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Abstract

We analyze a stochastic approximation algorithm for decision-dependent problems, wherein
the data distribution used by the algorithm evolves along the iterate sequence. The primary
examples of such problems appear in performative prediction and its multiplayer extensions.
We show that under mild assumptions, the deviation between the average iterate of the
algorithm and the solution is asymptotically normal, with a covariance that clearly decouples
the effects of the gradient noise and the distributional shift. Moreover, building on the work
of Hájek and Le Cam, we show that the asymptotic performance of the algorithm with
averaging is locally minimax optimal.

Keywords: stochastic approximation, decision-dependent distributions, performative
prediction, asymptotic normality, local asymptotic minimax optimality

1. Introduction

The primary role of stochastic optimization in data science is to find a learning rule (e.g.,
a classifier) from a limited data sample which enables accurate prediction on unseen data.
Classical theory crucially relies on the assumption that both the observed data and the unseen
data are generated by the same distribution. Recent literature on strategic classification
(Hardt et al., 2016) and performative prediction (Perdomo et al., 2020), however, has
highlighted a variety of contemporary settings where this assumption is grossly violated.
One common reason is that the data seen by a learning system may depend on or react to a
deployed learning rule. For example, members of the population may alter their features
in response to a deployed classifier in order to increase their likelihood of being positively
labeled—a phenomenon called gaming. Even when the population is agnostic to the learning
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rule, the decisions made by the learning system (e.g., loan approval) may inadvertently alter
the profile of the population (e.g., credit score). The goal of the learning system therefore
is to find a classifier that generalizes well under the response distribution. The situation
may be further compounded by a population that reacts to multiple competing learners
simultaneously (Narang et al., 2023; Wood and Dall’Anese, 2023; Piliouras and Yu, 2022).

In this work, we model decision-dependent problems using variational inequalities.
Namely, let G(x, z) be a map that depends on the decision x and data z, and let the set X
of feasible decisions be closed and convex. A variety of classical learning problems can be
posed as solving the variational inequality

0 ∈ E
z∼P

G(x, z) +NX (x), VI(P)

where P is some fixed distribution and NX (x) = {v ∈ Rd | 〈v, y − x〉 ≤ 0 for all y ∈ X} is
the normal cone to X at x ∈ X . Two examples are worth keeping in mind: (i) standard
problems of supervised learning amount to G(x, z) = ∇x`(x, z) being the gradient of some
loss function to be minimized over X , and (ii) stochastic games correspond to G(x, z)
being a stacked gradient of the players’ individual losses. In both of these examples, VI(P)
encodes the standard first-order optimality conditions. The benefit of variational inequalities
is that they yield a single framework for analyzing a wide range of learning problems,
notably in optimization and game theory. We refer the interested reader to Kinderlehrer
and Stampacchia (2000) and Dontchev and Rockafellar (2009) for a historical perspective
and further details on the use of variational inequalities in applications.

Following the recent literature on performative prediction (Hardt et al., 2016; Perdomo
et al., 2020; Narang et al., 2023), we will be interested in settings where the distribution P is
not fixed but rather varies with x. With this in mind, let D(x) be a family of distributions
indexed by x ∈ X . The interpretation is that D(x) is the response of the population to a
newly deployed learning rule x. We posit that the goal of a learning system is to find a
point x? so that x = x? solves the variational inequality VI(D(x?)), or equivalently:

0 ∈ E
z∼D(x?)

G(x?, z) +NX (x?).

We will say that such points x? are at equilibrium. In words, a learning system that deploys
an equilibrium point x? has no incentive to deviate from x? based only on the solution of the
variational inequality VI(D(x?)) induced by the response distribution D(x?). The setting of
performative prediction (Perdomo et al., 2020) corresponds to the choice G(x, z) = ∇x`(x, z)
for some loss function `.1 More generally, decision-dependent games, proposed by Narang
et al. (2023), Piliouras and Yu (2022), and Wood and Dall’Anese (2023), correspond to
the choice G(x, z) =

(
∇1`1(x, z), . . . ,∇k`k(x, z)

)
where ∇i`i(x, z) is the gradient of the i’th

player’s loss with respect to their decision xi and D(x) = D1(x)× · · · × Dk(x) is a product
distribution. The specifics of these two examples will not affect our results, and therefore we
work with general maps G(x, z).

Following the prevalent viewpoint in machine learning, we suppose that the only access
to the data distributions D(x) is by drawing samples z ∼ D(x). With this in mind, a natural

1. In the language of Perdomo et al. (2020), equilibria coincide with performatively stable points.
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algorithm for finding an equilibrium point x? is the stochastic forward-backward algorithm:

Sample zt ∼ D(xt)

Set xt+1 = projX
(
xt − ηtG(xt, zt)

)
,

SFB

where projX is the nearest-point projection onto X . Specializing to performative prediction
(Mendler-Dünner et al., 2020) and its multiplayer extension (Narang et al., 2023), this
algorithm reduces to a basic projected stochastic gradient iteration. The contribution of our
paper can be informally summarized as follows.

We show that averaged SFB is asymptotically optimal for finding equilibrium points.

In particular, our results imply asymptotic optimality of the basic stochastic gradient
methods for both single player and multiplayer performative prediction.

1.1 Summary of Main Results

Arguing optimality of an algorithm is a two-step process: (i) estimate the performance
of the specific algorithm and (ii) derive a matching lower bound that is valid among all
relevant estimation procedures. Beginning with the former, we build on the seminal work of
Polyak and Juditsky (1992), wherein a central limit theorem is established for stochastic
approximation algorithms for solving smooth equations. Letting x̄t = 1

t

∑t
i=1 xi denote the

running average of the SFB iterates, we show that the deviation
√
t(x̄t−x?) is asymptotically

normal with an appealingly simple covariance. See Figure 1 for an illustration.2

Theorem 1 (Asymptotic normality, informal; see Theorem 7) Suppose that G(·, z)
is α-strongly monotone and Lipschitz continuous on X , G(x, ·) is β-Lipschitz continuous
on Z, and the distribution map D(·) is γ-Lipschitz continuous on X with respect to the
Wasserstein-1 distance. Suppose moreover that x? lies in the interior of X and ηt ∝ t−ν for
some ν ∈

(
1
2 , 1
)
. Then in the regime γβ

α < 1, the SFB iterates xt converge to the equilibrium

point x? almost surely, and the averaged SFB iterates x̄t = 1
t

∑t
i=1 xi satisfy

√
t(x̄t − x?) N

(
0,W−1ΣW−>

)
,

where

Σ = E
z∼D(x?)

[
G(x?, z)G(x?, z)>

]
and W = E

z∼D(x?)
[∇xG(x?, z)]︸ ︷︷ ︸
static

+
d

dy
E

z∼D(y)
[G(x?, z)]

∣∣∣
y=x?︸ ︷︷ ︸

dynamic

.

A few comments are in order. First, the conditions on the data of the problem reduce to
the standard assumptions in performative prediction (Perdomo et al., 2020) when G(x, z) =
∇x`(x, z). In particular, G(·, z) being α-strongly monotone and Lipschitz is then equivalent to
the function `(·, z) being α-strongly convex and smooth with Lipschitz continuous gradient.
The strong monotonicity requirement can be loosened to hold only in expectation; see
Theorem 7 for the formal statement. Second, the regime γβ

α < 1 is, in essence, optimal because
otherwise equilibrium points may even fail to exist. Third, the effect of the distributional shift
on the asymptotic covariance is entirely captured by the second “dynamic” term in W . Indeed,

2. Visit https://github.com/mateodd25/Asymptotic-normality-in-performative-prediction for code.

3

https://github.com/mateodd25/Asymptotic-normality-in-performative-prediction


Cutler, D́ıaz, and Drusvyatskiy

(a) ρ = 0.25 (b) ρ = 0.5 (c) ρ = 0.9

Figure 1: Consider the problem corresponding to G(x, z) = ∇x`(x, z) with `(x, z) = 1
2‖x−z‖

2

andD(x1, x2) = N(ρ(x2, x1), I2). A simple computation shows Σ = I2 andW = [1,−ρ;−ρ, 1].
As ρ approaches one, W−1 becomes ill conditioned. We run algorithm SFB 400 times using
ηt = t−3/4 for 106 iterations. The first row depicts the resulting average iterates laid over
the confidence regions (plotted in logarithmic scale) corresponding to the asymptotic normal
distribution. The next two rows depict kernel density estimates from the asymptotic normal
distribution (top) and the deviation

√
k(x̄k − x?) (bottom).

when this term is absent, the product W−1ΣW−> is precisely the asymptotic covariance
of the stochastic forward-backward algorithm applied to the static problem VI(D(x?))
at equilibrium.3 The proof of Theorem 1 follows by interpreting SFB as a stochastic
approximation algorithm for finding the zero of the nonlinear map R(x) = Ez∼D(x)[G(x, z)]
and then applying a variation of the classical asymptotic normality result of Polyak and
Juditsky (1992, Theorem 2).

A reasonable question to ask is whether there exists an algorithm with better asymptotic
guarantees than those of the stochastic forward-backward algorithm (with averaging). We
will show that in a strong sense, the answer is no; averaged SFB is asymptotically optimal.
In particular, we will obtain an optimal bound on the performance of any estimation
procedure for finding the equilibrium point along an adversarially-chosen sequence of small
perturbations of the target problem. The end result is summarized informally as follows.

Theorem 2 (Asymptotic optimality, informal; see Theorem 16) Suppose the same
setting as in Theorem 1 and let L : Rd → [0,∞) be any symmetric, quasiconvex, lower

3. Of course, this analogy is entirely conceptual, since D(x?) is unknown a priori.
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semicontinuous loss functional. Fix any procedure for finding equilibrium points that outputs
an estimator x̂k based on k observed samples. As k →∞, there is a sequence of perturbed
distribution maps Dk converging to D, along with corresponding equilibrium points x?k
converging to x?, such that the following hold.

(i) (Lower bound) The expected error E[L(
√
k(x̂k − x?k))] of the estimator x̂k on

the perturbed problem is asymptotically lower-bounded by E[L(Z)], where Z ∼
N(0,W−1ΣW−>).

(ii) (Tightness of SFB) Moreover, if L is bounded and continuous, then the lower bound
in (i) is achieved by the estimator given by the averaged SFB iterate x̄k = 1

k

∑k
i=1 xi.

The formal statement of the theorem and its proof follow closely the classical work of
Hájek and Le Cam (Le Cam and Yang, 2000; van der Vaart, 1998) on statistical lower
bounds and the more recent work of Duchi and Ruan (2021) on asymptotic optimality of
the stochastic gradient method. In particular, the fundamental role of tilt-stability and the
inverse function theorem highlighted by Duchi and Ruan (2021) is replaced by the implicit
function theorem paradigm.

Taken together, Theorems 1 and 2 provide a solid theoretical footing for the practical
application of SFB, which generalizes stochastic gradient descent. These results precisely
quantify the asymptotic uncertainty of SFB, with confidence regions that are optimally
narrow (in an appropriate sense) among all methods for finding equilibrium points. In
particular, algorithms that use momentum or try to learn and adapt to how the distributions
vary cannot achieve better asymptotic performance. Thus, stronger modeling assumptions
are necessary to develop algorithms with provably superior asymptotic sample efficiency.
We also note that all results in the paper extend directly to a minibatch variant of SFB,
where in each iteration the update direction G(xt, zt) is replaced by the empirical average
1
m

∑m
i=1G(xt, zt,i) with (zt,1, . . . , zt,m) sampled i.i.d. from D(xt). The only effect of the

batching is that the asymptotic covariance Σ is rescaled by 1/m in all results.
Before continuing, it is important to highlight a limitation of our results. In order to

generate a sample zt ∼ D(xt) in practice, one must first deploy the learning rule xt and then
wait for the population to adapt. Consequently, the sampling and deployment have different
associated “costs.” Our results can somewhat adapt to this imbalance by using minibatches,
as explained above. Nonetheless, a more nuanced approach that balances sample complexity
against the deployment cost is worth investigating in future work.

1.2 Related Work

Our work builds on existing literature in machine learning and stochastic optimization.

Learning with decision-dependent distributions. The basic setup for decision-
dependent problems that we use is inspired by the performative prediction framework
of Perdomo et al. (2020) and its multiplayer extension developed independently by Narang
et al. (2023), Piliouras and Yu (2022), and Wood and Dall’Anese (2023). The stochastic
gradient method for performative prediction was first introduced and analyzed by Mendler-
Dünner et al. (2020), while the stochastic forward-backward method for games was analyzed
by Narang et al. (2023). The related work of Drusvyatskiy and Xiao (2022) showed that a
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variety of popular gradient-based algorithms for performative prediction can be understood
as the analogous algorithms applied to a certain static problem corrupted by a vanishing bias.
In general, performatively stable points (equilibria) are not “performatively optimal” in the
sense of Perdomo et al. (2020). Seeking to develop algorithms for finding performatively
optimal points, the work of Miller et al. (2021) provides sufficient conditions for the predic-
tion problem to be convex; extensions of such conditions to games appear in the papers of
Narang et al. (2023) and Wood and Dall’Anese (2023). Algorithms for finding performatively
optimal points under a variety of different assumptions and oracle models appear in the
works of Izzo et al. (2021), Jagadeesan et al. (2022), Miller et al. (2021), Narang et al.
(2023), and Wood and Dall’Anese (2023). The performative prediction framework is largely
motivated by the problem of strategic classification (Hardt et al., 2016), which has been
studied extensively from the perspective of causal inference (Bechavod et al., 2020; Miller
et al., 2020) and convex optimization (Dong et al., 2018). Other lines of work (Brown et al.,
2022; Cutler et al., 2023; Ray et al., 2022; Wood et al., 2021) in performative prediction
have focused on the setting in which the environment evolves dynamically in time.

Stochastic approximation. There is extensive literature on stochastic approximation.
The most relevant results for us are those of Polyak and Juditsky (1992) that quantify the
limiting distribution of the average iterate of stochastic approximation algorithms. Stochastic
optimization problems with decision-dependent uncertainties have appeared in the classical
stochastic programming literature; see, e.g., the works of Ahmed (2000), Dupačová (2006),
Jonsbr̊aten et al. (1998), Rubinstein and Shapiro (1993), and Varaiya and Wets (1988). We
refer the reader to the recent paper of Hellemo et al. (2018), which discusses taxonomy and
various models of decision-dependent uncertainties. An important theme of these works is
to utilize structural assumptions on how the decision variables impact the distributions. In
contrast, much of the work on performative prediction (Perdomo et al., 2020; Narang et al.,
2023; Wood and Dall’Anese, 2023; Piliouras and Yu, 2022; Drusvyatskiy and Xiao, 2022;
Mendler-Dünner et al., 2020) and our current paper are “model-free.”

Local minimax lower bounds in estimation. There is a rich literature on minimax
lower bounds in statistical estimation problems; we refer the reader to Wainwright (2019,
Chapter 15) for a detailed treatment. Typical results of this type lower-bound the perfor-
mance of any statistical procedure on a worst-case instance of that procedure. Minimax lower
bounds can be quite loose as they do not consider the complexity of the particular problem
that one is trying to solve but rather that of an entire problem class to which it belongs.
More precise local minimax lower bounds, as developed by Hájek and Le Cam (Le Cam and
Yang, 2000; van der Vaart, 1998), provide much finer problem-specific guarantees. Building
on this framework, Duchi and Ruan (2021) showed that the stochastic gradient method for
standard single-stage stochastic optimization problems is, in an appropriate sense, locally
asymptotically minimax optimal. Our paper builds heavily on this line of work.

1.3 Outline

The outline of the paper is as follows. Section 2 records some basic notation that we will use.
Section 3 formally introduces/reviews the decision-dependent framework. In Section 4, we
show that the running average of the stochastic forward-backward algorithm is asymptotically
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normal (Theorem 1), and identify its asymptotic covariance. Finally, Section 5 presents
the local minimax lower bound (Theorem 2). We defer many of the technical proofs to the
appendices.

2. Notation and Definitions

Throughout, we let Rd denote the standard d-dimensional Euclidean space equipped with
the dot product 〈x, y〉 = x>y and the induced norm ‖x‖ =

√
〈x, x〉. For any set X ⊂ Rd,

the symbol projX (x) will denote the set arg miny∈X ‖y−x‖ of nearest points of X to x ∈ Rd.

We say that a function L : Rd → R is symmetric if it satisfies L(x) = L(−x) for all x ∈ Rd,
and we say that L is quasiconvex if its sublevel set {x | L(x) ≤ c} is convex for any c ∈ R. For
any matrix A ∈ Rm×n, the symbols ‖A‖op and A† stand for the operator norm and Moore-
Penrose pseudoinverse of A, respectively. For any two symmetric matrices A,B ∈ Rn×n, we
write A � B if the matrix A−B is positive semidefinite.

Strong monotonicity and smoothness. A map F : X → Rd is called α-strongly mono-
tone on X ⊂ Rd if α > 0 and

〈F (x)− F (x′), x− x′〉 ≥ α‖x− x′‖2 for all x, x′ ∈ X .
If F = ∇f for some C1-smooth function f , then α-strong monotonicity of F is equivalent to
α-strong convexity of f. We say that a map F : X → Rm is smooth on a set X ⊂ Rd if F
has a differentiable extension on an open neighborhood of each point of X ; further, we say
that F is β-smooth on X if the Jacobian of F satisfies the Lipschitz condition

‖∇F (x)−∇F (x′)‖op ≤ β‖x− x′‖ for all x, x′ ∈ X .

Probability measures. Given a nonempty Polish metric space Z (i.e., separable and
complete), we equip Z with its Borel σ-algebra B(Z) and let P1(Z) denote the set of
probability measures on Z with finite first moment. We will measure the deviation between
two measures µ, ν ∈ P1(Z) using the Wasserstein-1 distance:

W1(µ, ν) = sup
φ∈Lip1(Z)

{
E

X∼µ

[
φ(X)

]
− E
Y∼ν

[
φ(Y )

]}
. (1)

Here, Lip1(Z) denotes the set of 1-Lipschitz functions Z → R. Equipped with the metric
W1, the set P1(Z) becomes a Polish metric space.

For any two probability measures µ and ν on Z such that µ is absolutely continuous
with respect to ν (denoted µ� ν) and any convex function f : (0,∞)→ R with f(1) = 0,
the f -divergence of µ from ν is given by

∆f (µ‖ν) =

∫
Z
f

(
dµ

dν

)
dν, (2)

where dµ
dν : Z → [0,∞) denotes the Radon-Nikodym derivative of µ with respect to ν and

we take f(0) = limt↓0 f(t). Abusing notation slightly, if µ is not absolutely continuous with
respect to ν, then we set ∆f (µ‖ν) =∞. We will refer to a Borel measurable map between
metric spaces simply as measurable. Likewise, we will refer to Borel measurable sets simply
as measurable.
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Notions of convergence. Given a sequence of random vectors Xk : Ωk → Rm defined on
probability spaces (Ωk,Sk, Pk) and a random vector X ∼ µ in Rm, we write either Xk  X
or Xk  µ to indicate that Xk converges in distribution to X (i.e., limk→∞ EPk [ϕ(Xk)] =
EX∼µ[ϕ(X)] for every bounded continuous function ϕ : Rm → R). We write Xk = oPk(1) if
Xk tends to zero in Pk-probability (i.e., limk→∞ Pk{‖Xk‖ < ε} = 1 for all ε > 0). If X and

each Xk are defined on a common probability space (Ω,S, P ), then the notation Xk
p−−→ X

indicates that Xk converges to X in probability (i.e., limk→∞ P{‖Xk −X‖ < ε} = 1 for all
ε > 0), and the notation Xk

a.s.−−→ X indicates that Xk converges to X almost surely (i.e.,
P{ω ∈ Ω | limk→∞Xk(ω) = X(ω)} = 1).

For any pair of vector-valued sequences (ak) and (bk), we write ak = O(bk) if there exists
a constant C > 0 such that ‖ak‖ ≤ C‖bk‖ for all but finitely many k; we write ak = o(bk)
if for every ε > 0, the inequality ‖ak‖ ≤ ε‖bk‖ holds for all but finitely many k; we write
ak = Θ(bk) if there exist constants c, C > 0 such that c‖bk‖ ≤ ‖ak‖ ≤ C‖bk‖ for all but
finitely many k; and we write ak ∝ bk if there exists a constant c such that ak = cbk for all
but finitely many k.

3. Background on Learning with Decision-Dependent Distributions

In this section, we formally specify the class of problems that we consider along with
relevant assumptions. In order to model decision-dependence, we fix a nonempty, closed,
convex set X ⊂ Rd, a nonempty Polish metric space (Z, dZ), and a map D : X → P1(Z).
For ease of notation, we set Dx := D(x) for each x ∈ X . Thus, {Dx}x∈X is a family of
probability distributions on Z indexed by points x ∈ X . The variational behavior of the
map D : X → P1(Z) will play a central role in our work. In particular, following Perdomo
et al. (2020), we will assume that D : X → P1(Z) is Lipschitz continuous.

Assumption 1 (Lipschitz distribution map) There is a constant γ > 0 satisfying

W1

(
D(x),D(x′)

)
≤ γ‖x− x′‖ for all x, x′ ∈ X .4

Next, we fix a measurable map G : X ×Z → Rd such that each section G(x, ·) : Z → Rd

is Lipschitz continuous, and we define the family of maps Gx : X → Rd by setting

Gx(y) = E
z∼Dx

G(y, z)

for all x, y ∈ X ; since Dx has finite first moment, the Lipschitz continuity of G(y, ·)
guarantees that Gx(y) is well defined. Additionally, we impose the following standard
regularity conditions on G : X × Z → Rd.

Assumption 2 (Loss regularity) There are constants β, L̄ ≥ 0 and α > 0 and a measur-
able function L : Z → [0,∞) satisfying the following three conditions.

(i) (Lipschitz continuity) For all x, x′ ∈ X and z, z′ ∈ Z, the Lipschitz bounds

‖G(x, z)−G(x′, z)‖ ≤ L(z) · ‖x− x′‖,
‖G(x, z)−G(x, z′)‖ ≤ β · dZ(z, z′)

4. Assumption 1 implies in particular that {Dx}x∈X is a Markov kernel from X to Z (see Lemma 31); this
is crucial to have a well-defined probability space on which to analyze decision-dependent stochastic
approximation problems.
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hold. Further, the second moment bound Ez∼Dx [L(z)2] ≤ L̄2 holds for all x ∈ X .

(ii) (Monotonicity) For all x ∈ X , the map Gx(·) is α-strongly monotone on X .

(iii) (Compatibility) The inequality γβ < α holds.

A few comments are in order. Condition (i) asserts that the map G(x, z) is separately
Lipschitz continuous with respect to both x and z; an immediate consequence is that Gx(·)
is L̄-Lipschitz continuous. Condition (ii) is a standard monotonicity requirement; when
G(x, z) = ∇x`(x, z), this corresponds to α-strong convexity of the expected loss. Condition
(iii) ensures that the Lipschitz constant γ of D(·) is sufficiently small in comparison with the
monotonicity constant α, signifying that the dynamics are “mild.” This condition is widely
used in the existing literature; see, e.g., Perdomo et al. (2020), Piliouras and Yu (2022),
Narang et al. (2023), and Wood and Dall’Anese (2023).

Assumptions 1 and 2 imply the following useful Lipschitz estimate on the deviation
Gx(y) − Gx′(y) arising from the shift in distribution from Dx to Dx′ . We will use this
estimate often in what follows. The proof is identical to that of Lemma 5 of Narang et al.
(2023); a short argument appears in Section A.1.

Lemma 3 (Deviation) Suppose that Assumptions 1 and 2 hold. Then the estimate

‖Gx(y)−Gx′(y)‖ ≤ γβ · ‖x− x′‖
holds for all x, x′, y ∈ X .

Corresponding to each distribution Dx is the variational inequality

0 ∈ E
z∼Dx

G(y, z) +NX (y). VI(Dx)

The following definition, originating in the work of Perdomo et al. (2020) for performative
prediction and Narang et al. (2023) for its multiplayer extension, is the key solution concept
that we will use.

Definition 4 (Equilibrium point) We say that x? is an equilibrium point of the family
of variational inequalities {VI(Dx)}x∈X if it satisfies:

0 ∈ Gx?(x?) +NX (x?).

Thus, x? is an equilibrium point of {VI(Dx)}x∈X if y = x? is itself a solution to the
variational inequality VI(Dx?) induced by the distribution Dx? . Equivalently, these are
exactly the fixed points of the map

Sol(x) := {y | 0 ∈ Gx(y) +NX (y)}, (3)

which is single-valued on X by the continuity and strong monotonicity of Gx(·) (e.g., see
Rockafellar and Wets, 1998, Example 12.7 and Proposition 12.54). Equilibrium points
have a clear intuitive meaning: a learning system that deploys a learning rule x? that is at
equilibrium has no incentive to deviate from x? based only on the data drawn from D(x?).
The key role of equilibrium points in (multiplayer) performative prediction is by now well
documented; see, e.g., Drusvyatskiy and Xiao (2022), Mendler-Dünner et al. (2020), Narang
et al. (2023), Perdomo et al. (2020), Piliouras and Yu (2022), and Wood and Dall’Anese
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(2023). Most importantly, equilibrium points exist and are unique under Assumptions 1 and
2. The proof is identical to that of Theorem 7 of Narang et al. (2023); we provide a short
argument in Section A.2 for completeness.

Theorem 5 (Existence) Suppose that Assumptions 1 and 2 hold. Then the map Sol(·) is
γβ
α -contractive on X and therefore the problem admits a unique equilibrium point x?.

We note in passing that when γβ ≥ α, equilibrium points may easily fail to exist; see,
e.g., Perdomo et al. (2020, Proposition 3.6). Therefore, the regime γβ < α is the natural
setting to consider when searching for equilibrium points.

4. Convergence and Asymptotic Normality

A central goal of performative prediction is the search for equilibrium points, which are
simply the fixed points of the map Sol(·) defined in (3). Though the map Sol(·) is
contractive, it cannot be evaluated directly since it involves evaluating the expectation
Gx(y) = Ez∼D(x)[G(y, z)]. Employing the standard assumption that the only access to D(x)
is through sampling, one may instead in iteration t take a single stochastic forward-backward
step on the problem corresponding to Sol(xt). The resulting procedure is recorded in
Algorithm 1 below. In the setting of performative prediction (Mendler-Dünner et al., 2020)
and its multiplayer extension (Narang et al., 2023), the algorithm reduces to projected
stochastic gradient methods.

Algorithm 1 Stochastic Forward-Backward Method (SFB)

Input: initial x0 ∈ X and step size sequence (ηt)t≥0 ⊂ (0,∞)
Step t ≥ 0:

Sample zt ∼ D(xt)

Set xt+1 = projX
(
xt − ηtG(xt, zt)

)
For the remainder of Section 4, we let (xt)t≥0 denote the stochastic process generated

by Algorithm 1 on the probability space (ZN,B(ZN),P), where P =
⊗∞

i=0Dxi is the unique
probability measure on the countable product space ZN satisfying

P(E0 × · · · × Et ×ZN) =

∫
E0

· · ·
∫
Et

dDxt(zt) · · · dDx0(z0) (4)

for all E0, . . . , Et ∈ B(Z) and t ≥ 0 (see Theorem 32). We will see that under very mild
assumptions, the SFB iterates xt almost surely converge to the equilibrium point x?. To
this end, we define for each (x, z) ∈ X × Z the noise vector

ξx(z) := G(x, z)−Gx(x) (5)

and impose the following standard bound on the conditional second moment of the noise. In
words, this assumption stipulates that the variance of the noise ξxt(z) with respect to the
distribution Dxt induced by the iterate xt grows at most quadratically with the distance of
xt to x?.

10
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Assumption 3 (Variance bound) There is a constant K ≥ 0 such that for all t ≥ 0, the
following bound holds almost surely:

E
zt∼Dxt

‖ξxt(zt)‖2 ≤ K(1 + ‖xt − x?‖2).

The subsequent proposition shows that the SFB iterates almost surely converge to the
equilibrium point under Assumptions 1–3 and standard conditions restricting the rate of
decrease of the step sizes ηt. The proof, which follows from a simple one-step improvement
bound for the SFB method (Narang et al., 2023, Theorem 24) and an application of the
Robbins-Siegmund almost supermartingale convergence theorem (Robbins and Siegmund,
1971), appears in Section A.3.

Proposition 6 (Almost sure convergence) Suppose that Assumptions 1–3 hold and the
step size sequence in Algorithm 1 satisfies

∑∞
t=0 ηt =∞ and

∑∞
t=0 η

2
t <∞. Then xt converges

to x? almost surely as t→∞, and
∑∞

t=0 ηt‖xt − x?‖2 <∞ almost surely. Moreover, if ηt =
Θ(t−ν) for some ν ∈

(
1
2 , 1
)
, then E‖xt−x?‖2 = O(t−ν) and hence

∑∞
t=1 t

−1/2‖xt−x?‖2 <∞
almost surely.

The main result of this section is the asymptotic normality of the average iterates

x̄t :=
1

t

t∑
i=1

xi,

for which we require the following additional assumption.

Assumption 4 The following four conditions hold.

(i) (Interiority) The equilibrium point x? lies in the interior of X .

(ii) (Lipschitz Jacobian) On a neighborhood of x?, the map x 7→ Gx(x) is differentiable
with Lipschitz continuous Jacobian.

(iii) (Asymptotic uniform integrability) We have

lim sup
t→∞

E
zt∼Dxt

[
‖G(x?, zt)‖21{‖G(x?,zt)‖≥N}

] a.s.−−→ 0 as N →∞

and

E
z∼Dx?

[
‖G(x?, z)‖21{‖G(x?,z)‖≥N}

]
→ 0 as N →∞.

(iv) (Lindeberg’s condition) For all ε > 0,

1

t

t−1∑
i=0

E
zi∼Dxi

[
‖ξxi(zi)‖21{‖ξxi (zi)‖≥ε

√
t}
] p−−→ 0 as t→∞.

A few comments are in order. First, the interiority condition (i) is a standard assumption
for asymptotic normality results even in static settings (Polyak and Juditsky, 1992). The
smoothness condition (ii) is fairly mild. For example, it holds if the partial derivatives
∇yGx(y) and ∇xGx(y) exist and are Lipschitz continuous on a neighborhood of (x?, x?);
in turn, this holds if, on a neighborhood of x?, each distribution D(x) admits a density

11
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p(x, z) = dD(x)
dµ (z) with respect to a common base measure µ � D(x) such that G(·, z)

and p(·, z) are locally C1,1-smooth5 and sufficient integrability conditions hold to invoke
dominated convergence.

Asymptotic uniform integrability conditions such as (iii) are key for obtaining convergence
of moments (see van der Vaart, 1998, Section 2.5); it is used in our setting to establish

E
zt∼Dxt

[
G(xt, zt)G(xt, zt)

>] a.s.−−→ E
z∼Dx?

[
G(x?, z)G(x?, z)>

]
as t→∞

(see Theorem 35). Condition (iii) holds, for instance, if there exists a neighborhood V of
x? satisfying supx∈V Ez∼Dx

[
‖G(x?, z)‖21{‖G(x?,z)‖≥N}

]
→ 0 as N →∞; in turn, this holds if

supx∈V Ez∼Dx
[
‖G(x?, z)‖q

]
< ∞ for some q ∈ (2,∞), e.g., if each random vector G(x?, z),

with z ∼ Dx, is sub-Gaussian with the same variance proxy σ2 for all x ∈ V. Lindeberg’s
condition (iv) imposes a standard constraint on the sequence of noise vectors ξxt(zt) for
application of the martingale central limit theorem (see Theorem 34); it holds, for example, if
both supt≥0 Ezt∼Dxt

[
‖ξxt(zt)‖2

]
<∞ almost surely and the asymptotic uniform integrability

condition lim supt→∞ Ezt∼Dxt
[
‖ξxt(zt)‖21{‖ξxt (zt)‖≥N}

] p−−→ 0 as N →∞ is fulfilled.
We are now ready to present our main result.

Theorem 7 (Asymptotic normality) Suppose that Assumptions 1–4 hold and the step
size sequence in Algorithm 1 satisfies ηt ∝ t−ν for some ν ∈

(
1
2 , 1
)
. Let R : X → Rd and

Σ � 0 be given by

R(x) = E
z∼Dx

[G(x, z)] and Σ = E
z∼Dx?

[
G(x?, z)G(x?, z)>

]
,

and let ξt = ξxt(zt) denote the noise vector at step t given by (5). Then, as t → ∞, the
iterates xt and their running averages x̄t = 1

t

∑t
i=1 xi converge to x? almost surely,

√
t(x̄t − x?) = −∇R(x?)−1

(
1√
t

t−1∑
i=0

ξi

)
+ oP(1),

and hence √
t(x̄t − x?) N

(
0,∇R(x?)−1 · Σ · ∇R(x?)−>

)
.

Theorem 7 asserts that under mild assumptions, the deviations
√
t(x̄t − x?) converge in

distribution to a Gaussian random vector with covariance matrix ∇R(x?)−1 · Σ · ∇R(x?)−>.
Moreover, under mild regularity conditions we may write

∇R(x?) = E
z∼D(x?)

[∇xG(x?, z)]︸ ︷︷ ︸
static

+
d

dy
E

z∼D(y)
[G(x?, z)]

∣∣∣
y=x?︸ ︷︷ ︸

dynamic

.

It is part of the theorem’s conclusion that the matrix ∇R(x?) is invertible. It is worthwhile
to note that the effect of the distributional shift on the asymptotic covariance is entirely
captured by the second “dynamic” term in ∇R(x?). When the distributions D(x) admit a

density p(x, z) = dD(x)
dµ (z) as before, the Jacobian ∇R(x?) admits the simple description:

∇R(x?) = E
z∼D(x?)

[∇xG(x?, z)] +

∫
G(x?, z)∇xp(x?, z)> dµ(z).

5. Recall that a map is said to be locally Ck,1-smooth if it is Ck-smooth and its kth-order partial derivatives
are locally Lipschitz continuous.
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Example 1 (Performative prediction with location-scale families) As an explicit
example of Theorem 7, let us look at the case when G(x, z) = ∇x`(x, z) is the gradi-
ent of a loss function and D(x) is a “linear perturbation” of a fixed base distribution D0.
Such distributions are quite reasonable when modeling performative effects, as explained by
Miller et al. (2021). In this case, we have

z ∼ D(x) ⇐⇒ z −Ax ∼ D0

for some fixed matrix A ∈ Rn×d, where n is the dimension of the data z. Then a quick
computation shows that we may write

∇R(x) = E
z∼D(x)

[
∇2
xx`(x, z) +∇2

zx`(x, z)A
]

under mild integrability conditions. Thus, the dynamic part of ∇R(x?) is governed by the
product of the matrix of mixed partial derivatives ∇2

zx`(x
?, z) ∈ Rd×n with A. The former

measures the sensitivity of the gradient ∇x`(x?, z) at x? to changes in the data z, while the
latter measures the performative effects of the distributional shift.

Example 2 (Multiplayer performative prediction with location-scale families)
More generally, let us look at the problem of multiplayer performative prediction (Narang
et al., 2023). In this case, the map G takes the form

G(x, z) =
(
∇1`1(x, z1), . . . ,∇k`k(x, zk)

)
where `i is a loss for each player i and ∇i`i denotes the gradient of `i with respect to the
action xi of player i. The distribution D(x) takes the product form

D(x) = D1(x)× · · · × Dk(x).

As highlighted by Narang et al. (2023), a natural parametric assumption is that there exist
probability distributions Pi and matrices Ai, A−i such that the following holds:

zi ∼ Di(x) ⇐⇒ zi −Aixi −A−ix−i ∼ Pi.
Here x−i denotes the vector obtained from x by deleting the coordinate xi; thus, the
distribution used by player i is a “linear perturbation” of a fixed base distribution Pi. We
can interpret the matrices Ai and A−i as quantifying the performative effects of player i’s
decisions and the rest of the players’ decisions, respectively, on the distribution Di governing
player i’s data. It is straightforward to check the expression

∇Ri(x) = E
zi∼Di(x)

[
∇2
xxi`i(x, zi) +∇2

zixi`i(x, zi)[Ai, A−i]
]

under mild integrability conditions, where [Ai, A−i]x = Aixi +A−ix−i. Thus, the dynamic
part of ∇Ri(x?) is governed by the product of the matrix of mixed partial derivatives
∇2
zixi`i(x

?, zi) with [Ai, A−i].

4.1 Proof of Theorem 7

The proof of Theorem 7 is based on the stochastic approximation result of Polyak and
Juditsky (Polyak and Juditsky, 1992, Theorem 2), which we review in Appendix B. For the
remainder of this section, we impose the assumptions of Theorem 7.

13
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Consider the map R : X → Rd given by R(x) = Gx(x). In light of the interiority condition
x? ∈ intX of Assumption 4, the equilibrium point x? is the unique solution to the equation
R(x) = 0 on intX . Observe that the noise vector ξt = ξxt(zt) satisfies the relation

G(xt, zt) = R(xt) + ξt

and so we may write the iterates of Algorithm 1 as

xt+1 = xt − ηt
(
R(xt) + ξt + ζt

)
, (6)

where

ζt :=
xt − ηt

(
R(xt) + ξt

)
− projX

(
xt − ηt

(
R(xt) + ξt

))
ηt

. (7)

Our goal is to apply Theorem 26 to the process (6) on the filtered probability space
(ZN,B(ZN),F,P), where F = (Ft)t≥0 is the filtration given by

F0 := {∅,ZN} and Ft := {A×ZN | A ∈ B(Zt)} for all t ≥ 1 (8)

and P =
⊗∞

i=0Dxi is given by (4). In what follows, we establish the necessary assumptions
for Theorem 26.

To begin, we note that the map R is Lipschitz continuous and strongly monotone on X ;
in particular, R is measurable.

Lemma 8 (Lipschitz continuity and strong monotonicity) The map R is (L̄+ γβ)-
Lipschitz continuous and (α− γβ)-strongly monotone on X .

Proof Let x, y ∈ X . Then

‖R(x)−R(y)‖ ≤ ‖Gx(x)−Gy(x)‖+ ‖Gy(x)−Gy(y)‖ ≤ (γβ + L̄)‖x− y‖
as a consequence of Lemma 3 and the L̄-Lipschitz continuity of Gy(·). Similarly,

〈R(x)−R(y), x− y〉 = 〈Gx(x)−Gy(x), x− y〉+ 〈Gy(x)−Gy(y), x− y〉
≥ −‖Gx(x)−Gy(x)‖‖x− y‖+ α‖x− y‖2

≥ (−γβ + α)‖x− y‖2

as a consequence of the α-strong monotonicity of Gy(·) and Lemma 3.

To establish Assumption 6, observe first that supt≥0 E‖ξt‖2 <∞ by Assumption 3 and
Proposition 6. Clearly xt is Ft-measurable, ξt and ζt are Ft+1-measurable, and ξt constitutes
a martingale difference sequence satisfying

E[ξt | Ft] = E
zt∼Dxt

[G(xt, zt)]−Gxt(xt) = 0.

The following lemma shows that E[ξtξ
>
t | Ft] converges to the positive semidefinite matrix

Σ = E
z∼D?x

[
G(x?, z)G(x?, z)>

]
almost surely as t→∞.

Lemma 9 (Asymptotic covariance) As t→∞, we have

E
[
G(xt, zt)G(xt, zt)

> | Ft
] a.s.−−→ Σ and E

[
ξtξ
>
t | Ft

] a.s.−−→ Σ.
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Proof Taking into account the almost sure convergence of xt to x? (Proposition 6), the
uniform integrability condition (iii) of Assumption 4, and the Lipschitz condition (i) of
Assumption 2, we may apply Lemma 35 with g = G along any sample path witnessing
xt → x? to obtain E[G(xt, zt)G(xt, zt)

> | Ft]→ Σ almost surely as t→∞. Therefore

E
[
ξtξ
>
t | Ft

]
= E

[
G(xt, zt)G(xt, zt)

> | Ft
]
−R(xt)R(xt)

> a.s.−−→ Σ as t→∞
by virtue of the continuity of R and the relation R(x?) = 0.

By Lemma 9, we have 1
t

∑t−1
i=0 E

[
ξiξ
>
i | Fi

] a.s.−−→ Σ as t→∞. Conditions (i) and (ii) of
Assumption 6 are now established, and Lindeberg’s condition (iii) of Assumption 6 holds
by item (iv) of Assumption 4. Now consider the residual vector ζt given by (7). Since
x? ∈ intX and xt

a.s.−−→ x? as t→∞, we have P{ζt = 0 for all but finitely many t} = 1 and
hence 1√

t

∑t−1
i=0 ‖ζi‖

a.s.−−→ 0 as t→∞. Thus, condition (iv) of Assumption 6 holds, and the

verification of Assumption 6 is complete.
We turn now to Assumption 7. The first two conditions of Assumption 4 assert that

the map R is differentiable on a neighborhood of x? ∈ intX . Since R is (α− γβ)-strongly
monotone on X (Lemma 8), it follows that we have 〈∇R(x?)v, v〉 ≥ α− γβ for every unit
vector v ∈ Sd−1 and hence every eigenvalue of ∇R(x?) has real part no smaller than α− γβ.
This is the content of the following lemma.

Lemma 10 (Positivity of the Jacobian) For any point x ∈ intX at which R is differ-
entiable, we have

〈∇R(x)v, v〉 ≥ α− γβ for all v ∈ Sd−1 (9)

and hence every eigenvalue of ∇R(x) has real part no smaller than α− γβ. In particular,
∇R(x?) is positively stable.

Proof Suppose R is differentiable at x ∈ intX . By Lemma 8, R is (α − γβ)-strongly
monotone on X , so (9) follows immediately from the definitions of differentiability and
strong monotonicity: for any unit vector v ∈ Sd−1,

〈∇R(x)v, v〉 = t−2〈R(x+ tv)−R(x), tv〉+ o(1) ≥ α− γβ + o(1) as t→ 0.

Next, observe that (9) implies λmin(∇R(x) +∇R(x)>) ≥ 2(α − γβ). Now let w ∈ Cd be
a normalized eigenvector of ∇R(x) with associated eigenvalue λ ∈ C. Letting w∗ denote
conjugate transpose of w, we conclude

2(α− γβ) ≤ w∗
(
∇R(x) +∇R(x)>

)
w = w∗∇R(x)w + (w∗∇R(x)w)∗ = λ+ λ̄ = 2(Reλ),

where the first inequality follows from the Rayleigh-Ritz theorem. Thus, every eigenvalue of
∇R(x) has real part no smaller than α− γβ. In particular, every eigenvalue of ∇R(x) has
positive real part, that is, ∇R(x) is positively stable. The last claim of the lemma follows
since R is differentiable at x? ∈ intX by Assumption 4.

Next, recall ηt ∝ t−ν for some ν ∈
(

1
2 , 1
)
, i.e., there exist a constant c > 0 and an index

T ≥ 1 such that ηt = ct−ν for all t ≥ T . Clearly ηt = o(1). Moreover,

0 ≤ ηt − ηt+1

η2
t

=
tν

(t+ 1)ν
· (t+ 1)ν − tν

c
≤ (t+ 1)ν − tν

c
for all t ≥ T,
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and since limt→∞
(
(t+ 1)r − tr

)
= 0 for any r ∈ (0, 1), we conclude

ηt − ηt+1

ηt
= o(ηt).

This establishes condition (i) of Assumption 7.
Finally, by Proposition 6, we have xt

a.s.−−→ x? and hence x̄t
a.s.−−→ x? as t → ∞, and∑∞

t=1 t
−1/2‖xt − x?‖2 <∞ almost surely, which by Kronecker’s lemma (see Durrett, 2019,

Lemma 2.5.9) implies 1√
t

∑t−1
i=0 ‖xi − x?‖2

a.s.−−→ 0 as t→∞; on the other hand,

R(x)−∇R(x?)(x− x?) = O(‖x− x?‖2) as x→ x?

since ∇R is Lipschitz continuous on a neighborhood of x? and R(x?) = 0. Therefore

1√
t

t−1∑
i=0

‖R(xi)−∇R(x?)(xi − x?)‖
a.s−−→ 0 as t→∞. (10)

Since ∇R(x?) is positively stable (Lemma 10), this concludes the verification of Assumption 7.
An application of Theorem 26 to the process (6) completes the proof of Theorem 7.

5. Asymptotic Optimality

In this section, we establish the local asymptotic optimality of Algorithm 1. Our result
builds on classical ideas from Hájek and Le Cam (Le Cam and Yang, 2000; van der Vaart,
1998) on lower bounds for statistical estimation and the more recent work of Duchi and Ruan
(2021) on asymptotic optimality of the stochastic gradient method. Throughout, we fix a
base distribution map D : X → P1(Z) and a map G : X ×Z → Rd satisfying Assumptions 1
and 2. We will be concerned with evaluating the performance of estimation procedures
for finding the equilibrium points induced by an adversarially-chosen sequence of small
perturbations D′ of D, where each D′ is “admissible” in the following sense.

Definition 11 (Admissible distribution map) A distribution map D′ : X → P1(Z) is
admissible if Assumptions 1 and 2 hold with D′ in place of D (allowing for different constants
γ′, L̄′, α′ in place of γ, L̄, α). For each admissible distribution map D′ : X → P1(Z), the
corresponding equilibrium point is denoted by x?D′ .

Let us start with some intuition before delving into the details. Roughly speaking, we
aim to show that the asymptotic covariance of the normalized error

√
t(x̄t−x?) in Theorem 1

is “optimal” among all algorithms for finding equilibrium points. To capture the notion of
optimal covariance, a standard approach is to probe the normalized error with nonnegative
“loss” functions L : Rd → [0,∞) that are symmetric, quasiconvex, and lower semicontinuous,
interpreting the concentration of X1 ∼ P1 to be “better” than that of X2 ∼ P2 if the
inequality E[L(X1)] ≤ E[L(X2)] holds for all such L; if X1 and X2 are square-integrable,
this relation clearly entails the positive semidefinite ordering E[X1X

>
1 ] � E[X2X

>
2 ] of

second-moment matrices.6

Using this idea, we consider a local asymptotic notion of minimax risk that evaluates the
performance of an arbitrary sequence of estimators on problems close to the one we wish

6. Note E[X1X
>
1 ] � E[X2X

>
2 ] if and only if E[Lu(X1)] ≤ E[Lu(X2)] for all u ∈ Rd, where Lu : Rd → [0,∞)

is given by Lu(x) = (u>x)2 = u>(xx>)u.
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to solve. Since our target problem models stochasticity using the base distribution map
D, we will parameterize close problems through perturbations of D. More concretely, we
will carefully construct for each u ∈ Rd a perturbation Du of D such that, as u → 0, the
distribution map Du is admissible with equilibrium point x?u := x?Du near x?. The primary
goal of this section is to show that if x̂k : Zk → Rd is an arbitrary sequence of estimators
(i.e., x̂k is a measurable function of k observed samples) and L : Rd → [0,∞) is symmetric,
quasiconvex, and lower semicontinuous, then the following lower bound holds:

sup
I⊂Rd, |I|<∞

lim inf
k→∞

max
u∈I

EPk,u/√k
[
L
(√
k
(
x̂k − x?u/√k

))]
︸ ︷︷ ︸

local asymptotic minimax risk

≥ E[L(Z)], (11)

where Pk,v =
⊗k−1

i=0 Dvx̃i denotes the distribution on Zk induced by Dv along an arbitrary
“dynamic estimation procedure” and Z ∼ N(0,W−1ΣW−>) with Σ and W as in Theorem 1.

The lower bound (11) provides a precise expression of the optimality of the covariance of
the limit distribution N(0,W−1ΣW−>). Moreover, we will show that equality is achieved in
(11) upon specializing to the dynamic estimation procedure corresponding to Algorithm 1
with step sizes ηk ∝ k−ν (as in Theorem 1) and taking x̂k to be given by the average iterates
x̄k = 1

k

∑k
i=1 xi, provided L is bounded and continuous.

To formalize the preceding discussion, we begin by defining the dynamic estimation
procedure used to define the sequence of distributions Pk,v =

⊗k−1
i=0 Dvx̃i appearing in (11).

Definition 12 (Dynamic estimation procedure) A dynamic estimation procedure is a
sequence of measurable maps Ak : Zk ×X k → X such that for any initial point x̃0 ∈ X , the
sequence of estimators x̃k : Zk → X defined recursively by

x̃k = Ak(z0, . . . , zk−1, x̃0, . . . , x̃k−1) (12)

satisfies

x̃k
a.s.−−→ x? as k →∞

with respect to the distribution
⊗∞

i=0Dx̃i on ZN.

Thus, the dynamic estimation procedure Ak plays the role of the decision-maker that
selects the sequence of points at which to query a given distribution map; this generalizes the
classical static setting wherein z0, z1, . . . are i.i.d. samples drawn from a fixed distribution.
In the dynamic setting, we are concerned with algorithms for estimating the equilibrium
point x?, so it is sensible to require that the iterates x̃k produced by the recursion (12)
with (z0, . . . , zk−1) ∼

⊗k−1
i=0 Dx̃i converge almost surely to x? as k →∞. Importantly, Ak is

assumed to be a deterministic function of its arguments. For example, the sequence of maps
Ak corresponding to Algorithm 1, i.e.,

Ak+1(z0, . . . , zk, x0, . . . , xk) = projX
(
xk − ηkG(xk, zk)

)
for all k ≥ 0, (13)

is a dynamic estimation procedure under the assumptions of Proposition 6; although this
particular map Ak+1 depends directly only on the last iterate xk and the last sample zk,
general dynamic estimation procedures may depend directly on any number of the previous
samples and iterates.

We turn now to defining the perturbations Du of D used to encode difficult instances
near the target problem.
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5.1 Tilted Distributions

Following Duchi and Ruan (2021) and van der Vaart (1998, Section 25.3), for each distribution
Dx := D(x) we will construct “tilt perturbations” Dux parameterized by u ∈ Rd. Henceforth,
we fix an arbitrary nondecreasing C3-smooth function h : R → [−1, 1] such that the first
three derivatives of h are bounded and h(t) = t for all t in a neighborhood of zero. For each
x ∈ X and u ∈ Rd, the tilted distribution Dux ∈ P1(Z) is defined by setting

Dux(E) :=

∫
E

1 + h(u>gx(z))

Cux
dDx(z) for all E ∈ B(Z), (14)

where gx : Z → Rd is Dx-integrable with Ez∼Dx [gx(z)] = 0 and Cux is the normalizing constant
Cux = 1 + Ez∼Dx [h(u>gx(z))]. The resulting parametric statistical model {Dux | u ∈ Rd} has
score function gx at zero, i.e.,

∇u
(

log
dDux
dDx

(z)

)∣∣∣∣
u=0

= gx(z).

Thus, the collection of functions {u>gx : Z → R |u ∈ Rd} forms a “tangent space” of the
model {Dux |u ∈ Rd} at zero (see van der Vaart, 1998, Example 25.15). In the context of
establishing the asymptotic optimality of Algorithm 1, we will see that the relevant score
function is the noise ξx(z) = G(x, z)−Gx(x).

To guarantee that the tilted distribution map given by x 7→ Dux is admissible for small u,
we require additional conditions on the base distribution map D, the map G, and the function
g : X × Z → Rd given by g(x, z) = gx(z). Despite being technical, these conditions (given
in Assumption 5 and Definition 14 below) are mild and essentially amount to quantifying
the smoothness of D, G, and g. To quantify the smoothness of D, we will make use of a
certain set of test functions to be integrated against each distribution Dx.

Definition 13 (Test functions) Given a compact metric space K, we let T (K,Z) consist
of all bounded measurable functions φ : K×Z → R admitting a constant Lφ such that each
section φ(·, z) is Lφ-Lipschitz on K. For any φ ∈ T (K,Z), we set Mφ := sup |φ|.

Assumption 5 The following three conditions hold.

(i) (Compactness) The set X is compact, and the set Z is bounded.

(ii) (Smooth distribution map) There exists an increasing function ϑ : [0,∞)→ [0,∞)
such that for every compact metric space K and test function φ ∈ T (K,Z), the function

x 7→ E
z∼Dx

φ(y, z)

is C1-smooth on X for each y ∈ K and the map

(x, y) 7→ ∇x
(

E
z∼Dx

φ(y, z)
)

is ϑ(Lφ +Mφ)-Lipschitz on X ×K.7

7. The same conclusion then holds for all measurable maps φ : K × Z → Rn with n ∈ N, Lφ :=
supz Lip

(
φ(·, z)

)
<∞, and Mφ := sup ‖φ‖ <∞.
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(iii) (Lipschitz Jacobian) There exist a measurable function Λ: Z → [0,∞) and constants
Λ̄, β′ ≥ 0 such that for every z ∈ Z and x ∈ X , the section G(·, z) is Λ(z)-smooth on
X with Ez∼Dx [Λ(z)] ≤ Λ̄, and the section ∇xG(x, ·) is β′-Lipschitz on Z.

The first condition is imposed mainly for simplicity. The last two smoothness condi-
tions are required in our arguments to apply dominated convergence and implicit func-
tion theorems. To illustrate with a concrete example, suppose that there exists a Borel
probability measure µ on Z such that Dx � µ for all x ∈ X , and consider the den-
sity p(x, z) = dD(x)

dµ (z). If there exist constants Λp, Lp ≥ 0 such that each section p(·, z)
is Λp-smooth and supx,z ‖∇xp(x, z)‖ ≤ Lp, then item (ii) of Assumption 5 holds with
ϑ(s) = max{Λp, Lp} · s.

Next, we specify the collection of functions g : X × Z → Rd satisfying the regularity
conditions we require.

Definition 14 (Score functions) Let G consist of all measurable functions g : X×Z → Rd

satisfying the following three conditions.

(i) (Lipschitz continuity) There exists a constant βg ≥ 0 such that for every x ∈ X ,
the section g(x, ·) is βg-Lipschitz on Z.

(ii) (Unbiasedness) Ez∼Dx [g(x, z)] = 0 for all x ∈ X .

(iii) (Smoothness) There exist a measurable function Λg : Z → [0,∞) and constants
Λ̄g, β

′
g ≥ 0 such that for every z ∈ Z and x ∈ X , the section g(·, z) is Λg(z)-smooth on

X with Ez∼Dx [Λg(z)] ≤ Λ̄g, and the section ∇xg(x, ·) is β′g-Lipschitz on Z.

For our purposes, the most important map in G will be the noise

ξ(x, z) := G(x, z)−Gx(x), (15)

which belongs to G as a consequence of Assumptions 2 and 5 and Lemma 30.
Henceforth, we fix g ∈ G and take gx(z) = g(x, z) in (14), thereby defining the tilted

distribution map Du : X → P1(Z) given by x 7→ Dux . The following lemma guarantees that
if Assumptions 1, 2, and 5 hold, then Du is admissible for all u in a neighborhood U of
zero; the proof, which we defer to Section C.1, provides constants γu, L̄u, αu that fulfill
Assumptions 1 and 2 for Du and deviate from γ, L̄, α by O(‖u‖) as u→ 0.

Lemma 15 (Tilted distributions are admissible) Suppose that Assumptions 1, 2, and
5 hold. Then there exists a neighborhood U of zero such that for all u ∈ U , the map Du is
admissible.

Thus, the solutions x?Du are well defined for small enough u. For ease of notation, we set

x?u := x?Du

for each u in the neighborhood U . With the preceding definitions in place, we are now ready
to state the main result of this section.

Theorem 16 (Asymptotic optimality) Suppose that Assumptions 1, 2, and 5 hold with
the equilibrium point x? lying in the interior of X , and suppose g = ξ.8 Let Ak : Zk×X k → X

8. Recall that g is the score function used to parameterize the perturbed distributions (14) and ξ is the
noise (15).
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be a dynamic estimation procedure, fix an initial point x̃0 ∈ X , and for each u ∈ Rd, let
Pk,u =

⊗k−1
i=0 Dux̃i denote the distribution on Zk induced by Du along the sequence (12).

Let x̂k : Zk → Rd be any sequence of estimators, and let L : Rd → [0,∞) be symmetric,
quasiconvex, and lower semicontinuous.

(i) (Lower bound) The following lower bound on the local asymptotic minimax risk holds:

sup
I⊂Rd, |I|<∞

lim inf
k→∞

max
u∈I

EPk,u/√k
[
L
(√
k
(
x̂k − x?u/√k

))]
≥ E[L(Z)], (16)

where Z ∼ N
(
0,W−1ΣW−>

)
with

Σ = E
z∼Dx?

[
G(x?, z)G(x?, z)>

]
and W = E

z∼Dx?
[∇xG(x?, z)]+

d

dy
E

z∼Dy
[G(x?, z)]

∣∣∣
y=x?

.

(ii) (Tightness of SFB) If Ak is the dynamic estimation procedure (13) corresponding
to Algorithm 1 with initial point x0 = x̃0 and step sizes ηk ∝ k−ν for some ν ∈

(
1
2 , 1
)
,

and if the sequence of estimators x̂k is given by the average iterates x̄k = 1
k

∑k
i=1 xi,

then equality holds in (16) whenever L is bounded and continuous.

Most importantly, observe that the distribution of Z in Theorem 16 coincides with
the asymptotic distribution of

√
t(x̄t − x?) in Theorem 7, thereby justifying asymptotic

optimality of the stochastic forward-backward method (Algorithm 1). The lower bound in
Theorem 16 provides a decision-dependent analogue of the asymptotic optimality result of
Duchi and Ruan (2021, Theorem 1) when the minimizer lies in the interior of X . We believe
that all the techniques developed here can be adapted to the more general setting where x?

may lie on the boundary of X ; since this generalization would require a significant technical
overhead, we do not pursue it here. Taking the average of the SFB iterates to obtain an
asymptotically optimal estimator as in item (ii) of Theorem 16 is important: even in the
static case, the last iterate is known to be asymptotically suboptimal (Fabian, 1968).

Remark 17 (Convergence of equilibria and tilted distributions) In the setting of
Theorem 16, one can show that the following approximations hold:

‖x?u − x?‖ = O(‖u‖) as u→ 0 (17)

and

sup
x∈X

W1(Dux ,Dx) = O(‖u‖) as u→ 0. (18)

Indeed, we will prove in the forthcoming Lemma 23 that the map u 7→ x?u is C1-smooth on
a neighborhood of zero, which implies (17) by the mean value theorem.

To verify the approximation (18), note first that for any 1-Lipschitz function φ ∈ Lip1(Z),
the translate φ̄ = φ− inf φ is bounded by diam(Z), and

E
z∼Dux

[φ(z)]− E
z∼Dx

[φ(z)] =
1

Cux
E

z∼Dx

[
φ̄(z)

(
1 + h

(
u>gx(z)

))]
− E
z∼Dx

[φ̄(z)] (19)

for any x ∈ X and u ∈ Rd. Further, Lemma 28 shows supx∈X Ez∼Dx |h(u>gx(z))| = O(‖u‖)
for all u ∈ Rd and supx∈X

1
Cux

= 1 +O(‖u‖3) as u→ 0, so (19) implies

sup
x∈X

W1(Dux ,Dx) ≤ diam(Z) · sup
x∈X

E
z∼Dx

|h(u>gx(z))|+O(‖u‖3) = O(‖u‖) as u→ 0,
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which follows from definition (1). This establishes (18), which in particular asserts that the
collection of tilted distribution maps {Du}u∈Rd converges uniformly to D as u→ 0.

Remark 18 (f-divergence of tilted distributions) We can also quantify the variation
of the tilted distribution map Du from the base distribution map D via an f -divergence.
Let f : (0,∞)→ R be any convex function that is C2,1-smooth around t = 1 and satisfies
f(1) = 0. Then for any distribution map D′ : X → P1(Z), we may define the similarity
measure

∆f (D′ ‖D) := sup
x∈X

∆f (D′x ‖Dx),

where ∆f (D′x ‖ Dx) denotes the usual f -divergence of D′x from Dx given by (2).9 The
following approximation holds:

∆f (Du ‖D) = O(‖u‖2) as u→ 0. (20)

To verify (20), observe that for all sufficiently small u ∈ Rd and all x ∈ X , we have

∆f (Dux ‖Dx) =

∫
f

(
1 + h(u>gx(z))

Cux

)
dDx(z)

=

∫
f

(
1 + u>gx(z)

Cux

)
dDx(z) (21)

=
f ′′(1)

2
u>
(

E
z∼Dx

gx(z)gx(z)>
)
u+ rx(u), (22)

where supx∈X |rx(u)| = o(‖u‖2) as u→ 0. The equality (21) holds for all sufficiently small
u ∈ Rd and all x ∈ X because g is uniformly bounded over X × Z (see Lemma 27) and
h(t) = t for all t in a neighborhood of zero. The equality (22) follows from a second-
order approximation and the dominated convergence theorem; we defer the details to
Lemma 29. Another appeal to the uniform boundedness of g yields a constant a ≥ 0 for
which supx∈X ‖Ez∼Dx [gx(z)gx(z)>]‖op ≤ a. Further, given any b > 0, there is a neighborhood
U of zero such that supx∈X , u∈U ‖u‖−2|rx(u)| ≤ b. Therefore ∆f (Du ‖D) ≤ (a2f

′′(1) + b)‖u‖2
for all sufficiently small u ∈ Rd.

In light of (20), one may obtain from (16) a less refined local asymptotic minimax bound
in terms of the “admissible neighborhoods” Bf (ε) of D defined for each ε > 0 by

Bf (ε) :=
{
D′ : X → P1(Z) | D′ is admissible and ∆f (D′ ‖D) ≤ ε

}
,

namely,

lim
c→∞

lim inf
k→∞

sup
D′∈Bf (c/k)

EP ′k
[
L
(√
k(x̂k − x?D′)

)]
≥ E[L(Z)], (23)

9. Examples of f -divergences include the χ2-divergence, KL-divergence, and squared Hellinger distance.
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where P ′k =
⊗k−1

i=0 D′x̃i denotes the distribution on Zk induced by D′ along the sequence
(12). Indeed, (20) facilitates the elementary estimation

lim
c→∞

lim inf
k→∞

sup
D′∈Bf (c/k)

EP ′k
[
L
(√
k(x̂k − x?D′)

)]
≥ lim

c→∞
lim inf
k→∞

sup
‖u‖≤c/

√
k

EPk,u
[
L
(√
k(x̂k − x?u)

)]
≥ sup
I⊂Rd, |I|<∞

lim inf
k→∞

max
u∈I

EPk,u/√k
[
L
(√
k
(
x̂k − x?u/√k

))]
and hence (16) implies (23).

5.2 Proof of Theorem 16

The proof of Theorem 16 is based on the classical Hájek-Le Cam minimax theorem. To
state this result, we require several standard definitions from statistics. In the sequel, we
let {Qk,u |u ∈ Rd} denote a sequence of parametric statistical models, where Qk,u is a
probability measure on (Ωk,Sk) such that Qk,u � Qk,0 for each k ∈ N and u ∈ Rd; following
van der Vaart and Wellner (1996), we write either Xk

u
 X or Xk

u
 D to indicate that a

sequence of random vectors Xk : Ωk → Rm converges in distribution to a random vector
X ∼ D with respect to Qk,u, i.e., limk→∞ EQk,u [ϕ(Xk)] = EX∼D[ϕ(X)] for every bounded
continuous function ϕ : Rm → R.

Definition 19 (Locally asymptotically normal) The sequence {Qk,u | u ∈ Rd} is
locally asymptotically normal (LAN) with precision V at zero if there exist a sequence
of random vectors Zk : Ωk → Rd and a positive semidefinite matrix V ∈ Rd×d such that
Zk

0
 N(0, V ) and, for each u ∈ Rd,

log
dQk,u
dQk,0

= u>Zk −
1

2
u>V u+ oQk,0(1). (24)

Definition 20 (Regular mapping sequence) A sequence of mappings Γk : Rd → Rn is
regular with derivative Γ̇ at zero if there exists a matrix Γ̇ ∈ Rn×d satisfying

lim
k→∞

√
k
(
Γk(u)− Γk(0)

)
= Γ̇u for all u ∈ Rd.

Example 3 Given any ψ : Rd → Rn such that ψ is differentiable at zero, the induced
mapping sequence Γk : Rd → Rn given by Γk(u) = ψ(u/

√
k) is clearly regular with derivative

Γ̇ = ∇ψ(0) at zero. We will see that this construction provides the relevant regular mapping
sequence for establishing Theorem 16 by taking ψ(u) = x?u on a neighborhood of zero.

Equipped with the preceding definitions, we are ready to state the following version of
the Hájek-Le Cam minimax theorem, which appears for example Lemma 8.2 of Duchi and
Ruan (2021) and Theorem 3.11.5 of van der Vaart and Wellner (1996).

Theorem 21 (Local asymptotic minimax bound) Let {Qk,u | u ∈ Rd} be locally
asymptotically normal with precision V at zero, Γk : Rd → Rn be a regular mapping se-
quence with derivative Γ̇ at zero, and L : Rn → [0,∞) be symmetric, quasiconvex, and lower
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semicontinuous. Then, for any sequence of estimators Tk : Ωk → Rn, we have

sup
I⊂Rd, |I|<∞

lim inf
k→∞

max
u∈I

EQk,u
[
L
(√
k
(
Tk − Γk(u)

))]
≥ E[L(Z)], (25)

where Z ∼ N(0, Γ̇(V + λI)−1Γ̇>) for any λ > 0; if V is invertible, then (25) also holds with
Z ∼ N(0, Γ̇V −1Γ̇>).

To establish the lower bound (16) in Theorem 16, we will apply Theorem 21 as follows.
Suppose henceforth that Assumptions 1, 2, and 5 hold with the equilibrium point x? lying
in the interior of X . Let Ak : Zk ×X k → X be a dynamic estimation procedure and fix an
initial point x̃0 ∈ X and a score function g ∈ G. For each k ∈ N and u ∈ Rd, we let

Pk,u :=

k−1⊗
i=0

Dux̃i (26)

denote the distribution on Zk induced by Du along the sequence (12), and we set

Qk,u := Pk,u/
√
k. (27)

Further, we define ψ : Rd → Rd by

ψ(u) =

{
x?u if u ∈ U
0 otherwise

and take Γk : Rd → Rd to be the induced mapping sequence given by

Γk(u) = ψ(u/
√
k);

since U is a neighborhood of zero, it follows that for each u ∈ Rd, we have Γk(u) = x?u/
√
k

for all but finitely many k ∈ N.
We now state two key lemmas that will allow us to apply Theorem 21; their proofs are

deferred to Sections C.2 and C.3, respectively. The first lemma verifies that {Qk,u |u ∈ Rd}
is locally asymptotically normal at zero with precision

Σg := E
z∼Dx?

[
gx?(z)gx?(z)

>],
while the second lemma shows that ψ is C1-smooth on a neighborhood of zero and computes
∇ψ(0) = −W−1Σ>g,G, where

Σg,G := E
z∼Dx?

[
gx?(z)G(x?, z)>

]
.

Lemma 22 (LAN) Let Zk : Zk → Rd be the sequence of random vectors given by

Zk =
1√
k

k−1∑
i=0

gx̃i(zi).

Then Zk
0
 N(0,Σg), where

0
 denotes convergence in distribution with respect to Qk,0.

Moreover, for each u ∈ Rd,

log
dQk,u
dQk,0

= u>Zk −
1

2
u>Σgu+ oQk,0(1).

Hence {Qk,u |u ∈ Rd} is locally asymptotically normal with precision Σg at zero.
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Lemma 23 (Smooth equilibrium perturbation) The map ψ is C1-smooth on a neigh-
borhood of zero with ∇ψ(0) = −W−1Σ>g,G. Hence Γk is regular with derivative Γ̇ =

−W−1Σ>g,G at zero.

Importantly, taking g to be the noise map ξ given by (15) and noting ξ(x?, z) = G(x?, z)
yields

Σξ = Σξ,G = E
z∼Dx?

[
G(x?, z)G(x?, z)>

]
= Σ.

We are now in position to apply Theorem 21. Let L : Rd → [0,∞) be symmetric, quasiconvex,
and lower semicontinuous, x̂k : Zk → Rd be any sequence of estimators, and suppose
henceforth that g = ξ. Invoking Lemmas 22 and 23 and applying Theorem 21 yields

sup
I⊂Rd, |I|<∞

lim inf
k→∞

max
u∈I

EPk,u/√k
[
L
(√
k
(
x̂k − x?u/√k

))]
= sup
I⊂Rd, |I|<∞

lim inf
k→∞

max
u∈I

EQk,u
[
L
(√
k
(
x̂k − Γk(u)

))]
≥ E[L(Zλ)], (28)

where Zλ ∼ N(0,W−1Σ(Σ + λI)−1ΣW−>) for any λ > 0.
Letting λ ↓ 0 in (28) establishes (16). Indeed, let Σ = AA> be a Cholesky decomposition

of Σ and observe that the pseudoinverse identities A† = limλ↓0A
>(AA> + λI

)−1
and

AA†A = A imply

lim
λ↓0

Σ
(
Σ + λI

)−1
Σ = A

(
lim
λ↓0

A>
(
AA> + λI

)−1
)
AA> =

(
AA†A

)
A> = AA> = Σ.

Thus, upon setting Σ̃λ := W−1Σ(Σ + λI)−1ΣW−> and Σ̃ := W−1ΣW−>, we have Σ̃λ → Σ̃

as λ ↓ 0. Further, for all 0 < λ2 ≤ λ1, we have exp
(
−1

2v
>Σ̃†λ2v

)
≥ exp

(
−1

2v
>Σ̃†λ1v

)
for all

v ∈ Rd. Since the densities corresponding to Zλ ∼ N(0, Σ̃λ) and Z ∼ N(0, Σ̃) with respect
to the Lebesgue measure restricted to S := range Σ̃ are given by

pλ(v) :=
exp
(
−1

2v
>Σ̃†λv

)√
(2π)r det∗

(
Σ̃λ

) and p(v) :=
exp
(
−1

2v
>Σ̃†v

)√
(2π)r det∗

(
Σ̃
) ,

where r is the rank of Σ, we may therefore apply the monotone convergence theorem to
obtain

lim
λ↓0

E[L(Zλ)] = lim
λ↓0

1√
(2π)r det∗

(
Σ̃λ

) ∫
S
L(v) exp

(
−1

2v
>Σ̃†λv

)
dv

=
1√

(2π)r det∗
(
Σ̃
) ∫

S
L(v) exp

(
−1

2v
>Σ̃†v

)
dv

= E[L(Z)].

Hence (28) entails (16).
To prove the final claim of Theorem 16, we proceed by establishing a type of asymptotic

equivariance of the average SFB iterates (e.g., see van der Vaart, 1998, Lemma 8.14).

Lemma 24 (Asymptotic equivariance) Let Ak be the dynamic estimation procedure
(13) corresponding to Algorithm 1 with initial point x0 = x̃0 and step sizes ηk ∝ k−ν for
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some ν ∈
(

1
2 , 1
)
. Then the average iterates x̄k = 1

k

∑k
i=1 xi are asymptotically equivariant-

in-law with respect to {Qk,u |u ∈ Rd} for estimating x?, that is, for each u ∈ Rd,
√
k
(
x̄k − Γk(u)

) u
 N

(
0,W−1ΣW−>

)
. (29)

Proof Lemma 22 shows that the sequence of random vectors Zk : Zk → Rd given by

Zk =
1√
k

k−1∑
i=0

ξxi(zi)

satisfies

Zk
0
 N(0,Σ), (30)

and, for each u ∈ Rd,

log
dQk,u
dQk,0

= u>Zk −
1

2
u>Σu+ oQk,0(1). (31)

Moreover, Theorem 7 reveals
√
k(x̄k − x?) = −W−1Zk + oQk,0(1). (32)

Now let Z̄ ∼ N(0,Σ), fix u ∈ Rd, and consider the affine map ϕ : Rd → Rd+1 given by

ϕ(z) =

(
−W−1

u>

)
z +

(
0

−1
2u
>Σu

)
.

Then (30) implies ϕ(Zk)
0
 ϕ(Z̄) and hence(√

k(x̄k − x?)
log

dQk,u
dQk,0

)
0
 

(
−W−1Z̄

u>Z̄ − 1
2u
>Σu

)
∼ N

((
0

−1
2u
>Σu

)
,

(
W−1ΣW−> −W−1Σu
−u>ΣW−> u>Σu

))
(33)

by virtue of (31), (32), and the continuous mapping theorem (see van der Vaart, 1998,
Theorems 2.3 and 2.7).

In light of (33), Le Cam’s Third Lemma asserts
√
k(x̄k − x?)

u
 N

(
−W−1Σu,W−1ΣW−>

)
(34)

(see van der Vaart, 1998, Example 6.7). On the other hand, Lemma 23 shows that Γk is a
regular mapping sequence with derivative Γ̇ = −W−1Σ at zero, so

√
k
(
x? − Γk(u)

)
= −
√
k
(
Γk(u)− Γk(0)

)
→W−1Σu as k →∞. (35)

Combining (34) and (35) yields (29).

Finally, suppose that the assumptions of Lemma 24 hold. Let ϕ : Rd → R be any
bounded continuous function and Z ∼ N(0,W−1ΣW−>). Then (29) directly implies that
for every finite subset I ⊂ Rd, we have

lim
k→∞

max
u∈I

EPk,u/√k
[
ϕ
(√
k
(
x̄k − x?u/√k

))]
= max

u∈I
lim
k→∞

EQk,u
[
ϕ
(√
k
(
x̄k − Γk(u)

))]
= E[ϕ(Z)].

Hence

sup
I⊂Rd, |I|<∞

lim inf
k→∞

max
u∈I

EPk,u/√k
[
ϕ
(√
k
(
x̄k − x?u/√k

))]
= E[ϕ(Z)],
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thereby demonstrating equality in (16) whenever L is bounded and continuous. The proof
of Theorem 16 is complete.
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Appendix A. Proofs Deferred from Sections 3 and 4

A.1 Proof of Lemma 3

For any x, x′, y ∈ X , we successively estimate

‖Gx(y)−Gx′(y)‖ =

∥∥∥∥ E
z∼D(x)

G(y, z)− E
z∼D(x′)

G(y, z)

∥∥∥∥
= sup
‖v‖≤1

{
E

z∼D(x)
〈G(y, z), v〉 − E

z∼D(x′)
〈G(y, z), v〉

}
≤ β ·W1

(
D(x),D(x′)

)
(36)

≤ βγ · ‖x− x′‖,
where inequality (36) follows from the β-Lipschitz continuity of the function z 7→ 〈G(y, z), v〉
and the characterization (1) of W1.

A.2 Proof of Theorem 5

Fix any two points x, x′ ∈ X and set y := Sol(x) and y′ := Sol(x′). Note that the definition
of the normal cone implies

〈Gx(y), y − y′〉 ≤ 0 and 〈Gx′(y′), y′ − y〉 ≤ 0.

Strong monotonicity therefore ensures

α‖y − y′‖2 ≤ 〈Gx(y)−Gx(y′), y − y′〉
≤ 〈Gx′(y′)−Gx(y′), y − y′〉
≤ ‖Gx′(y′)−Gx(y′)‖ · ‖y − y′‖
≤ γβ‖x− x′‖ · ‖y − y′‖,

where the last inequality follows from Lemma 3. Dividing through by α‖y − y′‖ guarantees
that Sol(·) is indeed a contraction on X with parameter γβ

α . The result follows immediately
from the Banach fixed point theorem.

A.3 Proof of Proposition 6

We will use the following classical result known as the Robbins-Siegmund almost super-
martingale convergence theorem (for a proof, see Duflo, 1997, Theorem 1.3.12).

Lemma 25 (Robbins-Siegmund) Let (At), (Bt), (Ct), (Dt) be sequences of finite nonneg-
ative random variables on a filtered probability space (Ω,F ,F,P) adapted to the filtration
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F = (Ft) and satisfying

E[At+1 | Ft] ≤ (1 +Bt)At + Ct −Dt

for all t. Then on the event {
∑

tBt <∞,
∑

tCt <∞}, there is a finite random variable
A∞ such that At → A∞ and

∑
tDt <∞ almost surely.

Toward applying Lemma 25 with At = ‖xt − x?‖2, let (Ft) be the filtration given by (8)
and observe that the SFB iterate sequence (xt) is given by

xt+1 = projX
(
xt − ηt(R(xt) + ξt)

)
,

where the map R : X → Rd given by R(x) = Gx(x) is Lipschitz continuous and strongly
monotone on X with constants L̄+ γβ and ᾱ = α− γβ, respectively (see Lemma 8), and
the noise vector ξt = G(xt, zt)−R(xt) satisfies E[ξt | Ft] = 0 (zero bias) with variance bound
E[‖ξt‖2 | Ft] ≤ K(1 + ‖xt − x?‖2) for all t ≥ 0 (Assumption 3). Thus, since ηt → 0 (recall∑

t η
2
t <∞), we see that for all sufficiently large t, we may apply the one-step improvement

bound of Narang et al. (2023, Theorem 24) with zero bias to obtain

E
[
‖xt+1 − x?‖2 | Ft

]
≤ 1 + 2Kη2

t

1 + ᾱηt
‖xt − x?‖2 +

2Kη2
t

1 + ᾱηt
(37)

≤ (1− 1
2 ᾱηt)‖xt − x

?‖2 +
2Kη2

t

1 + ᾱηt
(38)

≤ ‖xt − x?‖2 + 2Kη2
t − 1

2 ᾱηt‖xt − x
?‖2. (39)

(For (37), it suffices to require ηt ≤ ᾱ
2(L̄+γβ)2

; for (38), it suffices to require ηt ≤ ᾱ
4K+ᾱ2 .)

Using (39), we may now apply Lemma 25 with At = ‖xt − x?‖2, Bt = 0, Ct = 2Kη2
t ,

and Dt = 1
2 ᾱηt‖xt − x

?‖2. By assumption, we have
∑

t η
2
t < ∞, so Lemma 25 yields a

finite random variable A∞ such that At → A∞ and
∑

tDt < ∞ almost surely. Hence
‖xt − x?‖2 → A∞ and

∑
t ηt‖xt − x?‖2 <∞ almost surely. Since

∑
t ηt =∞, we conclude

A∞ = limt ‖xt − x?‖2 = 0 almost surely, i.e., xt → x? almost surely.
Next, to establish the in-expectation rate, note that (39) and the tower rule imply

E‖xt+1 − x?‖2 ≤
(
1− 1

2 ᾱηt
)
E‖xt − x?‖2 + 2Kη2

t

for all sufficiently large t. Thus, upon supposing ηt = Θ(t−ν) for some ν ∈
(

1
2 , 1
)
, a standard

inductive argument (see, e.g., Davis et al., 2021, Lemma 3.11.8) yields a constant C > 0
such that E‖xt − x?‖2 ≤ Ct−ν for all t ≥ 1. Therefore

E

[ ∞∑
t=1

t−1/2‖xt − x?‖2
]
≤ C

∞∑
t=1

t−(ν+1/2) <∞

and hence
∑∞

t=1 t
−1/2‖xt − x?‖2 <∞ almost surely. This completes the proof.

Appendix B. Review of Asymptotic Normality

In this appendix, we present a variation of the asymptotic normality result of Polyak and
Juditsky (1992, Theorem 2). Consider a measurable set X ⊂ Rd and a measurable map
R : X → Rd. Suppose that there exists a solution x? ∈ X to the equation R(x) = 0. The
goal is to approximate x? while only having access to noisy evaluations of R. Given x0 ∈ X ,
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consider the iterative process

xt+1 = xt − ηt
(
R(xt) + ξt + ζt

)
, (40)

where ηt is a deterministic positive step size, ξt is a random vector in Rd representing
noise with zero mean conditioned on prior information, and ζt is a random vector in Rd

representing a residual element that both ensures xt+1 ∈ X and quantifies the difference
between xt+1 and the basic step xt − ηt(R(xt) + ξt) in the unbiased direction −(R(xt) + ξt);
for example, taking

ζt =
xt − ηt

(
R(xt) + ξt

)
− projX

(
xt − ηt

(
R(xt) + ξt

))
ηt

in (40) yields the stochastic forward-backward method xt+1 = projX (xt − ηt(R(xt) + ξt)).
The following assumption formalizes the stochastic framework for our analysis.

Assumption 6 (Stochastic framework) The sequences (xt)t≥0, (ξt)t≥0, and (ζt)t≥0 in
(40) are stochastic processes defined on a probability space (Ω,F ,P) equipped with a filtration
(Ft)t≥0 such that xt is Ft-measurable, ξt and ζt are Ft+1-measurable, and ξt constitutes
a martingale difference sequence satisfying E[ξt | Ft] = 0. Additionally, the following four
conditions hold.

(i) (L2-bounded noise) supt≥0 E‖ξt‖2 <∞.

(ii) (Asymptotic covariance) There is a deterministic positive semidefinite matrix Σ
satisfying

1

t

t−1∑
i=0

E
[
ξiξ
>
i | Fi

] p−−→ Σ as t→∞.

(iii) (Lindeberg’s condition) For all ε > 0,

1

t

t−1∑
i=0

E
[
‖ξi‖21{‖ξi‖≥ε

√
t} | Fi

] p−−→ 0 as t→∞.

(iv) (Negligible residual) 1√
t

∑t−1
i=0 ‖ζi‖

p−−→ 0 as t→∞.

Next, we stipulate the stability conditions regulating the dynamics of (40) that we require
to establish asymptotic normality of the average iterates. Recall that a matrix A ∈ Rd×d is
said to be positively stable if every eigenvalue of A has a positive real part.

Assumption 7 (Stable dynamics) There is a positively stable matrix A ∈ Rd×d for
which the following two conditions hold.

(i) (Step size) The step size sequence (ηt)t≥0 satisfies either

ηt ≡ η and 0 < η < 2
(

min
j

Reλj(A)
)−1

(41)

or

ηt = o(1) and
ηt − ηt+1

ηt
= o(ηt) as t→∞. (42)
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(ii) (Linear approximation) The iterate sequence (xt)t≥0 satisfies

1√
t

t−1∑
i=0

‖R(xi)−A(xi − x?)‖
p−−→ 0 as t→∞. (43)

Theorem 26 (Polyak and Juditsky (1992, Theorem 2)) Suppose that Assumptions
6 and 7 hold. Then, as t→∞, the average iterates x̄t = 1

t

∑t
i=1 xi satisfy

√
t(x̄t − x?) = −A−1

(
1√
t

t−1∑
i=0

ξi

)
+ oP(1)

and hence √
t(x̄t − x?) N

(
0, A−1ΣA−>

)
.

We remark that the assumptions of Theorem 26 are somewhat more general than those
of Theorem 2 of Polyak and Juditsky (1992), but the proof technique is the same. The
primary differences are as follows:

(a) The residual term ζt in (40) need not satisfy E[ζt | Ft] = 0, but this causes no
difficulty as we assume ζt is negligible in the sense of condition (iv) of Assump-
tion 6. The rest of our stochastic setting stipulates conditions on ξt tailored to
an application of the martingale central limit theorem (Theorem 34); we note that
Lindeberg’s condition (iii) of Assumption 6 holds if the asymptotic uniform integra-

bility condition lim supt→∞ E
[
‖ξt‖21{‖ξt‖≥N} | Ft

] p−−→ 0 as N → ∞ is fulfilled and
supt≥0 E

[
‖ξt‖2 | Ft

]
<∞ almost surely.

(b) Theorem 2 of Polyak and Juditsky (1992) requires A = ∇R(x?) with

R(x)−∇R(x?)(x− x?) = O(‖x− x?‖q) as x→ x? (44)

for some q ∈ (1, 2], and assumes that the step size sequence (ηt)t≥0 satisfies
∞∑
t=1

η
q/2
t t−1/2 <∞

in addition to (42); together with a further Lyapunov function assumption, this
suffices to demonstrate that the iterate sequence (xt)t≥0 satisfies both xt

a.s.−−→ x? and
1√
t

∑t−1
i=0 ‖xi − x?‖q

a.s.−−→ 0 as t→∞, which by (44) implies (43).

Proof For each t ≥ 0, let ∆t = xt − x? denote the error of the process (40) at time t, with
corresponding average errors given by

∆̄t =
1

t

t∑
j=1

∆j = x̄t − x? for all t ≥ 1.

Let A denote the matrix furnished by Assumption 7 and observe that (40) yields the following
recursion for all t ≥ 0:

∆t+1 = ∆t − ηt
(
R(xt) + ξt + ζt

)
= (I − ηtA)∆t − ηt

(
R(xt)−A∆t + ξt + ζt

)
. (45)
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Unrolling the recursion (45) gives

∆j =

(
j−1∏
k=0

(I − ηkA)

)
∆0 −

j−1∑
i=0

(
j−1∏
k=i+1

(I − ηk)A

)
ηi
(
R(xi)−A∆i + ξi + ζi

)
for all j ≥ 0 and hence

t∆̄t =
t∑

j=1

(
j−1∏
k=0

(I − ηkA)

)
∆0 −

t∑
j=1

j−1∑
i=0

(
j−1∏
k=i+1

(I − ηkA)

)
ηi
(
R(xi)−A∆i + ξi + ζi

)
=

t∑
j=1

(
j−1∏
k=0

(I − ηkA)

)
∆0 −

t−1∑
i=0

t∑
j=i+1

(
j−1∏
k=i+1

(I − ηkA)

)
ηi
(
R(xi)−A∆i + ξi + ζi

)
for all t ≥ 1 (interpreting empty products as the identity matrix and empty sums as zero).
Thus, upon defining for each t ≥ 1 and i ≥ 0 the matrices

Bt =
t∑

j=1

(
j−1∏
k=0

(I − ηkA)

)
, Bt

i = ηi

t∑
j=i+1

(
j−1∏
k=i+1

(I − ηkA)

)
, Ati = Bt

i −A−1,

we have

t∆̄t = Bt∆0 −
t−1∑
i=0

Bt
i

(
R(xi)−A∆i + ξi + ζi

)
= Bt∆0 −

t−1∑
i=0

Bt
iξi −

t−1∑
i=0

Bt
i

(
R(xi)−A∆i

)
−

t−1∑
i=0

Bt
iζi

= Bt∆0 −A−1
t−1∑
i=0

ξi −
t−1∑
i=0

Atiξi −
t−1∑
i=0

Bt
i

(
R(xi)−A∆i

)
−

t−1∑
i=0

Bt
iζi

and hence

√
t(x̄t − x?) +A−1

(
1√
t

t−1∑
i=0

ξi

)
=

1√
t
Bt(x0 − x?)−

1√
t

t−1∑
i=0

Atiξi

− 1√
t

t−1∑
i=0

Bt
i

(
R(xi)−A(xi − x?)

)
− 1√

t

t−1∑
i=0

Bt
iζi.

(46)

We claim that the right-hand side of (46) is oP(1) as t→∞. Indeed, since A is positively
stable and the step size condition (i) of Assumption 7 holds, it follows from Lemma 1 of
Polyak and Juditsky (1992) that the collection of matrices {Ati, Bt

i , Bt | t ≥ 1, i ≥ 0} is
bounded with respect to the operator norm and

lim
t→∞

1

t

t−1∑
i=0

‖Ati‖op = 0. (47)

Let C = sup{‖Ati‖op, ‖Bt
i‖op, ‖Bt‖op,E‖ξi‖2 | t ≥ 1, i ≥ 0}; by the L2-boundedness condi-

tion (i) of Assumption 6, we have C <∞. Therefore∥∥∥∥ 1√
t
Bt(x0 − x?)

∥∥∥∥ ≤ C‖x0 − x?‖√
t

a.s.−−→ 0 as t→∞, (48)
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and since (ξi)i≥0 is a martingale difference sequence, we deduce from (47) the following
convergence in mean square:

E

∥∥∥∥∥ 1√
t

t−1∑
i=0

Atiξi

∥∥∥∥∥
2

=
1

t

t−1∑
i=0

E‖Atiξi‖2 ≤
C

t

t−1∑
i=0

‖Ati‖2op ≤
C2

t

t−1∑
i=0

‖Ati‖op → 0 as t→∞,

which by Markov’s inequality implies

1√
t

t−1∑
i=0

Atiξi
p−−→ 0 as t→∞. (49)

Moreover, the linear approximation condition (ii) of Assumption 7 implies∥∥∥∥∥ 1√
t

t−1∑
i=0

Bt
i

(
R(xi)−A(xi − x?)

)∥∥∥∥∥ ≤ C√
t

t−1∑
i=0

‖R(xi)−A(xi−x?)‖
p−−→ 0 as t→∞, (50)

while the negligible residual condition (iv) of Assumption 6 implies∥∥∥∥∥ 1√
t

t−1∑
i=0

Bt
iζi

∥∥∥∥∥ ≤ C√
t

t−1∑
i=0

‖ζi‖
p−−→ 0 as t→∞. (51)

By (48)–(51), we conclude that the right-hand side of (46) is oP(1) as t→∞, so

√
t(x̄t − x?) = −A−1

(
1√
t

t−1∑
i=0

ξi

)
+ oP(1) as t→∞.

Finally, by virtue of Assumption 6, we may apply the martingale central limit theorem
(Theorem 34) to the square-integrable martingale Mt =

∑t−1
i=0 ξi to obtain t−1/2Mt  N(0,Σ)

and hence, by the continuous mapping theorem (see van der Vaart, 1998, Theorem 2.3),

−A−1

(
1√
t

t−1∑
i=0

ξi

)
 N

(
0, A−1ΣA−>

)
as t→∞.

This completes the proof.

Appendix C. Proofs Deferred from Section 5

This appendix presents contains all of the proofs deferred from Section 5. We assume
throughout that the assumptions used in Section 5 are valid; in particular, X is compact, Z
is bounded, and g ∈ G (see Definition 14). To begin, we present three preliminary lemmas.

Lemma 27 We have

sup
x∈X , z∈Z

‖gx(z)‖ <∞ and sup
x∈X , z∈Z

‖∇xgx(z)‖op <∞.
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Proof Fix x◦ ∈ X and z◦ ∈ Z. Since X and Z are bounded, we compute

M ′g := sup
x∈X , z∈Z

‖∇xgx(z)‖op ≤ ‖∇xgx◦(z◦)‖op + sup
x∈X
‖∇xgx(z◦)−∇xgx◦(z◦)‖op

+ sup
x∈X , z∈Z

‖∇xgx(z)−∇xgx(z◦)‖op

≤ ‖∇xgx◦(z◦)‖op + Λg(z
◦) diam(X ) + β′g diam(Z) <∞.

Hence every section g(·, z) is M ′g-Lipschitz on X , and the estimate

Mg := sup
x∈X , z∈Z

‖gx(z)‖ ≤ ‖gx◦(z◦)‖+ sup
x∈X
‖gx(z◦)− gx◦(z◦)‖+ sup

x∈X , z∈Z
‖gx(z)− gx(z◦)‖

≤ ‖gx◦(z◦)‖+M ′g diam(X ) + βg diam(Z)

completes the proof.

Lemma 28 Let Lh = sup |h′|, Lh′′ = sup |h′′′|, Ag = supx∈X Ez∼Dx‖gx(z)‖, and Bg =
supx∈X Ez∼Dx‖gx(z)‖3.

(i) Let u ∈ Rd. Then

|h(u>gx(z))| ≤ Lh‖gx(z)‖‖u‖ (52)

for all x ∈ X and z ∈ Z and hence

sup
x∈X

E
z∼Dx

|h(u>gx(z))| ≤ LhAg‖u‖ = O(‖u‖). (53)

(ii) For each x ∈ X , the function u 7→ Cux = 1 + Ez∼Dxh(u>gx(z)) is C2-smooth on Rd

with Lh′′Bg-Lipschitz continuous Hessian, and we have C0
x = 1, ∇uCux |u=0 = 0, and

∇2
uuC

u
x |u=0 = 0. Therefore

sup
x∈X

∣∣∣Ez∼Dxh(u>gx(z))
∣∣∣ ≤ Lh′′Bg

6
‖u‖3 (54)

for all u ∈ Rd and hence

sup
x∈X

1

Cux
= 1 +O(‖u‖3) as u→ 0. (55)

Proof Note first that h(t) = t for all t in a neighborhood of zero and the first three
derivatives of h are bounded by assumption, while Ag, Bg <∞ by Lemma 27. Since h(0) = 0
and h is Lh-Lipschitz continuous, the inequalites (52) and (53) follow immediately. Next,
let x ∈ X and observe that the dominated convergence theorem yields

∇u
(

E
z∼Dx

h
(
u>gx(z)

))
= E

z∼Dx
h′
(
u>gx(z)

)
gx(z)

and

∇2
uu

(
E

z∼Dx
h
(
u>gx(z)

))
= E

z∼Dx
h′′
(
u>gx(z)

)
gx(z)gx(z)>

for all u ∈ Rd. Thus, u 7→ Cux is C2-smooth on Rd, and since h′′ is Lh′′-Lipschitz continuous,
it follows at once that u 7→ ∇2

uuC
u
x is Lh′′Bg-Lipschitz continuous on Rd.

Clearly C0
x = 1 since h(0) = 0. Further,

∇uCux |u=0 = ∇u
(

E
z∼Dx

h
(
u>gx(z)

))∣∣∣
u=0

= E
z∼Dx

gx(z) = 0
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since h′(0) = 1 and g ∈ G, while

∇2
uuC

u
x |u=0 = ∇2

uu

(
E

z∼Dx
h
(
u>gx(z)

))∣∣∣
u=0

= 0

since h′′(0) = 0. The second-order Taylor polynomial of the function u 7→ Ez∼Dxh(u>gx(z))
about u = 0 is therefore identically zero, so Lh′′Bg-Lipschitzness of the Hessian implies (54).
Finally, the estimate

1

1 + t
= 1− t

1 + t
≤ 1 + 2|t| for all t ≥ −1

2

together with (54) yields (55).

Lemma 29 Let f : (0,∞)→ R be a function that is C2,1-smooth around t = 1 and satisfies
f(1) = 0. Then for all sufficiently small u ∈ Rd and all x ∈ X , we have∫

f

(
1 + u>gx(z)

Cux

)
dDx(z) =

f ′′(1)

2
u>
(

E
z∼Dx

gx(z)gx(z)>
)
u+ rx(u), (56)

where supx∈X |rx(u)| = O(‖u‖3) as u→ 0.

Proof Fix x ∈ X and define ϕx(u) := Ez∼Dxf
(

1+u>gx(z)
Cux

)
. By the dominated convergence

theorem, ϕx is C2-smooth on a neighborhood of zero with

∇uϕx(u) = E
z∼Dx

[
f ′
(

1 + u>gx(z)

Cux

)(
gx(z)Cux −

(
1 + u>gx(z)

)
∇uCux

(Cux )2

)]
and (Cux )4 · ∇2

uuϕx(u) equal to

E
z∼Dx

[
f ′′
(

1 + u>gx(z)

Cux

)(
gx(z)Cux −

(
1 + u>gx(z)

)
∇uCux

)(
gx(z)Cux −

(
1 + u>gx(z)

)
∇uCux

)>
+ f ′

(
1 + u>gx(z)

Cux

)(
(Cux )2

(
gx(z)(∇uCux )> − (∇uCux )gx(z)> −

(
1 + u>gx(z)

)
∇2
uuC

u
x

)
− 2Cux

(
gx(z)Cux −

(
1 + u>gx(z)

)
∇uCux

)
(∇uCux )>

)]
.

Thus, taking a second-order Taylor expansion of ϕx at u = 0 with remainder rx and applying
the equalities C0

x = 1, ∇uCux |u=0 = 0, ∇2
uuC

u
x |u=0 = 0, and f(1) = 0 yields (56). It remains

to verify supx∈X |rx(u)| = O(‖u‖3) as u→ 0.
Lemmas 27 and 28 ensure that Cux ,∇uCux , and ∇2

uuC
u
x are Lipschitz continuous and

bounded on a compact neighborhood of u = 0, with Lipschitz constants and bounds
independent of x. Further, since f is C2,1-smooth around t = 1, we have that f ′ and f ′′

are Lipschitz continuous and bounded on a compact neighborhood of t = 1. It follows that
∇2
uuϕx is L̃-Lipschitz on a neighborhood U of u = 0, with constant L̃ independent of x.

Thus we deduce |rx(u)| ≤ L̃
6 ‖u‖

3 for all (x, u) ∈ X × U , and the result follows.
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C.1 Proof of Lemma 15

The proof of this lemma is divided into four steps: the first step verifies Assumption 1 and
the next three steps establish Assumption 2. The strategy in all steps is to prove that
various quantities of interest change continuously with u near zero. One of the main tools
we will use to this end is the following elementary lemma (which we will also use crucially
later in the proof of Lemma 23). Its proof consists of several applications of the dominated
convergence theorem and is deferred to Section C.4.

Lemma 30 (Inferring smoothness) Suppose that T : X × Z → Rn is a map satisfying
the following two conditions.

(i) (Lipschitz continuity) There exists a constant βT ≥ 0 such that for every x ∈ X ,
the section T (x, ·) is βT -Lipschitz on Z.

(ii) (Smoothness) There exist a measurable function ΛT : Z → [0,∞) and constants
Λ̄T , β

′
T ≥ 0 such that for every z ∈ Z and x ∈ X , the section T (·, z) is ΛT (z)-smooth

on X with Ez∼Dx [ΛT (z)] ≤ Λ̄T , and the section ∇xT (x, ·) is β′T -Lipschitz on Z.

Set

MT := sup
x∈X , z∈Z

‖T (x, z)‖ and M ′T := sup
x∈X , z∈Z

‖∇xT (x, z)‖op.

Then MT and M ′T are finite. Moreover, given any fixed compact neighborhood W ⊂ Rd of
zero, the maps H̄ : X × X ×W → Rn and H : X ×W → Rn given by

H̄(x, y, u) = E
z∼Dx

[
T (y, z)

(
1 + h

(
u>gy(z)

))]
and H(x, u) = E

z∼Dux
T (x, z)

are smooth with Lipschitz continuous Jacobians with constants depending on T only through
βT , Λ̄T , β

′
T , MT , and M ′T ; further, we have

∇xH(x, 0) = ∇x
(

E
z∼Dx

T (x, z)
)

and ∇uH(x, 0) = E
z∼Dx

[
T (x, z)gx(z)>

]
for all x ∈ X .

Step 1 (Assumption 1) First, we show that the perturbed distribution map Du satisfies
Assumption 1 with Lipschitz constant γu = γ +O(‖u‖) as u→ 0, where γ is the Lipschitz
constant for D. To this end, we take W to be the unit ball in Rd and apply Lemma 30 to
identify a constant L1 ≥ 0 such that for every 1-Lipschitz function φ ∈ Lip1(Z) and every
u ∈ W, the function

ρφ(x, u) := E
z∼Dux

φ(z)

is Lipschitz in the x-component with constant γu := γ+L1‖u‖. Indeed, for every φ ∈ Lip1(Z),
the translate φ̄ = φ − inf φ is 1-Lipschitz and bounded by diam(Z), and ρφ̄ = ρφ − inf φ.
Thus, Lemma 30 yields a constant L1 such that for every φ ∈ Lip1(Z), the function ρφ̄ is
L1-smooth on X ×W and hence so is ρφ. Moreover, Lemma 30 shows

∇xρφ(x, 0) = ∇x
(

E
z∼Dx

φ(z)
)
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for all x ∈ X , so supx∈X ‖∇xρφ(x, 0)‖ ≤ γ by Assumption 1. Thus, the triangle inequality
yields

‖∇xρφ(x, u)‖ ≤ ‖∇xρφ(x, 0)‖+ ‖∇xρφ(x, u)−∇xρφ(x, 0)‖ ≤ γ + L1‖u‖ = γu

for all (x, u) ∈ X × W. Therefore ρφ(·, u) is γu-Lipschitz on X for all φ ∈ Lip1(Z) and
u ∈ W, so Du satisfies Assumption 1 with Lipschitz constant γu = γ +O(‖u‖) as u→ 0.

Step 2 (Lipschitz continuity) Next, we establish Assumption 2(i) for the problem
with the perturbed distribution map Du. Observe that the Lipschitz bounds in Assump-
tion 2(i) remain unchanged, and that we only need to identify for all sufficiently small u
a constant L̄u ≥ 0 such that supx∈X Ez∼Dux [L(z)2] ≤ (L̄u)2. We will show more, namely,
that we can select (L̄u)2 = L̄2 + O(‖u‖) as u → 0, where L̄ is the constant satisfying
supx∈X Ez∼Dx [L(z)2] ≤ L̄2 furnished by Assumption 2(i). Indeed, for all x ∈ X and u ∈ Rd,
we have

E
z∼Dux

[
L(z)2

]
=

1

Cux
E

z∼Dx

[
L(z)2

(
1 + h

(
u>gx(z)

))]
.

Thus, an application of Lemma 28 yields

sup
x∈X

E
z∼Dux

[
L(z)2

]
≤
(
1 +O(‖u‖3)

)(
1 + LhMg‖u‖

)
L̄2 = L̄2 +O(‖u‖) as u→ 0,

where Lh = sup |h′| and Mg = sup ‖g‖.

Step 3 (Monotonicity) We prove that for all x ∈ X , the map Gux(·) given by

Gux(y) := E
z∼Dux

G(y, z)

is strongly monotone on X with constant αu = α+O(‖u‖) as u→ 0, where α is the strong
monotonicity constant of Gx(·). Given x ∈ X and u ∈ Rd, we have〈
Gux(y)−Gux(y′), y − y′

〉
=
〈
Gx(y)−Gx(y′), y − y′

〉
+
〈(
Gux(y)−Gx(y)

)
−
(
Gux(y′)−Gx(y′)

)
, y − y′

〉
≥ α‖y − y′‖2 −

∥∥(Gux(y)−Gx(y)
)
−
(
Gux(y′)−Gx(y′)

)∥∥ · ∥∥y − y′∥∥
for all y, y′ ∈ X by the α-strong monotonicity of Gx(·). We claim that for all sufficiently
small u, there exists `u = O(‖u‖) independent of x such that the map y 7→ Gux(y)−Gx(y) is
`u-Lipschitz on X for all x ∈ X . Indeed, upon noting supx∈X , z∈Z ‖∇xG(x, z)‖op <∞ (see
Lemma 30) and applying the dominated convergence theorem together with Lemma 28, we
obtain

`u := sup
x,y∈X

∥∥∇y(Gux(y)−Gx(y)
)∥∥

op

= sup
x,y∈X

∥∥∥∥ 1

Cux
E

z∼Dx

[
∇yG(y, z)

(
1 + h

(
u>gx(z)

))]
− E
z∼Dx

[
∇yG(y, z)

]∥∥∥∥
op

≤ sup
x,y∈X

∥∥∥∥( 1

Cux
− 1

)
E

z∼Dx

[
∇yG(y, z)

]∥∥∥∥
op︸ ︷︷ ︸

O(‖u‖3)

+ sup
x,y∈X

∥∥∥∥ 1

Cux
E

z∼Dx

[
∇yG(y, z)h

(
u>gx(z)

)]∥∥∥∥
op︸ ︷︷ ︸

(1+O(‖u‖3)) ·O(‖u‖)

= O(‖u‖) as u→ 0.
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Setting αu := α− `u for all u in a neighborhood of zero, we conclude that for all x, y, y′ ∈ X ,〈
Gux(y)−Gux(y′), y − y′

〉
≥ αu‖y − y′‖2

and hence Gux(·) is strongly monotone on X with constant αu = α+O(‖u‖) as u→ 0.

Step 4 (Compatibility) Finally, we verify that Assumption 2(iii) holds for the perturbed
problem corresponding to Du. Indeed, as a consequence of the previous steps, we have
γu → γ and αu → α as u→ 0, so the compatibility inequality γβ < α corresponding to D
implies γuβ < αu for all sufficiently small u.

C.2 Proof of Lemma 22

Fix u ∈ Rd. For each k ∈ N, it follows immediately from the definitions (14), (26), and (27)
that for all E0, . . . , Ek−1 ∈ B(Z), the Qk,u-measure of the rectangle E = E0 × · · · × Ek−1 is
given by

Qk,u(E) =

∫
E0

· · ·
∫
Ek−1

dDu/
√
k

x̃k−1
(zk−1) · · · dDu/

√
k

x̃0 (z0)

=

∫
E0

· · ·
∫
Ek−1

k−1∏
i=0

1+h(u>gx̃i (zi)/
√
k)

C
u/
√
k

x̃i

dDx̃k−1
(zk−1) · · · dDx̃0(z0)

=

∫
E

k−1∏
i=0

1+h(u>gx̃i (zi)/
√
k)

C
u/
√
k

x̃i

dQk,0.

Therefore

dQk,u
dQk,0

=
k−1∏
i=0

1+h(u>gx̃i(zi)/
√
k)

C
u/
√
k

x̃i

and hence

log
dQk,u
dQk,0

=

k−1∑
i=0

log

(
1 + h

(
u>gx̃i(zi)√

k

))
−
k−1∑
i=0

logCu/
√
k

x̃i . (57)

By Lemma 28, we have Cux = 1 + rx(u) with supx∈X |rx(u)| = o(‖u‖2) as u→ 0, so the
first-order approximation log(1 + t) = t + o(t) as t → 0 reveals that the last sum in (57)
satisfies

k−1∑
i=0

logCu/
√
k

x̃i =

k−1∑
i=0

(
rx̃i
(
u/
√
k
)

+ o
(
rx̃i
(
u/
√
k
)))

= k · o(k−1) = o(1) as k →∞.

Further, since h(t) = t for all t in a neighborhood of zero and c := supx∈X , z∈Z |u>gx(z)| is
finite by Lemma 27, it follows that for all sufficiently large k ∈ N, we have

h

(
u>gx̃i(zi)√

k

)
=
u>gx̃i(zi)√

k
∈
[
− c√

k
,
c√
k

]
for all i ≥ 0.
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Thus, the second-order approximation log(1 + t) = t− 1
2 t

2 + o(t2) as t→ 0 reveals that the
first sum in (57) satisfies

k−1∑
i=0

log

(
1 + h

(
u>gx̃i(zi)√

k

))

= u>
(

1√
k

k−1∑
i=0

gx̃i(zi)

)
− 1

2
u>
(

1

k

k−1∑
i=0

gx̃i(zi)gx̃i(zi)
>
)
u+ k · o(k−1)

= u>Zk −
1

2
u>Vku+ o(1) as k →∞,

where Zk : Zk → Rd and Vk : Zk → Rd×d are given by

Zk =
1√
k

k−1∑
i=0

gx̃i(zi) and Vk =
1

k

k−1∑
i=0

gx̃i(zi)gx̃i(zi)
>.

Therefore

log
dQk,u
dQk,0

= u>Zk −
1

2
u>Vku+ o(1) as k →∞.

Hence, to complete the verification that {Qk,u |u ∈ Rd} is locally asymptotically normal at
zero with precision Σg, it only remains to demonstrate Zk

0
 N(0,Σg) and Vk = Σg+oQk,0(1).

The assertion Vk = Σg + oQk,0(1) is equivalent to Vk
p−−→ Σg as k → ∞ on the filtered

probability space (ZN,B(ZN),F,P), where F = (Fk)k≥0 is the filtration given by

F0 := {∅,ZN} and Fk := {E ×ZN | E ∈ B(Zk)} for all k ≥ 1

and P :=
⊗∞

i=0Dx̃i . We will show more, namely, that almost sure convergence holds:

Vk
a.s.−−→ Σg as k →∞. (58)

This is a consequence of the martingale strong law of large numbers (Theorem 33). Indeed,
for each i ≥ 0, set

Xi+1 = gx̃i(zi)gx̃i(zi)
> − E

[
gx̃i(zi)gx̃i(zi)

> | Fi
]

= gx̃i(zi)gx̃i(zi)
> − E

zi∼Dx̃i

[
gx̃i(zi)gx̃i(zi)

>],
thereby defining a martingale difference sequence X in Rd×d adapted to F; note that we have
supi E‖Xi‖2F <∞ by Lemma 27, so

∑∞
i=1 i

−2E‖Xi‖2F <∞ and hence Theorem 33 implies

Vk −
1

k

k−1∑
i=0

E
zi∼Dx̃i

[
gx̃i(zi)gx̃i(zi)

>] =
1

k

k∑
i=1

Xi
a.s.−−→ 0 as k →∞. (59)

On the other hand, we have x̃i
a.s.−−→ x? as i→∞ by Definition 12, so Lemma 35 implies

E
zi∼Dx̃i

[
gx̃i(zi)gx̃i(zi)

>] a.s.−−→ E
z∼Dx?

[
gx?(z)gx?(z)

>] = Σg as i→∞

and hence the arithmetic mean satisfies

1

k

k−1∑
i=0

E
zi∼Dx̃i

[
gx̃i(zi)gx̃i(zi)

>] a.s.−−→ Σg as k →∞. (60)
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Combining (59) and (60) gives (58).
Finally, we establish Zk

0
 N(0,Σg) by applying the martingale central limit theorem

(Theorem 34). Set M0 = 0 and Mk =
∑k−1

i=0 gx̃i(zi) for each k ≥ 1; then M is a square-
integrable martingale in Rd adapted to the filtration F. Indeed, the increments of M are
clearly uniformly bounded (Lemma 27), Mk is Fk-measurable, and

E
[
Mk+1 | Fk

]
= Mk + E

zk∼Dx̃k

[
gx̃k(zk)

]
= Mk

by the unbiasedness condition of Definition 14. The predictable quadratic variation of M is
given by

〈M〉k =
k∑
i=1

E
[
(Mi −Mi−1)(Mi −Mi−1)> | Fi−1

]
=

k−1∑
i=0

E
zi∼Dx̃i

[
gx̃i(zi)gx̃i(zi)

>].
Thus, by (60), we have

k−1〈M〉k =
1

k

k−1∑
i=0

E
zi∼Dx̃i

[
gx̃i(zi)gx̃i(zi)

>] a.s.−−→ Σg as k →∞.

The assumptions of Theorem 34 are therefore fulfilled with ak = k (note that Lindeberg’s
condition holds trivially by the uniform boundedness of the increments of M). Hence

Zk = k−1/2Mk
0
 N(0,Σg).

This completes the proof.

C.3 Proof of Lemma 23

Let F : X ×Rd → Rd be the map given by

F (x, u) = E
z∼Dux

[
G(x, z)

]
=

1

Cux
E

z∼Dx

[(
1 + h

(
u>gx(z)

))
G(x, z)

]
,

where we recall Cux = 1+Ez∼Dx [h(u>gx(z))]. Lemma 30 directly implies that F is C1-smooth.
Consider now the family of smooth nonlinear equations

F (x, u) = 0 (61)

parameterized by u ∈ Rd. Note F (x?, 0) = Gx?(x
?) = 0 since x? ∈ intX . More generally,

the equality (61) with (x, u) ∈ (intX )× U holds precisely when x is equal to x?u. We will
apply the implicit function theorem to show that (61) determines x?u as a smooth function
of u on a neighborhood of zero. To this end, observe that Lemma 30 reveals

∇xF (x?, 0) = ∇x
(

E
z∼Dx

G(x, z)
)∣∣∣
x=x?

= W,

which is invertible by Lemma 10. Consequently, the implicit function theorem yields open
neighborhoods U ⊂ U of 0 and V ⊂ intX of x? and a C1-smooth map U → V given by
u 7→ x?u with Jacobian −W−1∇uF (x?, 0) at u = 0. This yields the first-order approximation

x?u = x? −W−1∇uF (x?, 0)u+ o(‖u‖) as u→ 0. (62)

By Lemma 30, we have

∇uF (x, 0) = E
z∼Dx

[
G(x, z)gx(z)>

]
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for all x ∈ X . In particular, ∇uF (x?, 0) = Σ>g,G. Thus, (62) asserts

x?u = x? −W−1Σ>g,Gu+ o(‖u‖) as u→ 0.

Consequently, for any fixed u ∈ Rd, we have

√
k
(
x?u/
√
k − x?

)
= −W−1Σ>g,Gu+

√
k · o

(
1√
k

)
→ −W−1Σ>g,Gu as k →∞.

The proof is complete.

C.4 Proof of Lemma 30

Recall first that the quantities

M ′g := sup
x∈X , z∈Z

‖∇xgx(z)‖op and Mg := sup
x∈X , z∈Z

‖gx(z)‖

are finite by Lemma 27. The same argument shows that M ′T and MT are finite.
Next, we turn to establishing that the map H : X ×W → Rn given by

H(x, u) =
1

Cux
E

z∼Dx

[
T (x, z)

(
1 + h

(
u>gx(z)

))]
is smooth with Lipschitz Jacobian on the compact set K := X ×W. By Lemma 37, it is
enough to show that (x, u) 7→ Cux and

Ĥ(x, u) := E
z∼Dx

[
T (x, z)

(
1 + h

(
u>gx(z)

))]
are smooth with Lipschitz Jacobians on K; in turn, it suffices to establish this fact for Ĥ
since we can then take T ≡ 1 to derive the result for Cux .

We reason this via the chain rule. Namely, consider the map H̄ : X × X ×W → Rn

given by

H̄(x, y, u) = E
z∼Dx

[
T (y, z)

(
1 + h

(
u>gy(z)

))]
.

Clearly Ĥ = H̄ ◦ J with J(x, u) := (x, x, u) and therefore the chain rule implies ∇Ĥ(x, u) =
∇H̄(x, x, u)∇J(x, u) provided H̄ is smooth. Thus, it suffices to show that H̄ is smooth with
Lipschitz Jacobian. To this end, we demonstrate that the three partial derivatives of H̄ are
all Lipschitz with constants depending on T only through βT , Λ̄T , β

′
T , MT , and M ′T .

We begin with the partial derivative of H̄ with respect to x. Consider the function
φ : K ×Z → Rn given by

φ(y, u, z) = T (y, z)
(
1 + h

(
u>gy(z)

))
.

Let us verify that φ is a test function to which item (ii) of Assumption 5 applies. Clearly φ
is measurable and bounded with sup ‖φ‖ ≤ 2MT . Further, for each z ∈ Z, it follows readily
that the section φ(·, z) is Lipschitz on K with constant

Lφ := 2M ′T +MTLh
(
diam(W)M ′g +Mg

)
,

where Lh := sup |h′|. Thus, item (ii) of Assumption 5 implies that the map

x 7→ E
z∼Dx

φ(y, u, z) = H̄(x, y, u)
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is smooth on X for each (y, u) ∈ K, and that the map

(x, y, u) 7→ ∇xH̄(x, y, u)

is Lipschitz on X × X ×W with constant ϑ(Lφ + 2MT ), which depends on T only through
MT and M ′T .

Next, we consider the partial derivative of H̄ with respect to y. Given (x, u) ∈ X ×W,
the dominated convergence theorem ensures that H̄(x, y, u) is smooth in y with

∇yH̄(x, y, u) = E
z∼Dx

∇yφ(y, u, z) (63)

provided ‖∇yφ(y, u, z)‖op is dominated by a Dx-integrable random variable independent of
y. Using the product rule, we have

∇yφ(y, u, z) =
(
∇yT (y, z)

)(
1 + h

(
u>gy(z)

))
+ h′

(
u>gy(z)

)(
T (y, z)u>

)
∇ygy(z) (64)

and hence

‖∇yφ(y, u, z)‖op ≤ 2‖∇yT (y, z)‖op + (sup |h′|)‖T (y, z)‖‖u‖‖∇ygy(z)‖op

≤ 2M ′T + diam(W)LhMTM
′
g,

so ∇yφ is in fact uniformly bounded. Therefore H̄(x, y, u) is smooth in y and (63) holds.
Moreover, it follows from (64) that the map

(x, y, u) 7→ ∇yH̄(x, y, u)

is Lipschitz on X × X ×W ; we will verify this by computing Lipschitz constants separately
in x, y, and u. To begin, note that it follows from (64) that z 7→ ∇yφ(y, u, z) is Lipschitz on
Z with constant

a := 2β′T + diam(W)M ′TLhβg + diam(W)Lh(βTM
′
g +MTβ

′
g) + diam(W)2MTM

′
gLh′βg,

where Lh′ := sup |h′′|. Hence (63) and Assumption 1 imply that x 7→ ∇yH̄(x, y, u) is
Lipschitz on X with constant γa, which depends on T only through βT , β

′
T ,MT , and M ′T .

Likewise, it follows from (64) that y 7→ ∇yφ(y, u, z) is Lipschitz on X with constant

2ΛT (z) + diam(W)M ′TLhM
′
g + diam(W)Lh

(
MTΛg(z) +M ′TM

′
g

)
+ diam(W)2MTLh′(M

′
T )2.

Hence (63) implies that y 7→ ∇yH̄(x, y, u) is Lipschitz on X with constant

2Λ̄T + diam(W)Lh
(
MT Λ̄g + 2M ′TM

′
g

)
+ diam(W)2MTLh′(M

′
T )2.

Similarly, it follows from (64) that u 7→ ∇yφ(y, u, z) is Lipschitz on W with constant

M ′TMgLh +MTM
′
g

(
Lh + diam(W)MgLh′

)
,

so (63) implies that u 7→ ∇yH̄(x, y, u) is Lipschitz on W with the same constant. We
conclude therefore that the map (x, y, u) 7→ ∇yH̄(x, y, u) is Lipschitz on X × X ×W with
constant depending on T only through βT , Λ̄T , β

′
T , MT , and M ′T .

Finally, we consider the partial derivative of H̄ with respect to u. Given (x, y) ∈ X × X ,
the dominated convergence theorem ensures that H̄(x, y, u) is smooth in u with

∇uH̄(x, y, u) = E
z∼Dx

∇uφ(y, u, z) (65)
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provided ‖∇uφ(y, u, z)‖op is dominated by a Dx-integrable random variable independent of
u. In this case, we have

∇uφ(y, u, z) = h′
(
u>gy(z)

)
T (y, z)gy(z)

> (66)

and hence

‖∇uφ(y, u, z)‖op ≤ (sup |h′|)‖T (y, z)‖‖gy(z)‖ ≤ LhMTMg.

Therefore H̄(x, y, u) is smooth in u and (65) holds. Moreover, it follows from (66) that the
map

(x, y, u) 7→ ∇uH̄(x, y, u)

is Lipschitz on X × X ×W; as before, we will verify this by computing Lipschitz constants
separately in x, y, and u. First, note that it follows from (66) that z 7→ ∇uφ(y, u, z) is
Lipschitz on Z with constant

b := Lh(βTMg +MTβg) + diam(W)MTMgLh′βg.

Hence (65) and Assumption 1 imply that x 7→ ∇uH̄(x, y, u) is Lipschitz on X with constant
γb, which depends on T only through βT and MT . Likewise, it follows from (66) that
y 7→ ∇uφ(y, u, z) is Lipschitz on X with constant

Lh(M ′TMg +MTM
′
g) + diam(W)MTMgLh′M

′
g,

hence so is y 7→ ∇uH̄(x, y, u) by (65). Similarly, it follows from (66) that u 7→ ∇uφ(y, u, z)
is Lh′MTM

2
g -Lipschitz on W, hence so is u 7→ ∇uH̄(x, y, u) by (65). We conclude therefore

that the map (x, y, u) 7→ ∇uH̄(x, y, u) is Lipschitz on X × X ×W with constant depending
on T only through βT ,MT , and M ′T .

The preceding reveals that H̄ and hence Ĥ = H̄ ◦J are smooth, with Lipschitz Jacobians
with constants depending on T only through βT , Λ̄T , β

′
T , MT , and M ′T . Taking T ≡ 1, we

conclude that (x, u) 7→ Cux is smooth, with Lipschitz Jacobian with constant independent
of T . Upon observing in the same way as above that H̄ and hence Ĥ are Lipschitz with
constants depending on T only through βT ,MT , and M ′T , it follows from Lemma 37 and
its proof that H is smooth, with Lipschitz Jacobian with constant depending on T only
through βT , Λ̄T , β

′
T , MT , and M ′T .

Finally, given any x ∈ X , the equalities

∇xH(x, 0) = ∇x
(

E
z∼Dx

T (x, z)
)

and ∇uH(x, 0) = E
z∼Dx

[
T (x, z)gx(z)>

]
follow from straightforward computations (using the quotient rule, dominated convergence
theorem, and chain and product rules). This completes the proof.

Appendix D. Underlying Probability Space

In this appendix, we formally construct the probability space where decision-dependent
dynamics take place. The following lemma shows that Assumption 1 implies {Dx}x∈X is
a Markov kernel from X to Z, i.e., for each E ∈ B(Z), the function X → [0, 1] given by
x 7→ Dx(E) is measurable.

Lemma 31 (Markov kernel) Let Z be a nonempty Polish metric space. Then, for any
bounded measurable function ϕ : Z → R, the function P1(Z)→ R given by µ 7→

∫
ϕdµ is
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measurable. In particular, for any measurable space X and any measurable map x 7→ Dx
from X to P1(Z), it follows that {Dx}x∈X is a Markov kernel from X to Z.

Proof Let Mb denote the set of all bounded measurable functions Z → R. For each
ϕ ∈Mb, let Iϕ : P1(Z)→ R be the function given by Iϕ(µ) =

∫
ϕdµ. Now consider the set

C =
{
ϕ ∈Mb | Iϕ is measurable

}
.

To demonstrate C = Mb, it suffices by the functional monotone class theorem (e.g., see
Kechris, 1995, Exercise 11.7) to show that C possesses the following two properties:

(i) Every bounded continuous function Z → R is contained in C.

(ii) If (ϕn) is a uniformly bounded sequence in C with pointwise limit ϕ : Z → R (i.e.,
supn,z |ϕn(z)| <∞ and limn→∞ ϕn(z) = ϕ(z) for all z ∈ Z), then ϕ ∈ C.

To this end, note first that (i) holds because W1-convergence in P1(Z) implies weak conver-
gence (e.g., see Ambrosio et al., 2008, Proposition 7.1.5); indeed, if ϕ : Z → R is bounded
and continuous, then for any sequence (µn) in P1(Z) such that W1(µn, µ) → 0 for some
µ ∈ P1(Z), we have Iϕ(µn) → Iϕ(µ), so Iϕ is continuous and hence measurable. On the
other hand, (ii) follows from the dominated convergence theorem: if (ϕn) is a uniformly
bounded sequence in C with pointwise limit ϕ : Z → R, then ϕ ∈Mb and

Iϕ(µ) =

∫
lim
n→∞

ϕn(z) dµ(z) = lim
n→∞

∫
ϕn(z) dµ(z) = lim

n→∞
Iϕn(µ)

for all µ ∈ P1(Z), so Iϕ is measurable as the pointwise limit of the sequence of measurable
functions (Iϕn). Hence C = Mb, i.e., Iϕ is measurable for every bounded measurable
function ϕ : Z → R; in particular, the last claim of the lemma follows by taking ϕ to be the
indicator function 1E of any measurable set E ∈ B(X ).

We will require the existence of the probability measure
⊗∞

i=0Dxi on the countable
product space ZN with marginals given by recursive application of the Markov kernel
{Dx}x∈X from X to Z along a sequence of measurable maps xt : Zt → X (corresponding to
iterates of a decision-dependent algorithm). This is provided by the following theorem, which
may be viewed as a special case of either the Kolmogorov extension theorem (see Bass, 2011,
Appendix D) or the Ionescu–Tulcea extension theorem (see Klenke, 2020, Theroem 14.35).

Theorem 32 (Ionescu-Tulcea) Let X be a measurable space, Z be a nonempty Polish
metric space, {Dx}x∈X be a Markov kernel from X to Z, and xt : Zt → X be a sequence
of measurable maps (with x0 ∈ X ). For each t ≥ 1, let Pt =

⊗t−1
i=0Dxi be the probability

measure on Zt defined recursively by setting P1 = Dx0 and

Pt+1(A× E) =

∫
A
Dxt(E) dPt for all A ∈ B(Zt) and E ∈ B(Z),

and let πt : ZN → Zt denote the projection from the countable product space ZN onto the
first t coordinates. Then there exists a unique probability measure P =

⊗∞
i=0Dxi on ZN

satisfying (πt)# P = Pt for all t ≥ 1, that is,

P(A×ZN) = Pt(A) for all A ∈ B(Zt) and t ≥ 1.
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Thus, for every t ≥ 0 and every measurable function ϕ : Zt+1 → R that is nonnegative or
Pt+1-integrable, we have

E[ϕ ◦ πt+1] =

∫
Zt+1

ϕdPt+1 =

∫
Z
· · ·
∫
Z
ϕ(z0, . . . , zt) dDxt(zt) · · · dDx0(z0)

and

E[ϕ ◦ πt+1 | Ft] =

∫
Z
ϕ(z0, . . . , zt) dDxt(zt) = E

zt∼Dxt
[ϕ(z0, . . . , zt)],

where Ft = {A×ZN | A ∈ B(Zt)} denotes the σ-algebra generated by πt (with F0 = {∅,ZN}).

Appendix E. Supplementary Results

In this appendix, we record some supplementary results fundamental to our analysis. First,
we record suitably general versions of the Strong Law of Large Numbers (see Dembo, 2021,
Exercise 5.3.35) and the Central Limit Theorem (see Duflo, 1997, Corollary 2.1.10) for
square-integrable martingales.

Theorem 33 (Martingale Strong Law of Large Numbers) Let X be a square-
integrable martingale difference sequence in Rn adapted to a filtration (Fk) and (ak)
be a sequence of positive constants such that ak ↑ ∞ as k → ∞. Then on the event{∑∞

i=1 a
−2
i E[‖Xi‖2 | Fi−1] < ∞

}
, we have a−1

k

∑k
i=1Xi → 0 almost surely as k → ∞. In

particular, if
∑∞

i=1 a
−2
i E‖Xi‖2 <∞, then a−1

k

∑k
i=1Xi → 0 almost surely as k →∞.

Theorem 34 (Martingale Central Limit Theorem) Let M be a square-integrable mar-
tingale in Rn adapted to a filtration (Fk), and let 〈M〉 denote the predictable quadratic
variation of M:

〈M〉k =
k∑
i=1

E
[
(Mi −Mi−1)(Mi −Mi−1)> | Fi−1

]
for all k ≥ 1.

Let (ak) be a sequence of positive constants such that ak ↑ ∞ as k →∞. Suppose that the
following two assumptions hold.

(i) (Asymptotic covariance) There is a deterministic positive semidefinite matrix Σ
satisfying

a−1
k 〈M〉k

p−−→ Σ as k →∞.

(ii) (Lindeberg’s condition) For all ε > 0,

a−1
k

k∑
i=1

E
[
‖Mi −Mi−1‖21{‖Mi−Mi−1‖≥εa1/2k } | Fi−1

] p−−→ 0 as k →∞.

Then

a−1
k Mk

a.s.−−→ 0 and a−1/2
k Mk  N(0,Σ) as k →∞.

The following lemma is used multiple times in our arguments to compute limits of
covariance matrices.
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Lemma 35 (Asymptotic covariance) Let xt ∈ X be a sequence in some set X ⊂ Rd

converging to some point x? ∈ X , and let µt ∈ P1(Z) be a sequence of probability measures
on a nonempty Polish space Z converging to some measure µ? ∈ P1(Z) in the Wasserstein-1
metric. Suppose that g : X × Z → Rn is a measurable map satisfying the following two
conditions.

(i) (Asymptotic uniform integrability) For every δ > 0, there exists a constant Nδ ≥ 0
such that

lim sup
t→∞

E
z∼µt

[
‖g(x?, z)‖21{‖g(x?,z)‖≥Nδ}

]
≤ δ,

E
z∼µ?

[
‖g(x?, z)‖21{‖g(x?,z)‖≥Nδ}

]
≤ δ.

(ii) (Lipschitz continuity) There exist a neighborhood V of x?, a measurable function
L : Z → [0,∞), and constants β, L̄ ≥ 0 such that for every z ∈ Z, the section g(·, z)
is L(z)-Lipschitz on V with lim supt→∞ Ez∼µt [L(z)2] ≤ L̄2, and the section g(x?, ·) is
β-Lipschitz on Z.

Then

lim
t→∞

E
z∼µt

[
g(xt, z)g(xt, z)

>] = E
z∼µ?

[
g(x?, z)g(x?, z)>

]
.

Proof For notational convenience, set gx(z) = g(x, z) and

Σ = E
z∼µ?

[
gx?(z)gx?(z)

>].
For any δ > 0, the decomposition

E
z∼µt

[
‖gx?(z)‖2

]
= E

z∼µt

[
‖gx?(z)‖21{‖gx? (z)‖<Nδ}

]
+ E
z∼µt

[
‖gx?(z)‖21{‖gx? (z)‖≥Nδ}

]
holds for all t, so condition (i) implies

lim sup
t→∞

E
z∼µt

[
‖gx?(z)‖2

]
≤ N2

δ + δ. (67)

On the other hand, for all t, we also have the decomposition

E
z∼µt

[
gxt(z)gxt(z)

>] = E
z∼µt

[
gx?(z)gx?(z)

>]+ E
z∼µt

[
gx?(z)

(
gxt(z)− gx?(z)

)>]
+ E
z∼µt

[(
gxt(z)− gx?(z)

)
gxt(z)

>]. (68)

The last two summands in (68) tend to zero as t→∞. Indeed, since xt → x? as t→∞, we
have xt ∈ V for all but finitely many t and so we may apply condition (ii) together with
Hölder’s inequality and (67) to conclude∥∥∥∥ E

z∼µt

[
gx?(z)

(
gxt(z)− gx?(z)

)>]∥∥∥∥
op

≤ E
z∼µt

[
‖gx?(z)‖ · ‖gxt(z)− gx?(z)‖

]
≤ ‖xt − x?‖

√
E

z∼µt

[
‖gx?(z)‖2

]
· E
z∼µt

[
L(z)2

]
→ 0 as t→∞
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and∥∥∥∥ E
z∼µt

[(
gxt(z)− gx?(z)

)
gxt(z)

>]∥∥∥∥
op

≤ E
z∼µt

[
‖gxt(z)− gx?(z)‖ · ‖gxt(z)‖

]
≤ ‖xt − x?‖

√
E

z∼µt

[
L(z)2

]
· E
z∼µt

[
‖gxt(z)‖2

]
≤ ‖xt − x?‖

√
2 E
z∼µt

[
L(z)2

](
E

z∼µt

[
‖gx?(z)‖2

]
+ E
z∼µt

[
‖gxt(z)− gx?(z)‖2

])
≤ ‖xt − x?‖

√
2 E
z∼µt

[
L(z)2

](
E

z∼µt

[
‖gx?(z)‖2

]
+ ‖xt − x?‖2 · E

z∼µt

[
L(z)2

])
→ 0 as t→∞.

To complete the proof, it now suffices by (68) to show Ez∼µt [gx?(z)gx?(z)>] → Σ as
t→∞. To this end, define for each q ∈ R the step-like function ϕq : R→ R by setting

ϕq(x) =


1 if x ≤ q,
−x+ q + 1 if q ≤ x ≤ q + 1,

0 if q + 1 ≤ x.
Let δ > 0 be arbitrary. Then for any given t, we have the decomposition

E
z∼µt

[
gx?(z)gx?(z)

>]− Σ

= E
z∼µt

[
gx?(z)gx?(z)

>]− E
z∼µ?

[
gx?(z)gx?(z)

>]
= E

z∼µt

[(
1− ϕNδ(‖gx?(z)‖)

)
gx?(z)gx?(z)

>]− E
z∼µ?

[(
1− ϕNδ(‖gx?(z)‖)

)
gx?(z)gx?(z)

>]︸ ︷︷ ︸
At

+ E
z∼µt

[
ϕNδ(‖gx?(z)‖)gx?(z)gx?(z)

>]− E
z∼µ?

[
ϕNδ(‖gx?(z)‖)gx?(z)gx?(z)

>]︸ ︷︷ ︸
Bt

.

By the triangle inequality, ‖At‖op is bounded above by∥∥∥ E
z∼µt

[(
1− ϕNδ(‖gx?(z)‖)

)
gx?(z)gx?(z)

>]∥∥∥
op

+
∥∥∥ E
z∼µ?

[(
1− ϕNδ(‖gx?(z)‖)

)
gx?(z)gx?(z)

>]∥∥∥
op

≤ E
z∼µt

[
‖gx?(z)‖21{‖gx? (z)‖≥Nδ}

]
+ E
z∼µ?

[
‖gx?(z)‖21{‖gx? (z)‖≥Nδ}

]
,

so

lim sup
t→∞

‖At‖op ≤ 2δ.

In order to bound Bt, consider the map Φ: Rn → Rn×n given by Φ(w) = ϕNδ(‖w‖)ww>,
set φ = Φ ◦ gx? , and note

Bt = E
z∼µt

[
φ(z)

]
− E
z∼µ?

[
φ(z)

]
.

Clearly Φ is Lipschitz continuous on any compact set and zero outside of the ball of radius
Nδ + 1 centered at the origin. Therefore Φ is globally Lipschitz. Since gx? is β-Lipschitz on
Z by condition (ii), we conclude that φ is Lipschitz on Z with a constant C that depends
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only on Nδ and β. Consequently,

‖Bt‖op =
∥∥∥ E
z∼µt

[
φ(z)

]
− E
z∼µ?

[
φ(z)

]∥∥∥
op

= sup
‖u‖,‖v‖≤1

{
E

z∼µt

[
〈φ(z)u, v〉

]
− E
z∼µ?

[
〈φ(z)u, v〉

]}
≤ C ·W1(µt, µ

?)→ 0 as t→∞,
where the inequality follows from the C-Lipschitz continuity of the function z 7→ 〈φ(z)u, v〉.
Hence

lim sup
t→∞

∥∥∥ E
z∼µt

[
gx?(z)gx?(z)

>]− Σ
∥∥∥

op
≤ lim sup

t→∞

(
‖At‖op + ‖Bt‖op

)
≤ 2δ.

Since δ > 0 is arbitrary, we deduce Ez∼µt [gx?(z)gx?(z)>]→ Σ as t→∞.

Finally, we record two basic lemmas about products and quotients of Lipschitz functions.

Lemma 36 Let K be a metric space and suppose that f : K → Rn×q and g : K → Rq×m are
bounded and Lipschitz. Then the product fg : K → Rn×m is Lipschitz.

Proof Let Lf and Lg be the Lipschitz constants of f and g with respect to the operator
norm ‖ · ‖. Then for all x, y ∈ K, we have

‖f(x)g(x)− f(y)g(y)‖ ≤ ‖f(x)(g(x)− g(y))‖+ ‖(f(x)− f(y))g(y)‖
≤ sup

z∈K
‖f(z)‖ · ‖g(x)− g(y)‖+ ‖f(x)− f(y)‖ · sup

z∈K
‖g(z)‖

≤
(
Lg · sup

z∈K
‖f(z)‖+ Lf · sup

z∈K
‖g(z)‖

)
· dK(x, y).

Since f and g are bounded, this demonstrates that fg is Lipschitz.

Lemma 37 Let K ⊂ Rm be a compact set and suppose that f : K → Rn and g : K → R\{0}
are C1-smooth with Lipschitz Jacobians. Then f/g is C1-smooth with Lipschitz Jacobian.

Proof Since f and g are C1-smooth, it follows immediately from the quotient rule that
f/g is C1-smooth with Jacobian given by

∇(f/g) = (1/g)(∇f)− (f/g2)(∇g)>. (69)

By assumption, ∇f and ∇g are Lipschitz, and they are bounded by the compactness of K.
Further, the functions 1/g and f/g2 are C1-smooth, so they are locally Lipschitz by the
mean value theorem; hence 1/g and f/g2 are Lipschitz and bounded by the compactness of
K. Thus, (69) and Lemma 36 show that ∇(f/g) is the difference of two Lipschitz maps.
Therefore ∇(f/g) is Lipschitz.
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