MSE approaches a constant (here we use the fact that the MSE bound is tight when the
approximation error is non-dominant, as per Tsigler and Bartlett (2020)). Next we use the
bounds in Corollary 45 to find that

SU ≍ 1

ψt +
pψt

nψ + 1
≍ 1

ψt +
pψt

nψ

, CN ≍
√

np

(nψ + p)2
.

So, if p≫ nψ, we have

SU

CN
≍ 1/ψt

(1/ψ)
√
p/n

=
ψ/ψt√
p/n
→∞,

and if p≪ nψ, we have

SU

CN
≍

nψ
pψt√
n
p

=
ψ/ψt√
p/n
→∞.

Since we assume we are operating in a regime where the approximation error and error
multiplier do not dominate, we can conclude that POE→ 0.

Appendix E. Derivations of Common Augmented Estimators

Proposition 48 (Common augmentation estimators) Below are closed-form expres-
sion of estimators that solves (1) with common data augmentation.

• Gaussian noise injection with zero-mean noise of covariance W:

θ̂aug = (X⊤X+ nW)−1X⊤y
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• Unbiased random mask with mask probability β:

θ̂aug =

(
X⊤X+

β

1− β
diag(XTX)

)−1

X⊤y

• Unbiased random cutout with number of cutout features k:(
X⊤X+

p

p− k
M⊙X⊤X

)−1

X⊤y,

where Mi,j =
k
p −

|j−i|1|j−i|<k−1+k1|j−i|≥k−1

p−k .

• Salt and Pepper (β, µ, σ2):

θ̂aug =

(
X⊤X+

β

1− β
diag

(
X⊤X

)
+

βσ2n

(1− β)2
I

)−1

X⊤y

• Unbiased random rotation with angle α:

θ̂aug =

(
X⊤X+

4(1− cosα)

p2

(
Tr
(
XX⊤

)
I−XX⊤

))−1

X⊤y

Proof To prove all the unbiased augmented estimator formulas, it suffices to derive CovG(X).
Then,

θ̂aug = (X⊤X+ nCovG(X))⊤Xy.

Gaussian noise injection g(x) = x+ n, where n ∼ N (0,W). Therefore,

CovG(X) = n−1
∑
i

CovG(xi) = n−1
∑
i

Eni [(xi + ni)(x+ ni)
⊤ − xix

⊤
i ] = W.

Unbiased random mask g(x) = (1− β)−1b⊙ x, where b has i.i.d. Bernoulli random
variable with dropout probability β in its component. The factor (1− β)−1 is to rescale the
estimator to be unbiased. Hence,

CovG(X) = (1− β)−2n−1
∑
i

Ebi
[bib

⊤
i ⊙ xix

⊤
i − xix

⊤
i ]

= n−1
∑
i

(
β

1− β
I+ 11⊤ − 11⊤

)
⊙ xix

⊤
i = n−1 β

1− β
diag

(
X⊤X

)
Random cutout Define h(x) to be the random cutout of k consecutive features, then the
unbiased cutout can be written as g(x) = p

p−kh(x) as Ehh(x) = p−k
k x. Now,

Covh(x) = Eh[h(x)h(x)⊤]−
(
p− k
p

)2

xx⊤.
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Note that Ehh(x)h(x)⊤ = H⊙ xx⊤, where

Hij = P[xi is not cutout and xj is not cutout]
= P[a random k consecutive features does not cover i nor j]

=
p− k − |j − i|1|j−i|<k−1 − k1|j−i|≥k−1

p
.

Hence,

Covh(x) =

(
H−

(
p− k
p

)2

11⊤

)
⊙ xx⊤,(

H−
(
p− k
p

)2

11⊤

)
ij

=
p− k
p

k

p
−
|j − i|1|j−i|<k−1 + k1|j−i|≥k−1

p
,

and

CovG(x) =

(
p

p− k

)2

Covh(x)

=
p

p− k

(
k

p
−
|j − i|1|j−i|<k−1 + k1|j−i|≥k−1

p− k

)
⊙ xx⊤

=
p

p− k
M⊙ xx⊤.

Salt and pepper This estimator can be derived similarly by combining the derivations of
the random mask and the injection of Gaussian noise by writing the augmentation as

g(x) = (1− β)−1 (b⊙ x+ (1− b)⊙ n) ,

where b has i.i.d. components of Bernoulli random variables with parameter β and n ∼
N (0, I).

Random rotation Given a training example x, we will consider rotating x by a angle α
in p

2 random plane spanned by two randomly generated orthonormal vectors u and v. For
rotation in each one of the plan, the data transformation can be written by

h(x) = (I+ sinα(vu⊤ − uv⊤) + (cosα− 1)(uu⊤ + vv⊤))x. (108)

The bias of h is ∆ = Eu,v[h(x)]−x. We consider the unbiased transform g by subtracting the
bias from h where g(x) := h(x)−∆. Since we consider random u and v, they are distributed
uniformly on the sphere of Rp but orthogonal to each other. The exact joint distribution
of u and v is intractable, but fortunately when p is large, we know from high dimensional
statistics that they are approximately independent vector of N (0, 1pI). We will thus use this
approximation to facilitate our derivation.

Firstly,

Eu,v[h(x)] = x+ Eu2(cosα− 1)uu⊤x = x+
2

p
x,
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so the bias ∆ = 2
px which is small in high dimensional space. Secondly, subtracting ∆ from

h, we proceed to calculate the CovG(X) =
∑n

i=1 Covgi (xi)

n according to Definition 1. After
simplification, we have

Covgi(xi) = Egg(xi)g(xi)⊤

= Eu,v

[
sin2 α

(
vu⊤ − uv⊤

)
xx⊤(vu⊤ − uv⊤)

+ (cosα− 1)2
(
uu⊤ + vv⊤ − 2

p
I

)
xx⊤

(
uu⊤ + vv⊤ − 2

p
I

)]
= 2 sin2 α

(
Eu,v

[
⟨v,x⟩⟨u,x⟩uv⊤ − ⟨u,x⟩2vv⊤

])
+ 2(cosα− 1)2

(
Eu,v

[
⟨u,x⟩2vv⊤ + ⟨v,x⟩⟨u,x⟩uv⊤ − 4

p
⟨u,x⟩ux⊤

]
+

2

p2
xx⊤

)
.

By direct calculations, we also have,

Eu,v

[
⟨u,x⟩2vv⊤

]
= Eu,v

[
⟨u,x⟩2

]
Eu,v[vv

⊤] =
∥x∥22
p2

,

Eu,v

[
⟨v,x⟩⟨u,x⟩uv⊤

]
=

xx⊤

p2
.

Now, plugging in the terms into CovG(X) and multiplying the result by p
2 as there are p

2
rotations completes the proof.

PatchShuffle regularization (Kang et al. (2017)) This augmentation is an example of
a patch-based method where the original feature vector x is partitioned into sub-vectors x̃
each with dimension b. The augmentation function to each sub-vector is given by g(x̃) =
(1− r)x̃+ rΠ(x̃) where r ∼ Bernoulli(1− β) (chosen independently for each patch), and Π
is a uniform random permutation to the features in x̃.

Given a patch vector feature vector x ∈ Rb, we will show that CovGk
(x) and ExCovGk

(x)
are given as

CovGk
(x) = β(1− β)xx⊤ +

[
1− β
b(b− 1)

((
1⊤x

)2
− 1⊤x⊙2

)
−
(
1− β
b

)2 (
1⊤x

)2]
11⊤

+

(
1− β
1− b

1⊤x⊙2 − 1− β
b(1− b)

(
1⊤x

)2)
Ib −

β(1− β)
b

1⊤x
(
x1⊤ + 1x⊤

)
,

Ex[CovGk
(x)] = β(1− β)Σ− 1− β

b

(
1⊤λ

)
Ib −

(
1− β
b

)2

1⊤λ11⊤

− β(1− β)
b

(
λ1⊤ + 1λ⊤

)
,

where x⊙2 denotes the entrywise (Hadamard) product of x with itself.
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First, note that by definition, CovGk
(x) = E[g(x)g(x)⊤] − E[g(x)]E[g(x)]⊤. The first

term is

E[g(x)g(x)⊤]
= E[(1− r)2]xx⊤ + E[(1− r)r]E[xΠ(x)⊤] + E[(1− r)r]E[Π(x)x⊤] + E[r2]E[Π(x)Π(x)⊤]
= βxx⊤ + (1− β)E[Π(x)Π(x)⊤]

= βxx⊤ + (1− β)
[(

(1⊤x)2 − 1⊤x⊙2

b(b− 1)

)
11⊤ +

(
1

b− 1
1⊤x⊙2 − (1⊤x)2

b(b− 1)

)
I

]
.

The last equation follows since the diagonal elements of E[Π(x)Π(x)⊤] are all equal to
1
b

∑
i x

2
i , while the (i, j) off-diagonal element is

∑
i

∑
j ̸=i xixj

b(b−1) =
(
∑

i xi)
2−

∑
i x

2
i

b(b−1) . For the second

term, E[g(x)] = βx + (1 − β)1⊤x
b 1. Combining the above expressions gives the result of

CovGk
(x). Finally, notice that E[

(
1⊤x

)2
] = E[1⊤x⊙2] = 1⊤λ and E[1⊤xx1⊤] = λ1⊤, where

λ denotes the spectrum of Σ. This completes the calculation of Ex[CovGk
(x)].

Appendix F. Approximation Error for Dependent Feature Augmentation

In this section, we demonstrate how to bound the approximation error for the augmentation
of dependent features which satisfy neither the independent-augmentation nor regionally-
correlated augmentation assumptions. We use rotation in a random plane (Section 5.5 and
cutout DeVries and Taylor (2017) as our two examples. We will build on Proposition 14,
which we restate here for convenience.

Proposition 14 Consider the decomposition CovG(X) = D +Q, where D is a diagonal
matrix representing the independent feature augmentation part. Then, we have

∆G ≲
∥D− ED∥+ ∥Q− EQ∥

µp(ExCovG(x))
. (15)

F.1 Approximation error of random rotations

In this section, we will walk through the steps to bound the approximation error for the
random rotation estimator. Specifically, we will prove that

CovG(X) =
4(1− cosα)

np

(
Tr
(
X⊤X

)
I−X⊤X

)
, ∆G ≲

λ1n+
∑

j λj

n
∑

j>1 λj
.

We follow the bound in E.q. (15) from the main text:

∆G ≲
∥D− ED∥+ ∥Q− EQ∥

µp(ExCovG(x))
,

where we decompose CovG(X) into diagonal and off-diagonal parts as CovG(X) = D+Q,
D = a

(
Tr
(
X⊤X

)
I+Diag(X⊤X)

)
, Q = a

(
X⊤X−Diag(X⊤X)

)
, and a = 4(1−cosα)

np =

Θ( 1
np). Using similar arguments in the proof of Proposition 12 for the independent feature

augmentation, the error of the diagonal part can be expressed as a sum of n independent
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subexponential variables divided by Θ(np). Then, by the concentration bound in Lemma 21
we have,

∥D− ED∥ ≲ 1

p

√
log n

n
,

with probability 1− n−1.
On the other hand, by invoking Lemma 27, we also have,

∥Q− EQ∥ = ∥Q∥ ≲
λ1n+

∑
j λj

np
,

with probability at least 1− 1
n , using the fact that EQ = 0. Finally,

µp(ExCovG(x)) = 4(1− cosα)
µp(Tr(Σ)I−Σ)

p
= 4(1− cosα)

∑
j>1 λj

p
,

so

∆G ≲
λ1n+

∑
j λj

n
∑

j>1 λj
,

with probability 1− 2n−1. Note that ∆G is o(1) for
∑

j>1 λj ≫ λ1.

F.2 Approximation error of random cutout

In this section, we turn our attention to the bound of the approximation error for random
cutout, where k consecutive features are cut out randomly by the augmentation. As the
features are dropout dependently, the random cutout belongs to the class of dependent
feature augmentation. For simplicity, we consider the unbiased random cutout, where the
augmented estimator is rescaled by the factor p

p−k (so µG(x) = x). The calculations in
Section E show that

Ex[CovG(x)] =
k

p− k
diag(Σ), CovG(X) =

p

p− k
M⊙ X⊤X

n
, (109)

where M is a circulant matrix in which Mi,j =
k
p −

|j−i|1|j−i|<k−1+k1|j−i|≥k−1

p−k and ⊙ denotes
the element-wise matrix product (Hadamard product). Because Σ is diagonal we have,

∆G =
p

k
∥M⊙ (n−1Z⊤Z− Ip)∥,

where Z is a n by p matrix with i.i.d. subgaussian rows that has identity covariance I. Then

∆G =
p

k
·
(∥∥∥∥M̃⊙D+

k2

p(p− k)
n−1Z⊤Z

∥∥∥∥) ≤ p

k
·

∥∥∥M̃⊙D
∥∥∥︸ ︷︷ ︸

L1

+

∥∥∥∥ k2

p(p− k)
n−1Z⊤Z

∥∥∥∥︸ ︷︷ ︸
L2

 ,

(110)

where D is an almost diagonal circular matrix with Dij =
∑n

l=1
ZliZlj

n − δij if |i − j| ≤ k

and 0 otherwise, while M̃i,j = Mi,j +
k2

p(p−k) . Our decomposition strategy here is consistent
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with our idea in the previous subsection, where we partition the matrix of interest into
strong diagonal components and weak off-diagonal components. However, in the random
cutout case, approximately O(k) near the diagonal components have a strong covariance with
intensity of the order O(kp ) while the rest of the order O(k

2

p2
); hence, we gather all elements

with strong covariance into the “diagonal” part. Now we will bound L2 and L1 in a sequence.
Like in the previous section, L2 can be bounded by invoking the lemma 27 which gives

L2 ≲
k2

p(p− k)
n+ p

n
,

with probability 1− c
n for some constant c > 0. For the bounds of L1, we first bound the

elements of D. For i ̸= j, since Z2
ki is sub-exponential we have

Di,j ≤
n∑
k=1

ZkiZkj
n

≤ n−1

√√√√ n∑
k=1

Z2
ki

√√√√ n∑
k=1

Z2
kj ≤ ε,

with probability exp(−nCε2) for some constant C by Lemma 21, where we have used Cauchy-
Schwartz inequality and ε will be determined below. The case where i = j is similar. As

there are O(pk) nonzero terms in D, we choose ε =
√

5 log pk
n . Then, by union bounds over

pk terms, we obtain

Di,j ≤
√

5 log pk

n
, ∀i, j

with probability at least 1− 1
p3k3

. Next, denote A := M̃⊙D. Note that |Aij | ≲ k
pε for all

|i− j| ≤ k and 0 otherwise. We will bound the operator norm of A. Consider any v with
∥v∥2 = 1,

∥Av∥2 =

√√√√ k∑
i=1

(

k∑
j=1

Aijvj)2 =

√√√√ k∑
i=1

(
∑

j∈i−k:i+k
Ai,jvj)2

≤

√√√√ k∑
i=1

(
∑

j∈i−k:i+k
A2
i,j)(

∑
j∈i−k:i+k

v2
j ) ≤

k

p

√√√√2kε2
k∑
i=1

∑
j∈i−k:i+k

v2
j

= O

(
k2

p
ε

)
,

where we have used the sparsity property that Aij = 0 if |j − i| > k. Therefore, L1 = ∥A∥ ≲

O(k
2

p ε) = O

(
k2

p

√
5 log pk
n

)
. Now combining the bounds on L1 and L2 and (110) we arrive

at the result:

∆G ≲ k

√
log pk

n
,

with probability at least 1− c
n −

1
p3k3

.

Remark 49 This approximation bound, together with Corollary 5, show that the approxima-
tion error is dominated by the bias-variance (survival-contamination) if 1. over-parameterized
regime (p≫ n): p is upper bounded by some polynomial of n and k ≪

√
n

log p , or 2. under-

parameterized regime (p≪ n): n is upper bounded by some polynomial of p and k ≪ p√
n
.
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Appendix G. Additional experiments

G.1 The implicit bias of minimal or “weak” DA

It is well-known that Gaussian noise injection approximates the LSE when the variance of
the added noise approaches zero. Surprisingly, however, this does not imply that all kinds of
DA approach the LSE in the limit of decreasing augmentation intensity. Suppose that the
augmentation g is characterized by some hyperparameter ξ that reflects the intensity of the
augmentation (for e.g., mask probability β in the case of randomized mask, or Gaussian noise
standard deviation σ in the case of Gaussian noise injection), and that CovG(X)/ξ−→Cov∞
as ξ → 0 for some positive semidefinite matrix Cov∞ that does not depend on ξ. Then, the
limiting estimator when the augmentation intensity ξ approaches zero is given by

θ̂aug
ξ→0−→ Cov−1

∞ X⊤
(
XCov−1

∞ X⊤
)†

y. (111)

It can be easily checked that this estimator is the minimum-Mahalanobis-norm interpolant
of the training data where the positive semi-definite matrix used for the Mahalanobis norm
is given by Cov∞. Formally, the estimator solves the optimization problem

min
θ
∥θ∥Cov∞ s.t. Xθ = y (112)

Thus, the choice of augmentation impacts the specific interpolator that we obtain in the
limit of minimally applied DA. For example, the above formula can be applied to random
mask with

Cov∞ = n−1diag(XTX) ≈ Σ.

Figure 8: aSGD convergence to aERM for small
random mask. We simulate the convergence of aSGD
for random mask with dropout probability 0.01. We
compare its converging estimator with the aERM limit
in Eq. 111).

Fig. 8 demonstrates that the MSE of the ran-
dom mask does not converge to that of the
LSE. Instead, it converges to the light green
curve which we abbreviate as M-LSE (for
the masked least squared estimator). To test
whether these limits appear only in an aERM
solution, we plot the convergence path of
aSGD with the random mask augmentation
with masking probability β = 0.01. We set
the ambient dimension p, noise standard de-
viation σϵ, number of training examples n,
and learning rate η to be 128, 0.5, 64 and
10−5 respectively. We choose a decaying co-
variate spectrum of the form Σii ∝ γi, where
γ is chosen such that µp(Σ) = 0.2µ1(Σ). It
is clear from the plot that both aSGD and
aERM converges to the M-LSE solution of
Eq. 111). The curves and the shaded area
denote the averaged result and the 90% confidence interval for 50 experiments. A caveat to
this result is that the convergence rate turns out to be relatively slow and highly sensitive
to the learning rate. A theoretical investigation of this behavior (and the optimization
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convergence of aSGD to aERM more generally) is beyond the scope of this work and would
be interesting to explore in the future.
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