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Abstract

Machine learning systems are often applied to data that is drawn from a different distribu-
tion than the training distribution. Recent work has shown that for a variety of classification
and signal reconstruction problems, the out-of-distribution performance is strongly linearly
correlated with the in-distribution performance. If this relationship or more generally a
monotonic one holds, it has important consequences. For example, it allows to optimize
performance on one distribution as a proxy for performance on the other. In this paper,
we study conditions under which a monotonic relationship between the performances of
a model on two distributions is expected. We prove an exact asymptotic linear relation
for squared error and a monotonic relation for misclassification error for ridge-regularized
general linear models under covariate shift, as well as an approximate linear relation for
linear inverse problems.

Keywords: distribution shifts, asymptotics, empirical risk minimization, general linear
models, inverse problems

1. Introduction

Machine learning models are typically evaluated by shuffling a set of labeled data, splitting
it into training and test sets, and evaluating the model trained on the training set on
the test set. This measures how well the model performs on the distribution the model
was trained on. However, in practice a model is most commonly not applied to such
in-distribution data, but rather to out-of-distribution data that is almost always at least
slightly different. In order to understand the performance of machine learning methods
in practice, it is therefore important to understand how out-of-distribution performance
relates to in-distribution performance.

While there are settings in which models with similar in-distribution performance have
different out-of-distribution performance (McCoy et al., 2020), a series of recent empirical
studies have shown that often, the in-distribution and out-of-distribution performances of
models are strongly correlated:
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• Recht et al. (2019), Yadav and Bottou (2019), and Miller et al. (2020) constructed new
test sets for the popular CIFAR-10, ImageNet, and MNIST image classification prob-
lems and for the SQuAD question answering datasets by following the original data
collection and labeling process as closely as possible. For CIFAR-10 and ImageNet the
performance drops significantly when evaluated on the new test set, indicating that
even when following the original data collection and labeling process, a significant
distribution shift can occur. In addition, for all four distribution shifts, the in- and
out-of-distribution errors are strongly linearly correlated.

• Miller et al. (2021) identified a strong linear correlation of the performance of image
classifiers for a variety of natural distribution shifts. Apart from classification, the
linear performance relationship phenomenon is also observed in machine learning tasks
where models produce real-valued output, for example in pose estimation (Miller et al.,
2021) and object detection (Caine et al., 2021).

• Darestani et al. (2021) identified a strong linear correlation of the performance of
image reconstruction methods for a variety of natural distribution shifts. This relation
between in- and out-of-distribution performances persisted for image reconstruction
methods that are only tuned, i.e., only a small set of hyperparameters is chosen based
on hyperparameter optimization on the training data.

An important consequence of a linear, or more generally, a monotonic relationship
between in- and out-of-distribution performances is that a model that performs better
in-distribution also performs better on out-of-distribution data, and thus measuring in-
distribution performance can serve as a proxy for tuning and comparing different models
for application on out-of-distribution data.

It is therefore important to understand when a linear or more generally a monotonic
relationship between the performance on two distributions occurs. In this paper we study
this question theoretically and empirically for a class of distribution shifts where the feature
or signal models come from different distributions, also known as covariate shift.

First, we show that for a real-world regression problem, in- and out-of-distribution
performances are linearly correlated. Specifically, we show that for object detection, the
performance of models trained on the COCO 2017 training set and evaluated on the COCO
2017 validation set is linearly correlated with the performance on the VOC 2012 dataset.
This finding establishes that a linear risk relation also occurs for regression problems, beyond
classification problems as established before.

We then consider a simple linear regression model with a feature vector drawn from a
different subspace for in- and out-of-distribution data. We provide sufficient conditions for a
linear estimator that characterizes when a linear relation between in- and out-of-distribution
occurs.

Next, we consider a general setup encompassing classification and regression, and con-
sider a distribution shift model on the feature vectors. We consider a large class of estimators
obtained with regularized empirical risk minimization, and show that as various training
parameters change, including for example the regularization strength or the number of
training examples (resulting in different estimators), the relationship between in- and out-
of-distribution performances is monotonic. Different classes of estimators follow different
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monotonic relations, and we also observe this in practice (see Figure 3). Interestingly, for a
certain class of shifts in classification, we recover a linear relation for a nonlinear function of
the risks that is remarkably similar to that demonstrated empirically by Miller et al. (2021).

Finally, we study linear inverse problems, to understand when a linear relation occurs
in a signal reconstruction problem. We consider a distribution shift model consisting of a
shift in subspace as well as noise variance, and again characterize conditions under which a
linear or near-linear relation between in- and out-of-distribution performances exists.

Our results suggest that linear risk relationships observed in regression and classification
actually arise by independent mechanisms, being based on a shift in feature subspace for
regression and a shift in feature scaling for classification.

Code for the experiments and figures in this paper can be found at https://github.
com/MLI-lab/monotonic_risk_relationships.

1.1 Prior Theoretical Work on Characterizing Linear Performance Relations

Classical theory for characterizing out-of-distribution performance ensures that the dif-
ference between in- and out-of-distribution performance of an estimator is bounded by a
function of the distance of the training and test distributions (Quiñonero-Candela et al.,
2008; Ben-David et al., 2010; Cortes and Mohri, 2014). Such bounds often apply to a class
of target distributions. In contrast, we are interested in precise relationships between a
fixed source and target distribution.

Regarding characterizing linear relationships, Miller et al. (2021, Sec. 7) proved that for
a distribution shift for a binary mixture model, the in- and out-of-distribution accuracies
have a linear relation if the features vectors are sufficiently high-dimensional. Mania and
Sra (2020) showed that an approximate linear relationship occurs under a model similarity
assumption that high accuracy models correctly classify most of the data points that are
correctly classified by lower accuracy models.

Most related to our work is that of Tripuraneni et al. (2021), who revealed an exact linear
relation for squared error of a linear random feature regression model under a covariate
shift in the high-dimensional limit. This covariate shift is philosophically similar to the
simplifying assumption we make for the main statement and interpretation of our results,
and yields a similar linear relation for squared error. However, our results apply to a
broader class of general linear models and extend to misclassification error, and we go
further to capture how the distribution shift can depend on the task itself, which captures
how classification problems can become easier or harder. Moreover, our results predict
general monotonic relationships as opposed to only linear ones.

2. Linear Relations in Regression and Motivation for the Subspace Model

Prior work in the distribution shift literature for prediction tasks has focused on either clas-
sification or on problems with real-valued outputs but using discrete performance metrics—
for example, pose estimation (Miller et al., 2021) and object detection (Caine et al., 2021).
Here, we consider a real-valued squared error metric and show that linear relationships
between in- and out-of-distribution performances also occur in a standard regression setup.

We evaluate a collection of neural network models for object detection, which are trained
on the COCO 2017 training set (Lin et al., 2014): Faster R-CNN (Ren et al., 2015), Mask
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Figure 1: Bounding box prediction on COCO 2017 and VOC 2012 datasets. Left: There
is an approximate linear relation of mean squared error (MSE) for models trained COCO
2017. Middle: The spectrum of the feature spaces of YOLOv5 on the two datasets decays
quickly, which suggests that a feature subspace model could be a reasonable approximation.
Right: A principal-angle-based similarity between subspaces spanned by the top k principal
components on the two datasets. The subspaces are well-aligned, which is a sufficient
condition for a linear relation as stated in Theorem 1.

R-CNN (He et al., 2017), Keypoint R-CNN (He et al., 2017), SSD (Liu et al., 2016), Reti-
naNet (Lin et al., 2017), and YOLOv5 (Redmon et al., 2016; Jocher et al., 2020). See
Figure 1 (left), where we compute their mean squared errors for bounding box coordinate
prediction on the COCO 2017 validation set and the VOC 2012 training/validation set (Ev-
eringham et al., 2010). The models we consider all perform worse on the out-of-distribution
data, and the in- and out-of-distribution performances are approximately linearly related.

It is in general difficult to model distribution shifts analytically. In this work, one aspect
of distribution shifts that we model is the change in the subspaces where the feature vectors
lie. To motivate this model, we next examine the feature space of the YOLOv5 model on
the in- and out-of-distribution data.

The YOLOv5 model, and all other models considered, can be viewed to make a predic-
tion for an image by generating features through several layers, and then aggregating those
features with a linear layer (or a very shallow neural network) to make a prediction. We
consider the 512-dimensional feature vectors from the penultimate layer of YOLOv5 as the

features. Let {z(i)j ∈ R512 : i ∈ [Nin], j ∈ [K
(i)
in ]} and {z(i)j ∈ R512 : i ∈ [Nout], j ∈ [K

(i)
out]} be

the set of feature vectors of the in- and out-of-distribution data, respectively, where z
(i)
j is

the feature vector of the jth true positive prediction on image i, Nin and Nout are the num-

bers of images of the respective datasets, and K
(i)
in and K

(i)
out are the number of true positive

predictions on the ith images of the respective datasets. We perform principal component
analysis on these two sets of feature vectors and plot the spectra in Figure 1 (middle). We
observe that approximating the feature space by the top 100 principal components explains
96.0% and 95.6% of the variances of COCO 2017 and VOC 2012 respectively. This observa-
tion demonstrates that the feature vectors approximately lie in subspaces of the full feature
space.

Moreover, Figure 1 (right) shows that the feature subspaces for the two distributions
are overlapping substantially. Specifically, Figure 1 (right) shows the subspace similarity

defined as


cos(θ)22/k (Soltanolkotabi and Candès, 2012; Heckel and Bölcskei, 2015),
where θ is the vector of principal angles between the subspaces spanned by the top k
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principal components of the individual feature vector sets. The subspaces spanned by the
top 100 principal components, which account for over 95% of the variance, have a 0.855
subspace similarity (note that the maximum value 1 is achieved for θ = 0). More details
on the experiment are in Appendix A.1.

Because the output of neural networks is simply a linear model applied to this feature
space, this observation suggests that the relationship between in- and out-of-distribution
performances of even highly nonlinear models such as neural networks on data from highly
nonlinear spaces may be modeled by a change in linear subspaces of a transformed feature
space. Therefore, we theoretically study the effect of changes of subspace in linear models
and the resulting performance relationships. Our results consider fixed feature spaces,
while different deep learning models have different feature representations at the final layer.
However, our study can shed light on performance changes of models from the same family
that share similar feature representations under distribution shifts.

3. Linear Relations in Regression in Finite Dimensions

We begin our theoretical study by considering the linear regression setting under additive
noise: y = xTβ∗ + z, where β∗ ∈ Rd is a fixed parameter vector that determines the
model, and z is independent observation noise. We assume that the feature vector x is
drawn randomly from a subspace, also known as the hidden manifold model (Goldt et al.,
2020). Let dP , dQ ≤ d. For data from distribution P , the feature vector is given by
x = UP cP , where UP ∈ Rd×dP has orthonormal columns and cP ∈ RdP is zero-mean and
has identity covariance. The noise variable is zero-mean and has variance σ2

P . The data
from distribution Q is generated in the same manner, but the signal is from a different
subspace with x = UQcQ, where UQ ∈ Rd×dQ has orthonormal columns, cQ ∈ RdQ is
zero-mean and has identity covariance, and the noise is zero-mean and has variance σ2

Q.

For an estimate β of β∗, define the risk on distribution P with respect to the squared

error metric as RP (β) = Ex∼P


(y − x⊤ β)2


(respectively RQ(β) on distribution Q). We

are interested in the relation of those risks for a class of estimators. We consider an estimate
of the model parameter β∗ assuming knowledge of the distribution for simplicity, equivalent
to having large amounts of training data. The analysis can be extended readily to estimates
based on finite samples. We consider the estimator

βλ = argmin
β

EP


(βTx− y)2


+ λβ22,

parameterized by the regularization parameter λ. It can be shown that βλ = αUPU
T
Pβ

∗

for α = 1/(1 + λ), which is the projection of β∗ onto the subspace scaled by the factor
α ∈ [0, 1].

The following theorem provides sufficient conditions for a linear relation between the in-
and out-of-distribution risks RP (βλ) and RQ(βλ) of this class of estimators parameterized
by the regularization parameter λ. Theorem 1 is a consequence of Theorem 6 in Appendix C,
which also provides a necessary condition for a linear risk relation.
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Theorem 1 (Sufficient conditions) The out-of-distrubiton risk RQ(βλ) is an affine func-

tion of the in-distribution risk RP (βλ) as a function of the regularization parameter λ if
one of the following conditions holds:

(a) range(UQ) ⊆ range(UP ), or range(UP ) ⊆ range(UQ);

(b) β∗ ∈ range(UP ).

Moreover, for random β∗, the expected out-of-distribution risk, Eβ∗


RQ(βλ)


, is an affine

function of the expected in-distribution risk Eβ∗


RP (βλ)


if

(c) E

β∗β∗T = I.

Condition (a) is a property of the distribution shift itself. When the subspaces are
aligned between the two distributions, we observe a linear risk relationship for the set of
estimators parameterized by λ. Recall from the previous section, that the feature subspaces
of the object detection model we evaluate roughly align, as shown in Figure 1 (right).
Thus, our theorem suggests a linear relationship, which in turn sheds light on the linear
relationship we observed in practice. We remark that the linear relationship guaranteed by
Theorem 1 is exact assuming full knowledge of the source distribution, but only approximate
in the finite sample regime for an estimate that minimizes the regularized empirical risk.

Condition (b) is a property of the parameter vector β∗ and its learnability under distri-
bution P . Under condition (b), βλ = αβ∗, which greatly simplifies the risks:

RP (βλ) = (1− α)2β∗⊤β∗ + σ2
P and RQ(βλ) = (1− α)2β∗⊤UQU

⊤
Qβ

∗ + σ2
Q.

It is thus very clear that there is a monotonic relation, as both are affine in (1− α)2.
Condition (c) meanwhile is a property of randomness in β∗ that leads to the elimination

of interaction terms that would prevent a monotonic relation. While the above result is
given for the expectation, the same effect would also occur for single problem instances in
high dimensions due to concentration of measure.

The intuition behind these three conditions all carry over to our more general results.

4. Asymptotic Monotonic Relations for General Linear Models

In the previous section, we demonstrated a linear risk relationship under a subspace shift
for linear regression models. In this section, we provide a much more general result that
holds for a larger class of distribution shifts, setups (i.e., regression and classification),
and estimators, specifically for a class of estimators based on regularized empirical risk
minimization.

4.1 Linear Model Framework

We consider a general framework of linear models f(x) = φ(x⊤β) for some β ∈ Rd, labeling
function φ : R → R, and centralized Gaussian data under two distributions

P : x ∼ N (0, 1dΣP ) and Q : x ∼ N (0, 1dΣQ),
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where ΣP and ΣQ are positive semidefinite covariance matrices. Given a ground truth
model f∗(x) = φ(x⊤β∗), we define the risk of a model f(x) = φ(x⊤β) with respect to an
error metric ψ : R2 → R on distributions P and Q as

RP (β) ≜ E
x∼P


ψ(x⊤β∗,x⊤β)


and RQ(β) ≜ E

x∼Q


ψ(x⊤β∗,x⊤β)


.

We consider the squared error ψ(z∗, z) = (z∗ − z)2 and misclassification error ψ(z∗, z) =
{z∗z < 0} as error metrics for regression and classification, respectively. Now define the

random variables, often referred to as the decision functions,

(Z∗
P , ZP ) = (x⊤β∗,x⊤β) : x ∼ P and (Z∗

Q, ZQ) = (x⊤β∗,x⊤β) : x ∼ Q.

As we capture in the following proposition, the risks for any linear model f(x) = φ(x⊤β)
depend only on a few parameters defining the covariances of the decision functions.

Proposition 2 The vectors (Z∗
P , ZP ) and (Z∗

Q, ZQ) are zero-mean bivariate normal random
vectors. Furthermore, RP (β) and RQ(β) are functions only of the covariance matrices
Cov(Z∗

P , ZP ) ∈ R2×2 and Cov(Z∗
Q, ZQ) ∈ R2×2, respectively.

Thus, while the covariance matricesΣP , ΣQ, and the model parameters β∗ and β in gen-
eral comprise on the order of d2 parameters, the risks RP (β) and RQ(β) are characterized
by no more than 6 parameters of the covariance matrices Cov(Z∗

P , ZP ) and Cov(Z∗
Q, ZQ).

In order to have a monotonic relation between the risks RP (β) and RQ(β) the dependency
needs to be reduced to a single parameter, which requires additional assumptions on the
class of models and the distribution shifts, which we state in the next subsection.

4.2 Asymptotic Estimation with Regularized Empirical Risk Minimization

We consider predictors f̂ = φ(x⊤ β) where the parameter β is the ridge-regularized empirical
risk minimization (ERM) estimate

β(D, ℓ,λ) = argmin
β

n

i=1

ℓ(yi,x
⊤
i β) +

λ

2
β22, (1)

where D = {(x1, y1), . . . , (xn, yn)} is a training set with covariates xi ∼ P , ℓ : R2 → R a
loss function, and λ > 0 a regularization parameter.

In finite dimensions, determining the in- and out-of distribution risk via determining
the covariances Cov(Z∗

P , ZP ) and Cov(Z∗
Q, ZQ) even for linear models with convex loss

functions is not possible in general, making the task of identifying a monotonic risk relation
difficult. Fortunately, however, it has recently been shown (Thrampoulidis et al., 2018;
Emami et al., 2020; Loureiro et al., 2021) that as the problem dimensionality becomes large,
thanks to concentration of measure effects, the solution to regularized ERM problems can
be characterized by the solution of a system of scalar fixed point equations in only a few
variables. Our result relies on such an asymptotic characterization by Loureiro et al. (2021).

In the following, we state the asymptotic setup, data generation process, and distribution-
shift model that we consider as an assumption, so that we can refer to it later.
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Assumption A (Setup)

(A1) Asymptotically proportional regime. The training data set size n and dimen-
sionality d tend to infinity with fixed finite ratio d/n.

(A2) Training data generation. The training data Dn = {(x1, y1), . . . , (xn, yn)} is

from distribution P , and independently generated as xi
i.i.d.∼ N (0, 1dΣP ) and yi =

ϕ(x⊤
i β

∗, ξi) for a labeling function ϕ : R2 → R, random noise ξi independent of xi

and ground truth coefficient vector β∗. Additionally, limn→∞
1
n E


y22


< ∞.

(A3) Ground-truth coefficient vector and structure of the covariances. The ground
truth coefficient vector β∗ has elements drawn i.i.d. from a zero-mean sub-Gaussian
distribution with variance σ2

β and is independent of Dn, and ΣP = ΠP is a projection
operator onto a subspace of dimension dP such that dP /d → rP ∈ (0, 1]. Furthermore,
the covariances ΣP and ΣQ are simultaneously diagonalizable.

(A4) Loss function of ERM. The loss function ℓ is a proper, lower semi-continuous, con-
vex function that is pseudo-Lipschitz of order 2 (see Definition 7 in Appendix D for a
formal definition) such that for all n and c > 0, if z2 ≤ c

√
n then there exists a pos-

itive constant C such that supz′∈∂zℓ̄(y,z) z
′2 ≤ C

√
n, where ℓ̄(y, z) =

n
i=1 ℓ(yi, zi).

Furthermore, for the standard normal random vector g ∈ Rn, 1
n E


ℓ̄(y,g)


is uni-

formly bounded in n.

The data generating process (A2) and the assumption on the loss function of ERM (A4)
are standard for most convex and linear ERM formulations used in machine learning for
regression and classification.

The assumptions on the ground truth coefficients and covariance matrices in Assumption
A3 are stronger than necessary; our result can in fact even be proved for deterministic
β∗ and essentially arbitrary ΣQ and non-isotropic ΣP (see Appendix D). However, these
assumptions greatly simplify the form of the results at little expense of generality.

Assumption A1 puts us in the proportional asymptotics regime, but the concentration
effects are often realized at only modest data sizes; see Figure 2.

Under Assumption A, the ERM estimator has the form β = ΠP (aβ
∗ + cg) for some

g ∼ N (0, Id) independent of β
∗ (see Corollary 10), extending the intuition from Theorem 1.

Therefore, the covariances Cov(Z∗
P , ZP ) and Cov(Z∗

Q, ZQ) have only two degrees of freedom
(a and c) in the asymptotic limit for fixed P , Q, and β∗, even as we vary a number of
different learning problem parameters such as loss function, noise level, labeling function,
regularization strength, and number of training examples (see Lemma 11). Even with only
two degrees of freedom, this is still not enough to imply a monotonic relation for general
risks (see Section 4.4); however, remarkably, it turns out that this specific structure is
sufficient for monotonicity for both squared error and misclassification error.

For this Setup (A), the monotonic relations between in- and out-of-distribution risks for
distributions P and Q and ground truth β∗ are entirely described by only three limiting
scalar parameters of the distribution shift, which we define next. Our assumption that
these quantities converge is stronger than necessary; we only need that these quantities be
almost surely uniformly bounded (e.g., by making ΣQ uniformly bounded in operator norm
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and have non-vanishing subspace overlap with ΠP ), in which case we can simply apply
this assumption and our results to each convergence subsequence. However, to keep the
statements of our results clean, we assume convergence of these parameters.

Assumption B (Parameters) The following limits exist for β∗
P ≜ ΠPβ

∗ almost surely:

γ = lim
d→∞

β∗⊤
P ΣQβ

∗
P

dPσ2
β

, µ = lim
d→∞

β∗⊤ΣQβ
∗

β∗⊤
P ΣQβ∗

P

≥ 1, κ = lim
d→∞

tr[ΣQΠP ]

dP
.

The parameters γ and µ are straightforward to interpret. The parameter γ captures
the ratio of the energy of β∗

P as measured by ΣQ compared to ΣP . If ΣQ is a scaled
projection operator τΠQ for some τ > 0 with dPQ dimensions overlapping with ΠP , then
γ = τdPQ/dP . The parameter µ captures the ratio of the total energy of β∗ as measured
by ΣQ compared to its restriction to the subspace determined by ΠP . For the same scaled
projection operator example, if dQ is the dimension of the subspace of ΠQ, then µ =
dQ/dPQ.

The parameter κ introduces the nuance of task dependence of the distribution shift. Note
that the ground-truth parameter β∗ and the covariance matrix ΣQ might be statistically
correlated. (We might like to consider ΣQ to be deterministic, whereas β∗ is a random
variable. However, our results in Appendix D hold almost surely for a fixed, deterministic,
covariance–ground-truth pair (ΣQ,β

∗); so we can think about this pair as deterministic
or correlated). As an example of such a correlation, ΣQ may have larger eigenvalues in
the directions where β∗ is larger in magnitude, and therefore γ > κ. Intuitively, since we
assume ΣP to be isotropic on the subspace, this means that at test time, the prediction
depends more on coefficients that were learned better during training, making the problem
easier. Conversely, if γ < κ, ΣQ and β∗ are anti-correlated, and the prediction becomes
more difficult since features that were learned poorly are emphasized more highly. This can
be summarized with the ratio κ/γ, which when less than 1 implies an easier distribution
shift, and when greater than 1 implies a harder one. When γ = κ, we say the shift is
task-independent. The case of task-dependent shifts where κ ∕= γ cannot be captured by the
ΣQ = τΠQ we used to explain γ and µ, as it does not allow ΣQ and β∗ to be correlated.

4.3 Main Result

We are now ready to state and discuss our main result. For the proof as well as a more
general result without Assumption A3 that covers arbitrary deterministic (ΣP ,ΣQ,β

∗), see
Theorems 13 and 15 in Appendix D.

Theorem 3 (Monotonic risk relations) Under Assumption A, the following hold with
probability 1 in the limit as d → ∞ for all β = β(Dn, ℓ,λ) solving (1).

(a) Regression. For ψ(z∗, z) = (z∗−z)2, there exists a monotonic relation between RQ(β)
and RP (β) that depends only on (P,Q,β∗) if and only if Assumption B holds with
γ = κ. If this relation exists, it is

RQ(β) = γRP (β) + γrPσ
2
β(µ− 1).
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Figure 2: The risk relationships for data generated according to our distribution shift
model match our theoretical results (dashed). Each colored curve corresponds to a sweep
of the regularization strength of a single model on a single random trial. For both plots,
we consider a subspace shift model with ΣQ = τΠQ having dP /d = 0.9, dQ/d = 0.8,
dPQ/d = 0.7, and τ = 2. We use n = 1000, d = 800, σ2

β = 1, and have γ ≈ 1.56,
and µ ≈ 1.14. Left: Mean squared error for ridge regression models (blue) trained on
yi = x⊤

i β
∗ + σξi for σ2 = 0.2 and κ = γ. Although the tuning parameter overshoots the

minimizer in the parameter sweep, it still always lies approximately on the line. Right:
Misclassification error for ridge regression (blue) and logistic regression (orange) models with
ridge penalty trained on corrupted binary labels generated as Pr(yi = sign(x⊤

i β
∗)) = 0.8

with κ = 5γ. We also plot ridge regression trained on noiseless labels yi = x⊤
i β

∗ (green)
to illustrate that the result is independent of the labeling function, depending only on the
feature distribution shift.

(b) Classification. For ψ(z∗, z) = {z∗z < 0}, there exists a monotonic relation between
RQ(β) and RP (β) that depends only on (P,Q,β∗) if and only if Assumption B holds.
If this relation exists, it is

sec2(πRQ(β)) = κµ
γ


sec2(πRP (β))− 1


+ µ,

where sec(t) = 1
cos(t) . Furthermore, if µ = 1, then

log(tan(πRQ(β))) = log(tan(πRP (β))) + 1
2 log

κ
γ .

Our result states that we have a monotonic relation between in- and out-of-distribution
risks under our distribution shift model, for all estimates β(Dn, ℓ,λ) that solve a problem of
the form (1), including, e.g., as we vary the training set size n, the regularization parameter
λ, or even the labeling ϕ or loss function ℓ.

Figure 2 illustrates this behavior approximately in finite dimensions; there we plot the
prediction of our theory along with realizations of data and estimates β(Dn, ℓ,λ). We see
effects described by Theorem 3 in action: two models with the same risk on the distribution
that generated the training data have the same risk on the new distribution, regardless of
whether they were trained using regression or classification labels, of which particular loss
function was used in training, of the training sample size, or of the level of label noise. As we
can see in the figure, in finite dimensions individual models can have locally non-monotonic
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Figure 3: Left/middle: We plot the theoretical risk relation curves for misclassification
error. General behavior of the risk relation is a combination of the two behaviors we
demonstrate here. Left: RQ converges to a nonzero limiting value as RP → 0, which is
determined by µ. Middle: While keeping the same limiting value of RQ as RP → 0, the
shift is harder as κ/γ gets larger (red) and easier as κ/γ gets smaller (blue). Right: We
train deep network models on classifying even vs. odd handwritten digits from the MNIST
and ARDIS datasets, evaluating test performance during training as validation accuracy
milestones are reached (dots with error bars over 8 trials). We also plot our theoretical risk
relation with µ and κ/γ chosen to minimize squared error of the fit for each model.

relationships, and it is only as the system becomes asymptotically large and concentration
of measure phenomena are realized that the monotonic relation emerges.

For both regression and classification, the risk relations are linear, with classification
requiring the transformation R → sec2(πR) first before it becomes linear. This linearity
is no coincidence; as we prove, whenever the risk depends linearly (after a fixed transfor-
mation) on some of the parameters of the covariances Cov(Z∗

P , ZP ) and Cov(Z∗
Q, ZQ), as

is the case for both squared error and misclassification error, the only monotonic relation
that can exist is a linear one. We refer reader to Appendix D for proof details.

The risk relations are similar in that for both regression and classification, µ > 1 in-
dicates irreducible error due to a new subspace in Q that was unseen during training on
P . However, the regression and classification risk relations also have a key difference:
the squared error risk relation for regression only holds when γ = κ—i.e., only for task-
independent shifts. This means that the subspace shift model with ΣQ = τΠQ captures all
aspects of the regression risk relation.

The classification risk relation, on the other hand, holds for task-dependent shifts with
γ ∕= κ. In particular, if we let µ → 1, then we find that the risk relation is remarkably
similar to the empirical observation by Miller et al. (2021) that the risk relation is linear after
applying an inverse Gaussian cumulative distribution function transformation Φ−1(·). Note
that the log(tan(π·)) transformation in Theorem 3 is strikingly similar to Φ−1(·); in fact,
supu∈R |12Φ(u/

√
2) − 1

π tan−1(eu)| ≤ 0.01. This suggests that such “natural” distribution
shifts formed by repeated dataset collection may have no subspace shift component (µ →
1), but rather only a task-dependent shift (γ ∕= κ). We illustrate the behavior of the
classification risk shift for different values of µ and κ/γ in Figure 3 (left).

For different feature spaces, our theory predicts different monotonic relations. This
is also observed in practice: in Figure 3 (right), we show that except for the ResNet50
model, our theory predicts well the risk relation as a function of early stopping for deep
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network models trained on MNIST (LeCun et al., 2010), an easy handwritten digit classifi-
cation task, and applied to ARDIS (Kusetogullari et al., 2020), a more difficult handwritten
digits dataset. See Appendix B for a discussion of how this distribution shift fits the task-
dependent shift model. The fits in Figure 3 show that different neural network models,
which have their own respective implicit feature spaces, result in different monotonic risk
relations. Because the shift is from an easy task to a hard one, we expect to see similar be-
havior to the case γ < κ, which matches the general trend of the fits, with some fits tending
toward more or less task dependence based on model class. The tendency of models to dip
in performance on ARDIS around 0.9 accuracy on MNIST is, we believe, a result of the
change in the learned features of the networks during training, and is worst for ResNet50.

4.4 Settings without Monotonic Relations

Given the generality of the result in Theorem 3 across essentially any labeling function,
training loss, and regularization strength, one might conjecture that the result holds for
any risk and for any regularized ERM estimator. This is not the case, however, as the
monotonic risk relations only arise due to the special structure of the risks and of ridge
regularization.

As mentioned in the previous section, and as we elaborate on in the proof in Appendix D,
monotonic risk relations arise when the metric ψ depends linearly on some one-dimensional
function of the decision function covariances Cov(Z∗

P , ZP ) and Cov(Z∗
Q, ZQ). The fact that

squared error and misclassification error depend on different functions of the covariances is
the first clue that the monotonicity of risk relations might not be universal. Indeed, the
risk relations that arise are substantially distinct, as the misclassification relation captures
task-dependent shifts while squared error does not.

As important counterexamples, popular convex losses used to train classification models
such as the hinge loss and logistic loss do not exhibit monotonic risk relations. By Lemma 11,
we know that the decision function covariances have only three degrees of freedom a, b, c
(for general ΣP ), but that the monotonic relation should hold regardless of how these
are varied. In Figure 4, however, we show that as we vary even only a single parameter
(here a), the hinge loss and logistic loss do not exhibit monotonic relations, while the
misclassification error does. In general, monotonicity is further destroyed as we vary more
degrees of freedom. This counterexample suggests that practitioners should be careful in
their choice of validation metric: optimization of the in-distribution validation loss may not
coincide with optimization of the out-of-distribution loss. Choosing a validation metric for
which we expect monotonicity, such as misclassification error, is the better choice.

Another way that monotonicity can be broken is by changing the dependence of the
decision function covariance on the underlying free parameters a, b, c. This occurs, for
example, if we change the regularizer from the ridge penalty 1

2·
2
2 to some other regularizer

such as the ℓ1 norm ·1. As we show in Appendix D.6, for separable regularizers, we
still have monotonic relations, but now for only a restricted class of distributions shifts.
Specifically, we only have monotonic relations in the task-independent setting (γ = κ),
since in this case the covariances still admit similar linear decompositions. Otherwise, the
nonlinearity due to the regularization penalty destroys monotonicity.
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Figure 4: Using Monte Carlo simulation with 106 random draws of (Z∗, Z) from both P
and Q under Assumption A, we compute the risk relationships for misclassification error
(left) alongside the logistic loss ψ(z∗, z) = log(1+exp(−sign(z∗)z)) (middle) and the hinge
loss ψ(z∗, z) = max {1− sign(z∗)z} (right). Here we consider a subspace shift model with
dP /d = 0.9, σβ = 1, γ = 1, κ = 1, µ = 1.2. We fix degrees of freedom b = c = 1 and vary a.
Unlike the misclassification error, these losses do not exhibit monotonic risk relationships
as a function of a.

5. Linear Relations in Linear Inverse Problems

In this section, we switch to signal reconstruction problems, where linear relationships are
also observed for signal reconstruction methods under distribution shifts (Darestani et al.,
2021).

We consider a linear inverse problem setup where the measurement y is generated by a
linear transform of the signal x plus some additive noise z independent of x, i.e., y = Ax+z,
where A ∈ n×d with n ≤ d, x ∈ d and z ∈ n. We assume a similar signal subspace
model as in Section 3: for data from distribution P , the signal is given by x = UP cP ,
where UP ∈ d×dP has orthonormal columns and cP ∈ RdP is zero-mean and has identity
covariance. The noise variable z is independent of cP and has mean zero and covariance
matrix σ2

P I. The data from distribution Q is generated in the same manner, but the signal
is from a different subspace, i.e., x = UQcQ, where UQ ∈ d×dQ is orthonormal, cQ ∈ RdQ

is zero-mean and has identity covariance, and the covariance matrix of the independent
noise z is σ2

QI. We assume that the number of measurements is larger than the subspace
dimension, i.e., dP , dQ ≤ n.

We consider the class of signal estimates given by

xλ(y) = W∗y, W∗ = argmin
W

EP


x−Wy22


+ λW2F .

Define the risk of an estimate x on distribution P with respect to the normalized squared

error as RP (x) = EP

(x− x)/
√
dP

2
2


and likewise for distribution Q. We show that the

relationship between RP (xλ) and RQ(xλ) is captured by a similarity between subspaces
UP and UQ that is determined by the principal angles between them. Let θ ∈ Rmin{dP ,dQ}

be the principal angles between subspaces spanned by the columns of UP and UQ, and
define a = cos(θ)22/dQ.
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Figure 5: Non-linear relationship between risks RP (x) and RQ(x) in the low SNR regime
(left) and approximate linear relationship in the high SNR regime (right) in signal denois-
ing. Each curve plots the risks of estimate xλ as the parameter λ varies. The signal-to-noise
ratio is defined as SNR = 1/σ2

P and we set σ2
Q = σ2

P . Shifts in the subspace is captured by

a = cos(θ)22/dQ.

Denoising. We start with denoising where the measurement matrix is the identity, i.e.,
A = I. It can be shown that xλ(y) = αUPU

T
Py,where α = 1/(1 + σ2

P + λ). The following
relationship between the risks RP (xλ) and RQ(xλ) holds.

Theorem 4 The risks RP (xλ) and RQ(xλ) of the signal estimate xλ obey

RQ(xλ) = aRP (xλ) + (1− a) + α2


dP
dQ

σ2
Q − aσ2

P


,

where α = 1/(1 + σ2
P + λ).

In general, the relationship between the risks RP (xλ) and RQ(xλ) is non-linear: it can
be shown that RP (xλ) = (1 − α)2 + α2σ2

P (see the proof of Theorem 4), hence the term

α2

(dP /dQ)σ

2
Q − aσ2

P


is not a linear function of the risk RP (xλ). However, if the noise

variances σ2
P ,σ

2
Q ≪ 1, then an approximate linear relation RQ(xλ) ≈ aRP (xλ) + (1 − a)

holds.
We illustrate Theorem 4 through a denoising simulation. In Figure 5, we plot the

trajectory (RP (xλ),RQ(xλ)), as the parameter λ of the estimate xλ varies. For high SNR
the relationship between RP (xλ) and RQ(xλ) is approximately linear, and for low SNR it
is highly nonlinear.

Compressed sensing. We continue with compressed sensing, where the matrix A is a
random matrix that down-samples the signal x. Now the estimate xλ(y) is only approxi-
mately αUPU

T
Py due to the random measurement process. However, a similar relationship

still holds between the risks.

Theorem 5 Let A ∈ Rn×d be a random Gaussian matrix with independent entries drawn
from the distribution N (0, 1/n). There exists a constant c > 0 such that, for any 0 <  <
1/dP , with probability at least 1− 4(dP (dP + dQ)) exp(−n2/8), it holds that

RQ(xλ)− aRP (xλ)− (1− a)− α2


dP
dQ

σ2
Q − aσ2

P

 ≤ c,

where α = 1/(1 + σ2
P + λ).
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In the high SNR regime, if the number of measurements n is large enough, then with
high probability there is an approximate linear relationship between the risks RP (xλ) and
RQ(xλ).

6. Conclusion

In this paper, we studied the performance of estimators based on regularized empirical risk
minimization trained on a distribution P , quantifying how they perform under distribution
shifts on a distribution Q for regression, classification, and signal estimation problems. We
identified conditions under which monotonic relations between the in-distribution risk RP

and out-of-distribution risk RQ arise that hold for broad classes of regularized estimators,
similarly to the linear risk relationships observed in practice.

Our findings in this work suggest that the linear and monotonic relations under distri-
bution shifts observed in practice are emergent phenomena that arise from concentration
of measure effects in large systems, which reduce the dependence of the risks down to only
a single parameter. By identifying necessary and sufficient conditions for monotonic risk
relations to exist, and characterizing the form of the monotonic relations, our work enables
the principled discussion and investigation of such risk relations in future work.
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Appendix A. Details on the Experimental Results

Here, we provide further details on the numerical experiments in the main body.

A.1 Experimental Details for Object Detection

In this section, we describe the details of the object detection experiment from Section 2.
The models we evaluate are from torchvision.models and public github repositories:

• RetinaNet (Lin et al., 2017): RetinaNet ResNet-50 FPN

• Mask R-CNN (He et al., 2017): Mask R-CNN ResNet-50 FPN

• SSD (Liu et al., 2016): SSD300 VGG16, SSDlite320 MobileNetV3-Large

• Faster R-CNN (Ren et al., 2015): Faster R-CNN ResNet-50 FPN, Faster R-CNN
MobileNetV3-Large FPN, Faster R-CNN MobileNetV3-Large 320 FPN
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• Keypoint R-CNN (He et al., 2017): Keypoint R-CNN ResNet-50 FPN

• YOLOv5 (Redmon et al., 2016; Jocher et al., 2020): YOLOv5n, YOLOv5s, YOLOv5m,
YOLOv5l, YOLOv5x

These model are trained on the COCO 2017 training set (Lin et al., 2014). We take the
trained models and evaluate their performances on the COCO 2017 validation set and the
VOC 2012 training/validation set (Everingham et al., 2010). Instead of using the standard
metric for object detection—the mean average precision (mAP), which is the area under
the precision-recall curve averaged over all classes—we consider the mean squared error in
bounding box coordinates and only the person class. The predicted and the ground truth
bounding box coordinates are normalized by the height and width of individual image. All
models are evaluated using an NVIDIA A40 GPU.

To analyze the spectrum of the feature space of YOLOv5, we collect feature vectors
through the following procedure. For each image in each evaluation set, we record the
ground truth person objects that are correctly detected by all models listed above with
an IOU threshold greater than or equal to 0.2. Then for each commonly detected ground
truth object, we consider the prediction that has the largest IOU with the ground truth
bounding box as the true positive. We then extract the feature vectors corresponding to
these true positive predictions from the 24th layer of YOLOv5. This procedure is illustrated
in Figure 6.

32
12
8

128

Layer 1

512
8

8

Layer 24
(feature layer)

z1

z2

conv1⇥ 1
box1 = (0.38, 0.06, 0.62, 0.56)

box2 = (0.68, 0.27, 0.94, 0.76) box1

box2

Figure 6: Visualization of feature extraction from YOLOv5: only feature vectors that cor-
respond to true positive predictions are recorded for feature space analysis. The prediction
of box1, which is based on the feature vector z1, is true positive, while the prediction of
box2, which is based on the feature vector z2, is false positive. We record the feature vector
z1 and discard the feature vector z2. Similarly, predictions in other grid positions in the
8× 8 grid of the feature layer are not recorded if they do not correspond to a true positive
prediction, since these feature vectors do not contain much information about the correct
bounding box coordinates.

At the end, relevant feature vectors across the same evaluation set are stacked together

and we obtain two sets of feature vectors Zin = {z(i)j ∈ R512 : i ∈ [Nin], j ∈ [K
(i)
in ]} and

Zout = {z(i)j ∈ R512 : i ∈ [Nout], j ∈ [K
(i)
out]} for the COCO 2017 and VOC 2012 evaluation

dataset respectively, where z
(i)
j is the jth true positive prediction on image i, Nin and Nout
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are the numbers of images of the respective dataset and K
(i)
in and K

(i)
out are the number of

true positive predictions on the ith image respectively.
We make a few comments:

1 We only consider common true positive predictions: (1) for false positive and true
negative predictions, there is no object to predict, hence the feature vectors contain
no information for the regression task; (2) for false negative predictions, either the
squared errors of the predicted coordinates are large since the IOU is lower than
the 0.2 threshold, or they have lower confidence than another prediction which is true
positive, so we simply exclude the corresponding feature vectors as they do not provide
much useful information; (3) only common true positive predictions are considered so
that all models make predictions on the same set of feature vectors.

2 YOLOv5 uses multiple layers (the 18th and 21st layers in addition to the 24th layer)
as input to the bounding box prediction layer, but we find that most common true
positive predictions are based on the 24th layer, probably due to the fact that this
layer has a spacial dimension 8 × 8, where most ground truth objects size fit into,
while the other layers have special dimension 16× 16 and 32× 32 matching small and
tiny objects, which are relatively harder to predict.

A.2 Experimental Details for Digit Classification

In this section, we describe the details of the even vs odd handwritten digit classification
experiment in Figure 3 (right).

We consider a binary classification task of classifying even versus odd digits on the
MNIST (LeCun et al., 2010) dataset and ARDIS (Kusetogullari et al., 2020) dataset IV.
The ARDIS dataset is a new image-based handwritten historical digit dataset extracted
from Swedish church records, which induces a natural distribution shift from the widely
used MNIST dataset. The ARDIS dataset IV has the same image size as the MNIST
dataset with white digits in black background. The following figure shows examples of
digits from both datasets.

(a)

(b)
Figure 7: Examples of digits: (a) ARDIS and (b) MNIST.

The models we evaluate are from torchvision.models:

• AlexNet (Krizhevsky et al., 2012)

• VGG (Simonyan and Zisserman, 2015): VGG11, VGG16

• ResNet (He et al., 2016): ResNet18, ResNet50

• DenseNet (Huang et al., 2017): DenseNet121, DenseNet161
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Since the models we evaluate are originally designed for ImageNet (Deng et al., 2009)
classification where the image sizes are larger, we resize the MNIST and ARDIS digits from
28×28 to 75×75. We train the model listed above on MNIST training set using the Adam
optimizer with an initial learning rate 10−4 and a batch size 10 and a learning rate scheduler
with a step size 10 epochs and a learning rate decay factor 0.1. The models at the top right
corner of Figure 3(right) are trained for 20 epochs. Intermediate models are obtained by
early stopping when validation accuracy first reaches 0.5, 0.6, 0.7, 0.8 and 0.9. Each model
is trained eight times with random initialization and with random shuffling of the training
data, using different random seeds. All models are trained on an NVIDIA A40 GPU.

Appendix B. Intuition Regarding Feature Scaling

In both regression and classification, we find that the risk relations depend on the scaling
of the features. We give intuition regarding where these can be seen in practice for two
settings of real data that we consider in this paper.

Task-independent feature scaling. The scaling of the features may be uncorrelated
with the ground truth coefficients β∗, such as in the subspace shift case Σ = ρΠQ. An ex-
ample in real data is that the principal components of the learned feature space of YOLOv5
model on VOC 2012 have uniformly larger magnitudes than those on COCO 2017, as can
be seen from Figure 1.

Task-dependent feature scaling. The scaling of the features may be correlated with
the ground truth coefficients β∗. A motivating example in real data is the MNIST and
ARDIS handwritten digit datasets. The universal ground truth labeling function for both
of these datasets is the same (humans can classify digits from both datasets very well) and
conceivably relies on a complex combination of features involving stroke and loop placement.
Such features are for example the types of features found by nonlinear embedding techniques
such as Isomap Tenenbaum et al. (2000). While both strokes and loops are present in both
datasets, we observe that some of these occur with more frequency and intensity in one
dataset versus the other. For example, italics and embellishments are much more common
in ARDIS than in MNIST, as can be seen from Figure 7. We imagine that in feature space,
this corresponds to a larger scaling of these features.

Appendix C. Proof of Theorem 1

In this section, we prove the main results on linear relations in linear regression in finite
dimensions.

The proof of Theorem 1 is based on the following sufficient and necessary condition for
a linear relationship between risks RP (βλ) and RQ(βλ).

Theorem 6 (Sufficient and necessary condition) The risk RQ(βλ) of estimator βλ is

an affine function of RP (βλ), i.e., there exist a and b such that RQ(βλ) = aRP (βλ) + b, if
and only if

β∗TΠPΣQΠP⊥β∗ = 0,
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where ΠP = UPU
T
P is a orthonormal projection onto the subspace spanned by the or-

thonormal matrix UP , ΠP⊥ = I−ΠP is a projection onto the orthogonal complement, and
ΣQ = EQ


xxT


.

If condition (a) holds, thenΣQ andΠP commute, and thereforeΠPΣQΠP⊥ = ΣQΠPΠP⊥ =
0. If condition (b) holds, then ΠP⊥β∗T = 0. In both cases, the term marked with (∗) in the
proof of Theorem 6 becomes zero and the linear relationship RQ(β) = aRP (β) + b holds
with slope and intercept

a =
β∗TΠPΣQΠPβ

∗

β∗TΠPβ∗ ,

b = β∗T (ΣQ − aΠP )β
∗ + σ2

Q − aσ2
P .

If condition (c) holds, then expectation of the term marked with (∗) is zero:

Eβ∗


β∗TΠPΣQΠP⊥β∗


= tr


ΠPΣQΠP⊥Eβ∗


β∗β∗T


= tr (ΣQΠP⊥ΠP ) = 0,

and Eβ∗


RQ(βλ)


= aEβ∗


RP (βλ)


+ b with slope and intercept

a =
tr (ΠPΣQΠP )

tr (ΠP )
,

b = tr (ΣQ − aΠP ) + σ2
Q − aσ2

P .

This concludes the proof of Theorem 1. It remains to prove Theorem 6.

Proof of Theorem 6. The idea is to relate the risks RP (β) and RQ(β) with the help of
the parameter α. We start by expressing the risk of β = αUPU

T
Pβ

∗ on distribution P as a
function of α

RP (β) = EP


(y − xTβ)2



= (β∗ − β)TEP


xxT


(β∗ − β) + σ2

P

= β∗T(I− αUPU
T
P )UPEP


cP c

T
P


UT

P (I− αUPU
T
P )β

∗ + σ2
P

= β∗TUPEP


cP c

T
P


UT

Pβ
∗ + (α2 − 2α)β∗TUPEP


cP c

T
P


UT

Pβ
∗ + σ2

P

= β∗TΠPβ
∗ + (α2 − 2α)β∗TΠPβ

∗ + σ2
P .

19



LeJeune, Liu, and Heckel

Similarly, on distribution Q

RQ(β) = EQ


(y − xTβ)2



= (β∗ − β)TEQ


xxT


((β∗ − β)) + σ2

Q

= β∗T(I− αUPU
T
P )ΣQ(I− αUPU

T
P )β

∗ + σ2
Q

= β∗TΣQβ
∗ + α2β∗TUPU

T
PΣQUPU

T
Pβ

∗

− 2αβ∗TUPU
T
PΣQ(UPU

T
P +UP⊥UT

P⊥)β
∗ + σ2

Q

= β∗TΣQβ
∗ + (α2 − 2α)β∗TUPU

T
PΣQUPU

T
Pβ

∗

− 2αβ∗TUPU
T
PΣQUP⊥UT

P⊥β
∗ + σ2

Q

= β∗TΣQβ
∗ + (α2 − 2α)β∗TΠT

PΣQΠPβ
∗

− 2αβ∗TΠPΣQΠP⊥β∗
  

(∗)

+σ2
Q.

Since the risk RP (β) depends linearly on α2 − 2α, a linear relationship between RQ(β)
and RP (β) is equivalent to RQ(β) being also linearly dependent on α2 − 2α. Hence, it is
sufficient and necessary that the term marked with (∗) is zero.

Appendix D. Proof of Theorem 3

The proof of Theorem 3 involves the following steps:

(Step 1) Asymptotics. We invoke the result of Loureiro et al. (2021) (Theorem 9) to characterize
the covariances of the decision functions of the estimator and ground truth in terms
of three parameters (Lemma 11).

(Step 2) Monotonicity for linear risks. We prove a generic result for any risk that is parameter-
ized as an affine function of some of its parameters, providing necessary and sufficient
conditions for a monotonic relation (Lemma 12).

(Step 3) Specific metrics. We apply the generic result in Lemma 12 to squared error and
misclassification error to obtain the most general results (Theorems 13 and 15).

(Step 4) Simplifying assumptions. To aid in interpretability, we apply Assumption A3 to sim-
plify the necessary and sufficient conditions.

D.1 Step 1: Asymptotics

Assumption A4 states that the loss function is pseudo-Lipschitz continuous of order 2, which
is defined as follows.

Definition 7 (Pseudo-Lipschitz continuity) For a given p ≥ 1, a function f : Rr → Rs

is called pseudo-Lipschitz of order p if there exists a constant C > 0 such that for all
x1,x2 ∈ Rr,

f(x1)− f(x2) ≤ Cx1 − x2

1 + x1p−1 + x2p−1.
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We also need the definition of the proximal operator of a function.

Definition 8 (Proximal operator) The proximal operator of a function f : Rr → R is
the unique minimizer of the following objective:

Proxf (z) ≜ argmin
x

f(x) + 1
2x− z22.

We finally replace Assumption A with a slightly more general version, that implies Assump-
tion A.

Assumption A* (General setup) Assumption A holds with Assumption A3 replaced as
follows.

(A3*) The ground truth coefficients β∗ are deterministic, or they are random with sub-
Gaussian one-dimensional marginals independent of D, and the spectral distribution
of ΣP converges with bounded eigenvalues, such that 1

dβ
∗⊤ΣPβ

∗ and 1
dβ

∗22 converge
to finite nonzero limits as d → ∞.

Armed with Assumption A*, we are now ready to re-state Theorem 5 of Loureiro et al.
(2021) in our notation.

Theorem 9 Under Assumption A*, there exist scalar coefficients a ∈ R, b, c, C1, C2, C3 > 0
such that for any pseudo-Lipschitz function h : Rd → R of order 2 and any 0 <  < C1, with
probability at least 1− C2

2
e−C3n4, the estimator β in (1) satisfies

h


1√
d
β

− h


1√
d
Σ

−1/2
P Prox1

b
1
2

Σ−1/2
P ·


2

2


a
bΣ

1/2
P β∗ +

√
c
b g

  < ,

where g ∼ N (0, Id) is independent of β∗.

Combining this theorem with

Prox 1
2b

Σ−1/2
P ·


2

2

(z) =

Id +

1
bΣ

−1
P

−1
z

and using the Borel–Cantelli lemma, extending from a single function h to a sequence of
functions that are uniformly pseudo-Lipschitz of order 2, we obtain the following corollary.

Corollary 10 Under Assumption A*, there exist a ∈ R, b, c > 0 such that for any pseudo-
Lipschitz functions hd : Rd → R of order 2 with uniform constant C > 0, the following holds
almost surely for the estimator β in (1):

lim
d→∞

hd


1√
d
β

= lim

d→∞
hd


1√
d
Σ

1/2
P (ΣP + bId)

−1 (aΣ
1/2
P β∗ +

√
cg)


,

where g ∼ N (0, Id) is independent of β∗.

Finally, we obtain the form of the limiting covariances that we need for our proof.
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Lemma 11 Under Assumption A*, as n, d → ∞, and assuming the limits below exist for
any a ∈ R, b, c > 0, there exist a ∈ R, b, c > 0 such that the estimator in (1) has decision
functions converging almost surely to ZP and ZQ that satisfy

E

Z∗2
P


= lim

d→∞
1
dβ

∗⊤ΣPβ
∗,

E

Z∗
P
ZP


= lim

d→∞
a
dβ

∗⊤Σ2
P (ΣP + bId)

−1 β∗,

E

Z2
P


= lim

d→∞
a2

d β
∗⊤Σ3

P (ΣP + bId)
−2 β∗ + c

dtr

Σ2

P (ΣP + bId)
−2



E

Z∗2
Q


= lim

d→∞
1
dβ

∗⊤ΣQβ
∗,

E

Z∗
Q
ZQ


= lim

d→∞
a
dβ

∗⊤ΣQΣP (ΣP + bId)
−1 β∗,

E

Z2
Q


= lim

d→∞
a2

d β
∗⊤ΣP (ΣP + bId)

−1ΣQΣP (ΣP + bId)
−1 β∗ + c

dtr

ΣQΣP (ΣP + bId)

−2

.

Proof The variances E

Z∗2
P


and E


Z∗2
Q


are simply defined as stated. For E


Z∗
P
ZP


,

observe that the decision functions x⊤β∗ and x⊤ β have correlation

E
x∼P


(x⊤β∗)(x⊤ β)


= 1

dβ
∗⊤ΣP

β.

The functions in the sequence hd(u) =
1√
d
β∗⊤ΣPu are uniformly Lipschitz since 1

dβ
∗⊤ΣPβ

∗

converges and ΣP has uniformly bounded eigenvalues almost surely, so we can apply Corol-

lary 10 to obtain the stated result. Similarly, for E

Z2
P


, the functions hd(u) = u⊤ΣPu

are pseudo-Lipschitz continuous of order 2 with uniform constant C. The calculation is

analogous for E

Z∗
Q
ZQ


and E


Z2
Q


, applying the functions hd(u) = 1√

d
β∗⊤ΣQu and

hd(u) = u⊤ΣQu, respectively.

D.2 Step 2: Monotonicity for Linear Risks

Proving necessary and sufficient conditions for arbitrary risks is not a trivial task. However,
if the risk has a linear structure in some of the free parameters (perhaps after some invertible
transformation), we can exploit this linearity to show that any risk relation must be affine.

Lemma 12 Consider the following functions defined on A×B for open sets A ⊆ RkA and
B ⊆ RkB :

RP (a,b) = h(w(a)⊤vP (b) + v0P (b)) and RQ(a,b) = h(w(a)⊤vQ(b) + v0Q(b)),

where

• h : R → R is a monotonically increasing or decreasing function,

• (w(a), 1) ∈ RkW+1 is a vector of linearly independent scalar functions of a over A,
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• vP , vQ, v
0
P , and v0Q are differentiable functions of b, and vP (b) ∕= 0 for all b ∈ B.

The following statements are equivalent:

(i) There exists a monotonically increasing function u : R → R such that RQ(a,b) =
u(RP (a,b)) for all a,b ∈ A× B.

(ii) There exists ρ > 0, u0 ∈ R such that for all b ∈ B, vQ(b) = ρvP (b) and v0Q(b) =

ρv0P (b) + u0.

Furthermore, if u exists, it has the form u(t) = h

ρh−1(t) + u0


.

Proof We first show that condition (ii) implies (i). Denote t(a,b) = w(a)⊤vP (b)+v0P (b)
and note that condition (ii) implies that RP (a,b) = h(t(a,b)) and RQ(a,b) = h(ρt(a,b)+
u0). Next, note that the function ũ(t) = ρt+ u0, ρ > 0 is monotonically increasing, and so
is u = h ◦ ũ ◦ h−1, since a composition of increasing and decreasing functions is increasing
if the number of decreasing functions is even, and h and h−1 are either both increasing or
both decreasing. Thus, condition (ii) implies (i).

It remains to show that condition (i) implies (ii). For this, we identify necessary con-
ditions for (i) to hold. First note that by a similar argument to the (ii) =⇒ (i) case , (i)
holds if and only if there is a monotonic ũ such that

w(a)⊤vQ(b) + v0Q(b) = ũ(w(a)⊤vP (b) + v0P (b)). (2)

In the following, we show that for this equation to hold, the function ũ must have the form
ũ(t) = ρt+ u0 for ρ > 0.

We begin by taking the gradient of both sides of equation (2) with respect to w(a),
giving the condition

vQ(b) = ũ′(w(a)⊤vP (b) + v0P (b))vP (b). (3)

Since the above equation must hold for all a,b ∈ A × B, the derivative ũ′ : R → R must
be a function of b only—let us write this as ρ(b) ≜ ũ′(w(a)⊤vP (b) + v0P (b)). We can
additionally take the gradients of equation (2) with respect to b:

∇bvQ(b)w(a) +∇bv
0
Q(b) = ũ′(w(a)⊤vP (b) + v0P (b))


∇bvP (b)w(a) +∇bv

0
P (b)


.

We can rewrite this equation as


∇b(vQ(b), v

0
Q(b))− ρ(b)∇b(vP (b), v

0
P (b))


(w(a), 1) = 0.

In this form, we can see that because (w(a), 1) is a vector of linearly independent functions
over a ∈ A, the only solutions to this equation are the trivial solutions which satisfy

∇b(vQ(b), v
0
Q(b)) = ρ(b)∇b(vP (b), v

0
P (b)). (4)

Returning to equation (3), we can now take its gradient with respect to b, yielding

∇bvQ(b) = (∇bρ(b))vP (b)
⊤ + ρ(b)∇bvP (b),
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which, combined with equation (4) implies that (∇bρ(b))vP (b)
⊤ = 0, implying that

∇bρ(b) = 0 since vP (b) ∕= 0 by assumption. Thus, ρ(b) is constant as a function of
b, implying that ũ is an affine function; let us therefore write ũ(t) = ρt+ u0. Then we can
rewrite equation (2) as


(vQ(b), v

0
Q(b))− ρ(vP (b), v

0
P (b))− (0, u0)

⊤
(w(a), 1) = 0.

By linear independence again, this equation can have only the trivial solution, implying
that v0Q(b) = ρv0P (b) + u0. Lastly, this mapping is monotonically increasing only if ρ > 0.

D.3 Step 3: Squared Error

We start with the simpler case of squared error. We first introduce notation to simplify
expressions. Let

E

Z∗2
P


= ΩP , E


Z∗
P
ZP


= aΓP (b), E


Z2
P


= a2ΛP (b) + cΘP (b),

E

Z∗2
Q


= ΩQ, E


Z∗
Q
ZQ


= aΓQ(b), E


Z2
Q


= a2ΛQ(b) + cΘQ(b),

where

ΩP ≜ lim
d→∞

1
dβ

∗⊤ΣPβ
∗, ΓP (b) ≜ lim

d→∞
1
dβ

∗⊤Σ2
P (ΣP + bId)

−1 β∗,

ΛP (b) ≜ lim
d→∞

1
dβ

∗⊤Σ3
P (ΣP + bId)

−2 β∗, ΘP (b) ≜ lim
d→∞

1
dtr


Σ2

P (ΣP + bId)
−2


,

ΩQ ≜ lim
d→∞

1
dβ

∗⊤ΣQβ
∗, ΓQ(b) ≜ lim

d→∞
1
dβ

∗⊤ΣQΣP (ΣP + bId)
−1 β∗,

ΛQ(b) ≜ lim
d→∞

1
dβ

∗⊤ΣP (ΣP + bId)
−1ΣQΣP (ΣP + bId)

−1 β∗,

ΘQ(b) ≜ lim
d→∞

1
dtr


ΣQΣP (ΣP + bId)

−2

.

(5)

We now prove the squared error case in the following theorem.

Theorem 13 Under Assumption A*, with probability 1, in the limit as d → ∞ for f̂(x) =
φ(x, β(D, ℓ,λ)) solving (1), for ψ(z∗, ẑ) = (z∗ − ẑ)2, there exists a monotonic relation
between RQ(f̂) and RP (f̂) that depends only on (P,Q,β∗) if and only if there exists ρ > 0
such that for all b > 0,

ΓQ(b) = ρΓP (b), ΛQ(b) = ρΛP (b), ΘQ(b) = ρΘP (b).

If this relation exists, it is

RQ(f̂) = ρ(RP (f̂)− ΩP ) + ΩQ.

Proof We begin by observing that

RP (f̂) = E

(Z∗

P − ZP )
2

= E


Z∗2
P


− 2E


Z∗
P
ZP


+ E


Z2
P


,
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which means that we can apply Lemma 12 with h(t) = t, w(a, c) = (−2a, a2, c), and

vP (b) = (ΓP (b),ΛP (b),ΘP (b)), v0P (b) = ΩP ,

vQ(b) = (ΓQ(b),ΛQ(b),ΘQ(b)), v0Q(b) = ΩQ.

Therefore, the condition that vQ(b) = ρvP (b) is equivalent to the stated condition. The
condition that v0Q(b) = ρv0P (b)+u0 is trivially satisfied by u0 = v0Q(b)−ρv0P (b) since v

0
P and

v0Q are constant functions of b.

D.4 Step 3: Misclassification Error

We now move to the slightly more difficult case of misclassification error. We first need a
closed-form expression for the risk, which we obtain from the following lemma.

Lemma 14 For two zero-mean jointly Gaussian random variables X and Y ,

Pr(XY < 0) =
1

π
arccos


E [XY ]

E [X2]E [Y 2]


.

Proof First define X = X/


E [X2] and Y = Y/


E [Y 2]. We can decompose Y as:

Y = E

X Y


X +


1− E


X Y

2
UY ,

where UY is a standard normal random variable. Observe that for any scalar a > 0,
X Y < 0


=


a X Y < 0


, so we can jointly scale X and UY without affecting the event,

even if this scalar is random. Because X and UY are independent standard normal variables,
this means we can choose a random variable Θ ∼ Uniform[0, 2π) such that

(cosΘ, sinΘ) =




X

X2 + U2
Y

,
UY

X2 + U2
Y



 .

Now

Pr(XY < 0) = Pr

X Y < 0


= Pr


cosΘ


E

X Y


cosΘ+


1− E


X Y

2
sinΘ


< 0


.

This inequality is satisfied for

Θ ∈ [0, 2π) ∩
∞

n=−∞


(2n+ 1)π

2
,
(2n+ 1)π

2
+ arccos


E

X Y


.

The size of each of the intervals in the union is arccos

E

X Y


, and twice the length of

one such interval is included in [0, 2π). Plugging in the definitions of X and Y therefore
proves the claim.

We are now ready to state and prove the classification error case.
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Theorem 15 Under Assumption A*, with probability 1, in the limit as d → ∞ for f̂(x) =
φ(x, β(D, ℓ,λ)) solving (1), for ψ(z∗, ẑ) = {z∗ẑ < 0}, there exists a monotonic relation
between RQ(f̂) and RP (f̂) that depends only on (P,Q,β∗) if and only there exist ρ > 0 and
u0 ∈ R such that for all b > 0

ΩQΘQ(b)

ΓQ(b)2
=

ρΩPΘP (b)

ΓP (b)2
,

ΩQΛQ(b)

ΓQ(b)2
=

ρΩPΛP (b)

ΓP (b)2
+ u0.

If this relation exists, it is

sec2(πRQ(f̂)) = ρ sec2(πRP (f̂)) + u0,

where sec(t) = 1
cos(t) .

Proof Let h have inverse h−1(t) = sec2(πt). Then applying Lemma 14 and the definitions
in (5), the risk has the form

h−1(RP (f̂)) =
E

Z∗2
P


E

Z2
P



E

Z∗
P
ZP

2 = ΩP
a2ΛP (b) + cΘP (b)

(aΓP (b))2
,

which means that we can apply Lemma 12 with w(a, c) = c
a2

and

vP (b) =
ΩPΘP (b)

ΓP (b)2
, vQ(b) =

ΩQΘQ(b)

ΓQ(b)2
, v0P (b) =

ΩPΛP (b)

ΓP (b)2
, v0Q(b) =

ΩQΛQ(b)

ΓQ(b)2
.

The condition from Lemma 12 is equivalent to the stated condition.

D.5 Step 4: Simplifying Assumptions

The necessary and sufficient conditions in Theorems 13 and 15 are rather difficult to in-
terpret, and they do not simplify cleanly without additional assumptions. The strongest
assumption we make is that ΣP = ΠP is a projection operator. The advantage of this is
that it only has eigenvalues 0 and 1, which means that any term involving (ΣP + bId)

−1

can have 1
1+b factored out, allowing all of the terms to simplify greatly. Because β∗ has

i.i.d. sub-Gaussian elements, we can without loss of generality assume it to be Gaussian
having the same second moment and thus rotationally invariant. Combining these with the
simultaneous diagonizability of ΣQ and ΣP gives us the following simplifications:

ΩP = rPσ
2
β , ΓP (b) =

rPσ
2
β

1 + b
, ΛP (b) =

rPσ
2
β

(1 + b)2
, ΘP (b) =

rP
(1 + b)2

,

ΓQ(b) = lim
d→∞

β∗⊤
P ΣQβ

∗
P

d(1 + b)
, ΛQ(b) = lim

d→∞

β∗⊤
P ΣQβ

∗
P

d(1 + b)2
, ΘQ(b) = lim

d→∞

tr [ΣQΠP ]

d(1 + b)2
.

For γ, κ, and µ from Assumption B, we therefore have the following relations:

ΓQ(b) = γΓP (b), ΛQ(b) = γΛP (b), ΘQ(b) = κΘP (b), ΩQ = γµΩP ,

ΩQΘQ(b)

ΓQ(b)2
=

µκΩPΘP (b)

γΓP (b)2
,

ΩQΛQ(b)

ΓQ(b)2
=

µΩPΛP (b)

ΓP (b)2
= µ =

µκ

γ
+ µ


1− κ

γ


.
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For regression, this means that in Theorem 13, ρ = γ = κ, and ΩQ − ρΩP = γrPσ
2
β(µ− 1).

For classification, this means that in Theorem 15, ρ = µκ
γ and u0 = µ(1− κ

γ ). These values
give the stated claims in Theorem 3, and when specializing to µ = 1 for classification, the
relation follows by the fact that tan2(θ) = sec2(θ)− 1.

D.6 General Regularization Penalties

The above approach can be used to analyze general separable regularization penalties as
well via linearization if ΣP is axis-aligned (that is, diagonal). Under Assumption A, the
equations in Lemma 11 simplify to the forms shown in Step 4 of the proof of Theorem 3.
Upon closer inspection, we observe that instead of three free variables a, b, c, we now only
have two degrees of freedom via a

1+b and c
1+b . Meanwhile, let

β(D, ℓ,λ) = argmin
β

n

i=1

ℓ(yi,x
⊤
i β) + λ

d

j=1

r([β]j)
2

for a convex regularization penalty r : R → R. Corollary 10 can be extended to general
regularization penalties (see Loureiro et al., 2021), and our resulting estimator has the
following form for each j ∈ [d] such that [ΣP ]jj = 1:

[β]j ≃ Proxr(·)/b


a
b [β

∗]j +
√
c
b [g]j



for some three parameters a ∈ R, b, c > 0. Assuming r(u) is an increasing function of |u|,
this implies that the remaining coefficients β will be 0.

As in the proof of Lemma 11, we only need to determine the following inner products:

1
dβ

∗⊤ΠP
β, 1

d
β⊤ΠP

β, 1
dβ

∗⊤ΣQ
β, 1

d
β⊤ΣQ

β.

For any a ∈ R, b, c > 0, we can linearize β in the form a′β∗ +
√
c′g with respect to β∗ and

ΠP in the sense that we can find a′ ∈ R, c′ > 0 such that

1
dβ

∗⊤ΠP
β a.s.−−→ a′rPσ

2
β ,

1
d
β⊤ΠP

β a.s.−−→ a′
2
rPσ

2
β + c′rP ,

which is the same as we have in the ridge regularization case. Therefore, Theorem 3 will
also apply for an arbitrary separable regularizer if and only if

1
dβ

∗⊤ΣQ
β a.s.−−→ a′ 1dβ

∗⊤
P ΣQβ

∗
P ,

1
d
β⊤ΣQ

β a.s.−−→ a′
2
β∗⊤
P ΣQβ

∗
P + c′ 1dtr[ΣQΠP ].

Due to the nonlinearity of the proximal operator, we would not expect these to hold in
general, as our linearization only holds for β measured with respect to ΠP . However, for
example, if κ = γ, then the linearization holds and we can apply Theorem 3.

Appendix E. Proof of Theorem 4 and Theorem 5

In this section, we prove the main results on linear relations for linear inverse problems.
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E.1 Proof of Theorem 4

The proof is similar to that of Theorem 6. We first express the risk of the signal estimate
xλ on distribution P as a function of α = 1/(1 + σ2

P + λ). Note that the solution W∗ to

minW EP


x−Wy22


+ λW2F can be computed as

W∗ = EP


xyT

 
EP


yyT


+ λI

−1

(a)
= EP


xxT

 
EP


xxT + zzT


+ λI

−1

(b)
= UPU

T
P


UPU

T
P + (σ2

P + λ)I
−1

=
1

1 + σ2
P + λ

UPU
T
P ,

where (a) follows from that z is independent of x and that E [z] = 0, and (b) follows from
the assumptions that EP


cP c

T
P


= I and that EP


zzT


= σ2

P I. Hence, xλ(y) = αUPU
T
Py.

It holds that

RP (xλ) = EP

(UP cP − xλ)/


dP


2

2



= EP



I− αUPU

T
P


UP cP /


dP


2

2


+ EP

αUPU
T
P z/


dP


2

2



= EP


(1− α)UP cP 22/dP


+ tr


α2UPU

T
PEP


zzT


/dP



= tr

(1− α)2UT

PUP EP


cP c

T
P


/dP


+ α2σ2

P

= (1− α)2 + α2σ2
P ,

where we have used the assumptions that EP


cP c

T
P


= I and that EP


zzT


= σ2

P I again.
Similarly, on distribution Q,

RQ(xλ) = EQ

(UP cQ − xλ)/


dQ


2

2



= EQ



I− αUPU

T
P


UQcQ/


dQ


2

2


+ EQ

αUPU
T
P z/


dQ


2

2


,
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where the second term in the line above can be readily found to be α2σ2
QdP /dQ, and the

first term can be computed as

EQ



I− αUPU

T
P


UQcQ/


dQ


2

2


= tr


UT

Q


I+


α2 − 2α


UPU

T
P


UQEQ


cQc

T
Q


/dQ



= tr


I+

α2 − 2α


UPU

T
P


UQU

T
Q/dQ



= tr

UQU

T
Q/dQ


+


α2 − 2α


tr


UTUQ


UT

PUQ

T
/dQ



(c)
= 1 +


α2 − 2α

 1

dQ

min{dP ,dQ}

i=1

cos2(θi)

= 1 + (α2 − 2α)
cos(θ)22

dQ
,

where (c) follows from the fact that the singular values of UT
PUQ are the cosines of the

principal angle θi, i ∈ [min{dP , dQ}] between UP and UQ. Hence,

RQ(xλ) = 1 + (α2 − 2α)
cos(θ)22

dQ
+ α2σ2

Q

dP
dQ

.

The expression of RP (xλ) implies that

α2 − 2α = RP (xλ)− 1− α2σ2
P .

Plugging this expression into the expression of RQ(xλ) yields the result. 

E.2 Proof of Theorem 5

We first provide two lemmas which are used in the main proof. In the first lemma, the
risks RP (xλ) and RQ(xλ) are expressed in terms of matrices UT

PUP and UT
PUQ, and their

approximations UT
PA

TAUP and UT
PA

TAUQ induced by the random measurement matrix
A.

Lemma 16 The risks RP (xλ) and RQ(xλ) of xλ can be expressed as

RP (xλ) =

I− SUT
PA

TAUP


2

F
+ σ2

P tr

STSUT

PA
TAUP


/dP ,

RQ(xλ) =

UT
PUQ − SUT

PA
TAUQ


2

F
−

UT
PUQ


2

F
+ UQ2F + σ2

Qtr

STSUT

PA
TAUP


/dQ,

where S = ηI− η2UT
PA

TAUP


I+ ηUT

PA
TAUP

−1
and η = 1/(σ2

P + λ).
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Proof Similarly to the proof of Theorem 4, the solution W∗ to minW EP


x−Wy22


+

λW2F can be computed as

W∗ = EP


xyT

 
EP


yyT


+ λI

−1

= EP


xxTAT

 
EP


AxxTAT + zzT


+ λI

−1

= UPU
T
PA

T

AUPU

T
PA

T + (σ2
P + λ)I

−1

(a)
= UPU

T
PA

T


ηI− η2AUP


I+ ηUT

PA
TAUP

−1
UT

PA
T



= UPSU
T
PA

T,

where (a) follows from the matrix inversion lemma and η = 1/(σ2
P + λ). The risk RP (xλ)

can be computed as

RP (xλ) = EP

(UP cP −W∗(AUP cP + z))/


dP


2

2



= EP

(I−W∗A)UP cP /


dP


2

2


+ EP

W∗z/


dP


2

2



=

tr

UT

P (I−W∗A)T(I−W∗A)UPEP


cP c

T
P


+ tr


W∗TWEP


zzT


/dP

=

(I−W∗A)UP 2F + σ2

P tr

W∗TW∗


/dP

=

UP (I− SUT
PA

TAUP )

2

F
+ σ2

P tr

STSUT

PA
TAUP


/dP

=

I− SUT
PA

TAUP


2

F
+ σ2

P tr

STSUT

PA
TAUP


/dP .

Similarly, the risk RQ(xλ) can be computed as

RQ(xλ) = EQ

(UQcQ −W∗(AUQcQ + z))/


dQ


2

2



= EQ

(I−W∗A)UQcQ/


dQ


2

2


+ EQ

W∗z/


dQ


2

2


,
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where the second term in the line above can be readily found to be σ2
Qtr


STSUT

PA
TAUP


/dQ,

and the first term can be computed as

EQ

(I−W∗A)UQcQ/


dQ


2

2



= tr

UT

Q(I−W∗A)T(I−W∗A)UQEQ


cQc

T
Q


/dQ

= (I−W∗A)UQ2F /dQ

=
UQ −UPSU

T
PA

TAUQ


2

F
/dQ

=
(UPU

T
PUQ −UPSU

T
PA

TAUQ) + (I−UPU
T
P )UQ


2

F
/dQ

(b)
=

UPU
T
PUQ −UPSU

T
PA

TAUQ


2

F
+
(I−UPU

T
P )UQ


2

F


/dQ

=

UT
PUQ − SUT

PA
TAUQ


2

F
+

UQ −UPU
T
PUQ


2

F


/dQ

=

UT
PUQ − SUT

PA
TAUQ


2

F
−

UT
PUQ


2

F
+ UQ2F


/dQ,

where (b) follows from the fact that matrices UP and I−UPU
T
P are orthogonal under the

Frobenius inner product.

The second lemma below about inner product preservation is used to show that matrices
UT

PA
TAUP and UT

PA
TAUQ are close to UT

PUP and UT
PUQ element-wise respectively.

Lemma 17 Let A ∈ Rn×d be a random Gaussian matrix with independent entries drawn
from the distribution N (0, 1/n). For any u,v ∈ Rd with u2 ≤ 1, v2 ≤ 1 and 0 <  < 1,
with probability at least 1− 4 exp(−n2/8),

|〈Au,Av〉 − 〈u,v〉| ≤ .

Proof The proof relies on the result on norm preservation by random projection: for any
0 < t < 1, it holds that

Pr


Au22
u22

− 1

 ≥ t


≤ 2e−

nt2

8 ,

which follows from the fact that, for any u ∈ Rd, the variable Au22/u
2
2 follows the

same distribution as (1/n)χ2(n) and that a (1/n)χ2(n) distribution is sub-exponential with
parameters (22/n, 4).

Now consider any u,v with u2 ≤ 1, v2 ≤ 1 and 0 <  < 1. Using the fact that

〈u,v〉 = (1/4)

u+ v22 − u− v22


, under the events that the norm squares u+ v22

31



LeJeune, Liu, and Heckel

and u− v22 are approximately preserved, which occur with probability at least 1 −
4 exp(−n2/8), it holds that

〈Au,Av〉 = 1

4


u+ v22 − u− v22



≤ 1

4


(1 + )u+ v22 − (1− )u− v22



=
1

4


4〈u,v〉+ 2u22 + 2v22



≤ 〈u,v〉+ ,

and that

〈Au,Av〉 ≥ 〈u,v〉 − ,

following a similar derivation.

E.2.1 Proof of Theorem 5

The proof idea is essentially the same as the proof of Theorem 4: expressing the risks of
the estimate xλ on distributions P and Q as functions of α = 1/(1 + σ2

P + λ) and then
expressing the risk RQ(xλ) in terms of RP (xλ). The only technical issue is that W∗y is
only approximately αUPU

T
Py due to the random measurement by matrix A. We show

that, under the event that the map u → Au approximately preserves inner products of
interest, as defined below, the risks RP (xλ) and RQ(xλ) can be expressed respectively as
those in the proof of Theorem 4 plus some error terms which converge to zero as the number
of measurements n → ∞ with high probability.

Step 1. Expressing matrices UT
PA

TAUP , U
T
PA

TAUQ and S as perturbed matrices.
For any 0 <  < 1/dP , consider the event

E : |〈Au,Av〉 − 〈u,v〉| ≤ , for all pairs of columns (u,v) of UP and

for all column u of UP and column v of UQ,

which happens with probability at least 1− 4(d2P + dPdQ) exp(−n2/8) by Lemma 17 and
the union bound. Under event E , matrices UT

PA
TAUP and UT

PA
TAUQ are perturbed

versions of I and UT
PUQ, i.e.,

UT
PA

TAUP = I+E, |Eij | ≤ , ∀ i ∈ [dP ], ∀ j ∈ [dP ],

UT
PA

TAUQ = UT
PUQ + F, |Fij | ≤ , ∀ i ∈ [dP ], ∀ j ∈ [dQ],

and, as a result, S is a pertubed version of αI, i.e.,

S = αI+G,
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where matrix G is a polynomial of matrix E as defined below, since

S = ηI− η2(I+E) (I+ η(I+E))−1

= ηI− η2

1 + η
(I+E)


I+

η

1 + η
E

−1

(a)
= ηI− η2

1 + η
(I+E)

∞

k=0


− η

1 + η
E

k

= ηI− η2

1 + η


I+E+ (I+E)

∞

k=1


− η

1 + η
E

k


=


η − η2

1 + η


I− η2

1 + η


E+ (I+E)

∞

k=1


− η

1 + η
E

k


= αI− α2

1− α


E+ (I+E)

∞

k=1

(−αE)k


,

with G = −(α2/(1− α))

E+ (I+E)

∞
k=1(−αE)k


and α = 1/(1 + σ2

P + λ). Recall that
η = 1/(σ2

P + λ). Step (a) is valid because (η/(1+ η))E has eigenvalues bounded by 1, since
for  < 1/dP , maxi |λi((η/(1 + η))E)| ≤ |λi(E)| ≤ (


i λ

2
i (E))1/2 = EF ≤ dP ≤ 1.

Step 2. Expressing risks RP (xλ) and RQ(xλ) as functions of α and the perturbation
matrices.
Under event E , it holds that

RP (xλ) = I− (αI+G)(I+E)2F /dP + tr

(αI+G)2(I+E)


σ2
P /dP

= (1− α)I− ((αI+G)E+G)2F /dP + tr

α2I+ α2E+ (2αG+G2)(I+E)


σ2
P /dP

= (1− α)2 + signal, P + α2σ2
P + noise, P,

where signal, P and noise, P are errors induced by the random measurement and are expressed
as

signal, P = tr

[(αI+G)E+G− 2(1− α)I][(αI+G)E+G]


/dP ,

noise, P = tr

α2E+ (2αG+G2)(I+E)


σ2
P /dP ,

and that

RQ(xλ) =

UT
PUQ − (αI+G)(UT

PUQ + F)

2

F
−
UT

PUQ


2

F
+ UQ2F


/dQ

+ tr

(αI+G)2(I+E)


σ2
Q/dQ

=

(1− α)UT
PUQ − ((αI+G)F+GUT

PUQ)

2

F
−

UT
PUQ


2

F
+ UQ2F


/dQ

+ tr

α2I+ α2E+ (2αG+G2)(I+E)


σ2
Q/dQ

= (α2 − 2α)

UT
PUQ

2
F

dQ
+ 1 + signal, Q + α2σ2

Q

dP
dQ

+ noise, Q,
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where signal, Q and noise, Q are also errors induced by the random measurement and are
expressed as

signal, Q = tr

[(αI+G)F+GUT

PUQ − 2(1− α)UT
PUQ]

T[(αI+G)F+GUT
PUQ]


/dQ,

noise, Q =
σ2
Q

σ2
P

dP
dQ

noise, P.

The expression of RP (xλ) implies that

α2 − 2α = RP (xλ)− 1− α2σ2
P − signal, P − noise, P.

Plugging this expression into the expression of RQ(xλ) yields

RQ(xλ) = aRP (xλ) + (1− a) + α2


dP
dQ

σ2
Q − aσ2

P


+ signal, Q + noise, Q − a(signal, P + noise, P),

where a =
UT

PUQ

2
F
/dQ = cos(θ)22/dQ and θ ∈ Rmin{dP ,dQ} is the principal angles

between UP and UQ.
Step 3. Bounding the errors caused by the perturbation matrices.

It remains to show that, under event E , the error term signal, Q + noise, Q − a(signal, P +
noise, P) is bounded by some constant times . We show that each error in the error term
is O().

With some computation, it is easy to check that each of the errors signal, P, noise, P
and signal, Q is the trace of a polynomial of the perturbation matrices, i.e., there exist
polynomials p1, . . . , p5 such that

signal, P = tr(p1(E)),

noise, P = tr(p2(E)),

signal, Q = tr(p3(E)FFT) + tr(p4(E)FUT
QUP ) + tr(p5(E)UT

PUQU
T
QUP ),

and that p1, p2 and p5 have zero-th order terms zeros. Recall that matrices E and F have
entries bounded by . Therefore, it holds that EF ≤ dP and FF ≤ 


dPdQ, and that

|tr(Ek)| =



i

σk
i (E)

 (b)

≤



i

σi(E)
 ≤ dP , ∀k ≥ 1,

where (b) follows from the fact that maxi |σi(E)| ≤ EF ≤ dP for  < 1/dP . As a result,
signal, P and noise, P are O(). So is signal, Q, because each of its term is O(). Indeed, for
any k ≥ 0,

tr(EkFFT) ≤ tr
1
2 (E2k)

FFT

F
≤ tr

1
2 (I) F2F ≤


dP 2dPdQ,

tr(EkFUT
QUP ) ≤ tr

1
2 (E2k)

FUT
QUP


F
≤ tr

1
2 (I)

UT
QUP


2
FF ≤


dP 


dPdQ,

and for any k ≥ 1,

tr(EkUT
PUQU

T
QUP ) ≤ tr

1
2 (E2k)

UT
PUQU

T
QUP


F
≤ tr

1
2 (E2)

UT
PUQ


2

F

(c)

≤ dP min{dP , dQ},
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where (c) follows from the fact that
UT

PUQ

2
F
= cos(θ)22. We conclude that the error

term signal, Q + noise, Q − a(signal, P + noise, P) = O() and the proof is complete. 
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Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka Zdeborová. Modeling the
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