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Abstract

Semi-supervised learning is devoted to using unlabeled data to improve the performance
of machine learning algorithms. In this paper, we study the semi-supervised generalized
linear model (GLM) in the distributed setup. In the cases of single or multiple machines
containing unlabeled data, we propose two distributed semi-supervised algorithms based
on the distributed approximate Newton method. When the labeled local sample size is
small, our algorithms still give a consistent estimation, while fully supervised methods
fail to converge. Moreover, we theoretically prove that the convergence rate is greatly
improved when sufficient unlabeled data exists. Therefore, the proposed method requires
much fewer rounds of communications to achieve the optimal rate than its fully-supervised
counterpart. In the case of the linear model, we prove the rate lower bound after one
round of communication, which shows that rate improvement is essential. Finally, several
simulation analyses and real data studies are provided to demonstrate the effectiveness of
our method.

Keywords: Distributed Learning, Semi-supervised Learning, Generalized Linear Model

1. Introduction

Distributed machine learning has attracted much attention in statistics in recent years.
A variety of distributed algorithms have been proposed for statistical inference problems.
Many interesting properties are investigated, and distributed machine learning is enlarged
remarkably.

As one of the most fundamental ideas in distributed learning, the divide-and-conquer
(DC) method often behaves in impressive performances in statistical models. For quantile
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regression (Volgushev et al., 2019; Chen et al., 2019), kernel ridge regression (Zhang et al.,
2015; Lin et al., 2017) and kernel density estimation (Li et al., 2013), the optimal rates
of DC depend on the number of machines and the scale of samples. For high dimensional
linear regression and support vector machine, Lee et al. (2017); Lian and Fan (2018); Battey
et al. (2018); Zhao et al. (2020) proved that the accuracy of DC can be remarkably improved
by a well-known debiasing technique in statistics. For iterative algorithms like Distributed
Approximate NEwton (DANE) method (Shamir et al. (2014)), Jordan et al. (2019); Jian-
qing Fan and Wang (2023) proved that with an appropriate initial estimator, DANE and its
variants could achieve the optimal statistical rate within a constant round of communica-
tions. There are also many other distributed learning algorithms like alternating direction
method of multipliers (Boyd et al., 2011), subsampled average mixture algorithm (Zhang
et al., 2013), local stochastic gradient descent (Stich, 2019; Yu et al., 2019), distributed dual
coordinate ascent method (Jaggi et al., 2014; Smith et al., 2017), lazily aggregated gradient
method (Chen et al., 2018), and so on.

In this article, we focus on distributed semi-supervised estimation for the generalized
linear model (GLM). There are various practical problems, especially in the era of big data,
involving the analysis of massive unlabeled datasets (e.g., electronic medical records data,
textual data). Semi-supervised learning (SSL) has demonstrated considerable success in
machine learning problems in terms of prediction precision. In non-distributed settings,
a growing body of literature demonstrates SSL can be of great use in classification (see,
e.g. , Ando and Zhang (2005, 2007); Blum and Mitchell (1998); Vapnik (1999); Wang and
Shen (2007); Wang et al. (2007, 2009); Zhu (2005); Zhu and Goldberg (2009)). The semi-
supervised estimation problems, with continuous labels, have also been studied by Wasser-
man and Lafferty (2007); Johnson and Zhang (2008); Chakrabortty and Cai (2018); Zhang
et al. (2019); Cai and Guo (2020); Zhang and Bradic (2021); Hou et al. (2023); Azriel et al.
(2022). In recent years, distributed SSL has emerged as an exciting new area of research in
machine learning. A novel study of kernel ridge regression by Chang et al. (2017) has shown
that the semi-supervised DC method will benefit significantly from the unlabeled data and
allows a more flexible number of machines than the ordinary DC. Work done along this line
include distributed SSL for the kernel-based gradient descent algorithms (Lin and Zhou,
2018), bias-corrected kernel ridge regression (Guo et al., 2017), learning with multi-penalty
regularization (Guo et al., 2019) and flexible Gaussian kernels (Hu and Zhou, 2021). A
common feature of these prior works in distributed SSL is that they all focused on one-shot
algorithms. It is well known that iterative algorithms can lead to more accurate estimates
than one-shot algorithms. In this paper, we study the distributed SSL for generalized linear
models using the approximate Newton iteration method.

Within this paper, we concentrate specifically on the scenario where data is distributed
across several computing units, some of which possess supplementary unlabeled data. This
setup aligns with numerous practical situations; for instance, in the medical field, multiple
hospitals collaborate to enhance the efficacy of the model through sharing medical data,
which typically encompass ample unlabeled covariates (Hou et al., 2023; Liu et al., 2022;
Cai et al., 2022). Throughout this paper, we direct our focus towards the generalized linear
model (GLM), a widely utilized statistical model that has been implemented across diverse
fields such as healthcare (Parikh et al., 2019; Guo et al., 2022), genetic analysis (Ma et al.,
2022), and economics (Theodossiou, 1998). One of the reasons we choose to consider GLM
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is not only due to its broad range of applications but also due to the unique form of its loss
functions, which will be delved into in more detail in Section 2.1.

In the following, we introduce the generalized linear model. Given a function ψ : R →
R, the observations (X, Y ) ∈ Rp+1 are generated according to the following conditional
probability function

P(Y |X) = c̃ exp

{
YXTβ∗ − ψ(XTβ∗)

c(σ)

}
, (1)

where c̃ and c(σ) are scale constants, and β∗ is the true model parameter. Here ψ′, the
derivative of ψ, is called the canonical link function of the generalized linear model. To
estimate β∗, the most straightforward estimator is the solution of the (empirical) negative
log-likelihood function

f(X, Y,β) = −YXTβ + ψ(XTβ). (2)

In SSL, a large unlabeled dataset only contains information on predictors X. It is thus
of great interest to develop a distributed SSL algorithm using both labeled datasets and
unlabeled datasets. However, as we will prove, naive incorporation of the unlabeled dataset
in DANE with the loss function (2) will lead to degradation of the estimation precision.
The primary reason is that the unlabeled predictor does not contain the information of β∗

in lack of the corresponding response and may result in higher uncertainty. On the other
hand, in GLM, the predictors are directly related to the Hessian matrix of the loss (2). In
other words, the unlabeled dataset is particularly useful in estimating the Hessian matrix
and reducing the number of iterations of iterative algorithms. In this paper, we propose a
novel loss function (called the semi-supervised surrogate loss function) based on a variance
correction technique to avoid higher uncertainty. The proposed surrogate loss has a more
concentrated Hessian matrix, and the resulting estimator is as efficient as the supervised
estimator. Further, we combine it with the Newton iteration method and propose a Semi-
Supervised Distributed Approximate NEwton estimator (SSDANE) for GLM.

Compared with supervised DANE, our SSDANE has the following advantages. First,
SSDANE converges faster to the optimal neighborhood of β∗. Second, SSDANE requires
fewer rounds of communication between the master machine and local machines. This
is particularly important when communication cost becomes a bottleneck in distributed
computing. Third, SSDANE allows higher dimensions for β∗. The supervised DANE
typically requires a dimension smaller than the labeled local sample sizes. In contrast,
SSDANE can still have a nearly optimal rate when the dimension exceeds the labeled local
sample sizes. Finally, extensive numerical experiments are performed to demonstrate the
better performance of SSDANE. Our experimental results suggest that the performance of
the semi-supervised algorithm is consistently superior to that of the supervised algorithm,
its performance improves as the amount of unlabeled data increases. Based on our findings,
we recommend the use of our SSDANE over DANE, particularly when a larger amount of
unlabeled data is available.

The rest of the paper is organized as follows. Section 2 introduces the semi-supervised
surrogate loss function and SSDANE. In Section 3, we present theoretical results for the pro-
posed methods. Numerical experiments are provided in Section 4. Finally, we conclude our
work in Section 5. The proofs of theoretical results are relegated to Appendix. Given a vec-

tor v = (v1, ..., vp)
T , we denote |v|1 =

∑p
l=1 |vl|, |v|2 =

√∑p
l=1 v

2
l and |v|∞ = sup1≤l≤p |vl|.
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For a matrix A ∈ Rn×p, define ‖A‖ as the spectral norm, λmax(A) and λmin(A) as the
largest and smallest eigenvalues of A respectively.

2. Methodology

In this section, we first introduce the semi-supervised surrogate loss in a single-machine
setting. Then we apply it in a distributed setup and develop two distributed semi-supervised
algorithms.

2.1 Semi-Supervised Surrogate Loss

To motivate the construction of the semi-supervised surrogate loss, we shall consider the
single-machine setting. Denote D as the index set of the labeled pairs {(Xi, Yi)}, D∗ as the
index set of unlabeled covariates {Xi}, and H = D∪D∗. We let |D| = n and |H| = n∗. For
the generalized linear model (1) with link function ψ′(·), recall the empirical loss function
based on the labelled data D is

L(β) = − 1

n

∑
i∈D

YiX
T
i β +

1

n

∑
i∈D

ψ(XT
i β). (3)

With this target function, one may estimate the true parameters by the optimization

β̂D = argmin
β∈Rp

{L(β)}. (4)

It is well known that the computation time (the number of iterations) of a first/second
order method on solving this optimization depends on the condition number of the Hessian
matrix

ĤD(β) =
1

n

∑
i∈D

XiX
T
i ψ
′′
(XT

i β).

When the sample size |D| is small, or the dimension p is large, the condition number can be
large. For example, when p ∼ n, the condition number of the sample covariance matrix can
go to infinity (see Bickel and Levina (2008)). In order to get a more stable and concentrated
Hessian matrix, a direct way is to make use of the unlabelled data by noting that the Hessian
matrix only depends on the covariates. That is, one may consider the following loss

Lss(β) = − 1

n

∑
i∈D

YiX
T
i β +

1

n∗

∑
i∈H

ψ(XT
i β), (5)

where the unlabeled data is used and leads to a more stable Hessian matrix once n∗ is much
larger than n:

Ĥ
ss

H(β) =
1

n∗

∑
i∈H

XiX
T
i ψ
′′
(XT

i β).

However, due to the unbalance between the sample sizes of D and H, the asymptotic
variance of the estimator β̂H = argminβ∈Rp{Lss(β)} increases. This results in a great loss

4



Distributed Estimation on Semi-Supervised Generalized Linear Model

in statistical efficiency on estimating β∗. In fact, the covariance of the gradient at β∗

satisfies

Cov
(
− 1

n

∑
i∈D

YiXi +
1

n∗

∑
i∈H

Xiψ
′
(XT

i β
∗)
)

=
1

n
Cov

(
− YX +Xψ

′
(XTβ∗)

)
+ Cov

( 1

n∗

∑
i∈H

Xiψ
′
(XT

i β
∗)− 1

n

∑
i∈D

Xiψ
′
(XT

i β
∗)
)

=
1

n
Cov

(
− YX +Xψ

′
(XTβ∗)

)
+
n∗ − n
nn∗

Cov
(
Xψ

′
(XTβ∗)

)
, (6)

where the first matrix on the right-hand side of the above equation is the covariance matrix
of the gradient of L(β) in (3). The unbalance between D and H leads to the second extra
covariance matrix, which has the same order as the first one.

In order to eliminate the second term of (6) while maintaining the stability of the
Hessian matrix, we consider the following two-step method. Suppose that we have an

initial estimator β̂
(0)

for β∗. Then we can subtract

∇Lss(β̂
(0)

)−∇L(β̂
(0)

) =
1

n∗

∑
i∈H

Xiψ
′
(XT

i β̂
(0)

)− 1

n

∑
i∈D

Xiψ
′
(XT

i β̂
(0)

)

to reduce the extra term in the gradient of Lss(β). That is, we consider the following
corrected estimating equation

∇Lss(β)−
(
∇Lss(β̂

(0)
)−∇L(β̂

(0)
)
)

= 0. (7)

It is easy to see that if the initial value β̂
(0)

is close to β∗, then the covariance of the
above equation (at value β∗) is asymptotically equivalent to that of L(β). Therefore, the
estimator satisfies equation (7) will have almost the same statistical efficiency as L(β). On

the other hand, the Hessian matrix of (7) is Ĥ
ss

H(β), which is more stable than ĤD(β).
The estimating equation in (7) corresponds to the following loss function

L̃(β) = Lss(β)−
〈
∇Lss(β̂

(0)
)−∇L(β̂

(0)
),β
〉
. (8)

We call L̃(β) as the semi-supervised surrogate loss. This surrogate loss can be easily ex-
tended to the distributed setting. We will show rigorously that the number of iterations
and hence the communication cost are much smaller than the algorithm with only labeled
data.

2.2 Distributed Semi-Supervised Learning

In this section, we consider semi-supervised learning in the distributed setup. More specif-
ically, assume we have N = mn i.i.d. pairs of observations {(Xi, Yi)} from the generalized
linear model (1) evenly stored in m different machines {H1, . . . ,Hm}. Let H1 be the master
machine that is in charge of data update and transmission. We discuss the cases where unla-
beled data are stored in a single machine and multiple machines separately. In both cases,
we develop algorithms that achieve a faster convergence rate than their fully-supervised
counterparts.
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2.2.1 Unlabeled Data on Master Machine

We first assume the sample size of additional n∗−n unlabeled covariates Xi is not too large
so that they can be stored in a single machine (i.e. H1, the master machine). We denote Dj
as the indices of labelled observations {(Xi, Yi)}, and D∗1 as the unlabeled covariates {Xi}
on H1. Then we have that |Dj | = n, |D∗1| = n∗ − n and |H1| = n∗.

To conduct distributed learning with the assistance of the unlabeled data, we use the

semi-supervised surrogate loss in (8) and replace the local gradient ∇L(β̂
(0)

) by the global

gradient 1
m

∑m
j=1∇Lj(β̂

(0)
), where

Lj(β) = − 1

n

∑
i∈Dj

YiX
T
i β +

1

n

∑
i∈Dj

ψ(XT
i β) (9)

is the local loss in the j-th machine. After the master machine receives all the gradients

from workers, it solves the following optimization and updates the initial value β̂
(0)

to β̂
(1)

:

β̂
(1)

= argmin
β∈Rp

{L̃(1)(β)}

= argmin
β∈Rp

Lss1 (β)−
〈
∇Lss1 (β̂

(0)
)− 1

m

m∑
j=1

∇Lj(β̂
(0)

),β
〉 .

(10)

We call this the one-step Semi-Supervised Distributed Approximate NEwton (SSDANE)
estimator, with respect to the DANE proposed by Shamir et al. (2014).1 The one-step
SSDANE can be directly extended to multi-round SSDANE which is stated in Algorithm
1.

2.2.2 Unlabeled Data on Multiple Machines

In this section, we consider the case that the sample size of unlabeled data is large so that
they are separately stored in multiple machines. To be more specific, we denote U as the
set of machines having unlabeled dataset and let Dj and D∗j be the index sets of labelled
observations {(Xi, Yi)} and unlabeled covariates {Xi} on Hj respectively. Then for j ∈ U ,

there is |Dj | = n, |D∗j | = n∗ − n and |Hj | = n∗. Suppose we have an initial estimator β̂
(0)

,
for j ∈ U , we apply SSDANE on the j-th machine to obtain

β̂
(1)

j = argmin
β∈Rp

{
L̃(1)j (β)

}
= argmin

β∈Rp

{
Lssj (β)−

〈
∇Lssj (β̂

(0)
)− 1

m

m∑
k=1

∇Lk(β̂
(0)

),β
〉}

,

where Lssj (β) denotes the local semi-supervised empirical loss on the j-th machine, namely,

Lssj (β) = − 1

n

∑
i∈Dj

YiX
T
i β +

1

n∗

∑
i∈Hj

ψ(XT
i β).

1 The original DANE is based on the average of local solutions for all workers. For the sake of comparison,
we refer the solution in a local machine to DANE and the average of them to DANE-Avg
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Algorithm 1 Semi-Supervised Distributed Approximate NEwton Method (SSDANE)

Input: Labeled data {(Xi, Yi) | i ∈ Dj} on machine Hj for j = 1, ...,m, and un-
labeled data {Xi | i ∈ D∗1} on the master machine H1, the number of iterations
T .

1: The master machine H1 obtains the initial estimator β̂
(0)

by minimizing the local em-
pirical loss function on H1.

2: for t = 1, . . . , T do

3: The master machine broadcasts the parameter β̂
(t−1)

to each worker machine.
4: for j = 1, . . . ,m do
5: The j-th machine computes the local gradient

∇Lj(β̂
(t−1)

) = − 1

n

∑
i∈Dj

YiX
T
i +

1

n

∑
i∈Dj

ψ′(XT
i β̂

(t−1)
)Xi,

and sends back to the master machine H1.
6: end for
7: The master machine updates the parameter by solving

β̂
(t)

= argmin
β∈Rp

{
L̃(t)(β)

}
= argmin

β∈Rp

Lss1 (β)−
〈
∇Lss1 (β̂

(t−1)
)− 1

m

m∑
j=1

∇Lj(β̂
(t−1)

),β
〉 .

(11)

8: end for

Output: The final estimator β̂
(T )

.

Then we take the average over these local estimators to obtain a more accurate one,

β̂
(1)

Avg =
1

|U|
∑
j∈U

β̂
(1)

j . (12)

The multi-round realization of the averaged SSDANE (SSDANE-Avg) method is provided
in Algorithm 2.

3. Theoretical Results

In this section, we investigate the theoretical properties of the proposed algorithms. First,
we need the following regular assumptions.

Assumption 1 Let H = E{ψ′′(XTβ∗)XXT}, then there is a constant ρ > 0 such that

ρ ≤ λmin (H) ≤ λmax (H) ≤ ρ−1.

Assumption 2 There exist positive numbers η0 > 0, C0 such that

max

{
sup
v∈Sp−1

E
[

exp
{
η0|XTv|2

}]
,E
[

exp
{
η0|ψ′(Xβ∗)|2

} ]
,E
[

exp
(
η0Y

2
) ]}

≤ C0.
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Algorithm 2 Semi-Supervised Distributed Approximate NEwton with Average ( SSDANE-Avg)

Input: Labeled data {(Xi, Yi) | i ∈ Dj} on machine Hj for j = 1, ...,m; unlabeled
data {Xi | i ∈ D∗j} on the each machine Hj , where j ∈ U ; the number of iterations
T .

1: The master machine H1 obtains the initial estimator β̂
(0)

by minimizing the local em-
pirical loss function on H1.

2: for t = 1, . . . , T do

3: The master machine broadcasts the parameter β̂
(t−1)

to each worker machine.
4: for j = 1, ...,m do
5: The j-th machine computes the local gradient

∇Lj(β̂
(t−1)

) = − 1

n

∑
i∈Dj

YiX
T
i +

1

n

∑
i∈Dj

ψ′(XT
i β̂

(t−1)
)Xi,

and sends back to the master machine H1.
6: end for

7: The master machine computes m−1
∑m

j=1∇Lj(β̂
(t−1)

) and broadcasts to worker ma-
chine with unlabeled data, that is, Hj for j ∈ U .

8: for j ∈ U do
9: The j-th machine updates the parameter by solving

β̂
(t)

j = argmin
β∈Rp

{
L̃(t)j (β)

}
= argmin

β∈Rp

{
Lssj (β)−

〈
∇Lssj (β̂

(t−1)
)− 1

m

m∑
k=1

∇Lk(β̂
(t−1)

),β
〉}

,

(13)

and sends back to the master machine H1.
10: end for

11: The master machine updates the parameter by β̂
(t)

Avg = |U|−1
∑

j∈U β̂
(t)

j .
12: end for

Output: The final estimator β̂
(T )

Avg.

Assumption 3 The canonical link function ψ′(·) is twice differentiable, and there exists a
uniform constant cψ such that

sup
x∈R

max{|ψ′′(x)|, |ψ′′′(x)|} ≤ cψ.

The above assumptions are standard conditions for proving estimation consistency. As-
sumption 1 assumes the well-posedness of the Hessian matrix. Assumption 2 guarantees
that the covariate X and the label Y admit the sub-Gaussian distribution. In Assump-
tion 3 we assume the canonical link function ψ′(x) has uniformly bounded first-order and
second-order derivatives.
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3.1 Convergence Rate of Semi-Supervised Distributed Estimation

3.1.1 Unlabeled Data on Master Machine

We first give the convergence rate of the estimator in Algorithm 1 when all unlabeled data
are stored in the master machine.

Theorem 1 Suppose Assumption 1 to 3 hold, assume the initial estimator β̂
(0)

satis-

fies |β̂
(0)
− β∗|2 = OP(rn). Moreover, the dimension of the parameter p satisfies p =

o(min{(n∗)2/3/ log n∗,mn/ log n∗}) and rn = o(p−1/2). The T -th round SSDANE estimator
satisfies

∣∣∣β̂(T )
− β∗

∣∣∣
2

= OP

(√
p log n∗

mn
+ rn

(p log n∗

n∗

)T/2
+

1
√
p

(
√
prn)2

T

)
. (14)

This theorem provides an upper bound for the SSDANE method. The first term is a
nearly optimal statistical convergence rate with all labeled data. The second and third
terms represent the improved convergence rate by each iteration in the algorithm. For
example, the rate in the second term was improved by the factor

√
p(log n∗)/n∗ with one

iteration. To achieve the nearly optimal statistical rate
√

p logn∗

mn , it suffices to take

T ≥ log n+ logm− log p− log logn∗

log n∗ − 2 log p− log log n∗
. (15)

Note that n∗ is the number of total samples in the master. It indicates that the infor-
mation of unlabeled data indeed helps improve the rate of the algorithm. In fact, if the loss
L1(β) with only labeled data is used in DANE, i.e. replacing Lss1 (β) by L1(β) in (11),

β̂
(t)

o = argmin
β∈Rp

L1(β)−
〈
∇L1(β̂

(t−1)
o )− 1

m

m∑
j=1

∇Lj(β̂
(t−1)
o ),β

〉 , (16)

then the second term of (14) becomes rn

(
p logn
n

)T/2
, which is much slower than the one

with unlabeled data as long as n∗ � n. A slower rate means more iterations and more
rounds of communication between the master machine and workers.

The improvement of the rate by the unlabeled data is essential. Consider the one-round
estimator with T = 1 and for the linear model. Proposition 7 below shows a tight lower

bound for DANE, β̂
(1)

o is C
(√

p
mn + rn

√
p
n

)
. Except for the theoretical evidence, we will

conduct extensive numerical analysis to verify such improvement.

To further see the advantage of our semi-supervised surrogate loss in distributed es-
timation, we consider the case that p > n but p is much smaller than n∗ and mn. Since

p > n, then the Hessian matrix of L1(β) is not positive definite. Hence β̂
(t)

o performs poorly
on estimation of β∗. For example, for the linear model, (16) is reduced to solve a linear
equation Σ̂1β = b, where Σ̂1 = 1

n

∑
i∈D1

XiX
T
i is not full rank so that the solution is not

unique. On the other hand, the Hessian matrix of our semi-supervised surrogate loss is still

9
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positive definite as n∗ � p. In this case, β̂
(T )

is well defined and can still have the nearly
optimal rate.

Next, we present the asymptotic normality result for our proposed SSDANE estimator.

Theorem 2 (Asymptotic normality of SSDANE) Under the same conditions as in Theorem
1, and additionally, we assume the dimension of the parameter p satisfies p = o(min{(n∗)1/2/ log n∗,
(mn/ log2 n∗)1/3}). Then when the iteration round T satisfies (15), for any vector v ∈ Sp−1,
we have that √

mn

σ(v)
vT(β̂

(T )
− β∗) d−→ N (0, 1),

where {
σ(v)

}2
= vTH−1CH−1v, (17)

here H = E
[
ψ′′(XTβ∗)XXT

]
,

C = c(σ)E
[
ψ′′(XTβ∗)XXT

]
.

The result shows that the proposed semi-supervised surrogate loss keeps the same sta-
tistical efficiency compared to L(β) with all labeled data.

Remark 3 Regarding the statistical efficiency, we also note that the unlabeled data some-
times helps reduce the asymptotic variance in some works of semi-supervised learning. How-
ever, our methods have different settings and targets from these works. In particular, most
results enjoy variance reduction due to additional information. For example, in Hou et al.
(2023), the author proposed the imputation method with the assistance of additional surro-
gate information. In Cai and Guo (2020), the author considered estimating the explained
variance with the unlabeled data. Chakrabortty and Cai (2018) and Azriel et al. (2022)
estimated the model parameter for the miss-specified linear model. In contrast, we focus on
estimating the model parameter in the distributed setting. It would also be interesting to
study the aforementioned problem in the distributed setting by extending our method. And
there should be no technical difficulties in showing a similar efficiency-enhancement effect.

3.1.2 Unlabeled Data on Multiple Machines

In this section, we provide similar theoretical results when the unlabeled data are separately
stored in multiple machines.

Theorem 4 Suppose Assumption 1 to 3 hold, assume the initial estimator β̂
(0)

satisfies

|β̂
(0)
−β∗|2 = OP(rn). Moreover, there are rate constraints p = o(min{(n∗)2/3/ log n∗,mn/ log n∗})

and rn = o(p−1/2). Then the T -th round SSDANE-Avg estimator satisfies

∣∣∣β̂(T )

Avg − β∗
∣∣∣
2

= OP

(√
p log n∗

mn
+ rn

(p log n∗

n∗

)T
+ rn

(p log n∗

|U|n∗
)T/2

+
1
√
p

(
√
prn)2

T

)
,

(18)
where |U| denotes the cardinality of the set U .
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We now compare the rates between (18) and (14). It is obvious that the more machines
with unlabeled data, the faster the convergence rate of the algorithm. Note that the total
number of unlabeled data is |U|(n∗−n). If the |U|(n∗−n) data are all stored in the master

machine, then according to Theorem 1, the rate of SSDANE β̂
(T )

is

OP

(√
p log n∗

mn
+ rn

( p log n∗

|U|(n∗ − n) + n

)T/2
+

1
√
p

(
√
prn)2

T

)
.

This rate is slower than or the same as (18) when |U| ≤ n∗/(p log n∗), relying on magnitude
of n∗ − n. Therefore, when the unlabeled data are stored in multiple workers, the aver-
age SSDANE can have a better convergence rate. Furthermore, it has a faster rate than
SSDANE by an extra factor 1/|U| when n∗ is close to n (c.f. n∗ = n). On the other hand,
the average of SSDANE requires |U| workers to solve the optimization (13) simultaneously,
and hence needs a more homogeneous distributed system.

For the asymptotic distribution of β̂
(T )

Avg, we can establish a similar result with the same
asymptotic variance as Theorem 2. Therefore, the average of SSDANE further accelerates
the algorithm while keeping the statistical efficiency. We further note that, suppose the loss
Lssj (β) with unlabeled data were used trivially in DANE, i.e. let

β̂
(t)

ss,j = argmin
β∈Rp

Lss1 (β)−
〈
∇Lss1 (β̂

(t−1)
ss )− 1

m

m∑
j=1

∇Lssj (β̂
(t−1)
ss ),β

〉 ,

and β̂
(t)

ss,Avg = 1
|U|
∑

j∈U β̂
(t)

ss,j . We can prove that the asymptotic variance of β̂
(t)

ss,Avg is

vTH−1
(
C +

(n∗ − n)|U|
mn∗

Css
)
H−1v,

where Css = Cov
{
ψ′(XTβ∗)X

}
. That is, a trivial use of unlabeled data in DANE can lead

to a larger variance when |U| is proportional to m.

Remark 5 We note that our current theoretical framework is founded on the premise that
the data has comparable sample sizes across local sources, primarily for the sake of clar-
ity in presentation. Specifically, for the SSDANE method, we conduct minimization of the
surrogate loss (defined in (10)) solely on the master machine H1. In this context, we allow
for imbalanced local sample sizes, provided that the master machine contains a sufficient
number of covariates. Conversely, in the case of the SSDANE-Avg method, we take the
average of all SSDANE estimators from each machine in U . In this case, when sample sizes
across machines are imbalanced, the statistical rate becomes contingent on the smallest local
sample size, denoted as min{n∗j |j ∈ U}. In simpler terms, the presence of smaller local
sample sizes can potentially impact the theoretical performance of SSDANE-Avg negatively.
In practice, we suggest using the SSDANE method when the sample size across machines
is extremely imbalanced. Notably, recent research efforts have delved into the realm of dis-
tributed training in the context of imbalanced data (see, e.g., Duan et al. (2021a,b); Chen
et al. (2023)). It would indeed be intriguing to explore the fusion of these methodologies
with our distributed semi-supervised approach.
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3.2 Two Examples

In this section, we provide two specific examples of the generalized linear model. The first
one is linear regression. We use this example to illustrate the lower bound of the rate for
DANE with labeled data and support the claims on better performance of our SSDANE in
Section 2.2.1.
Linear regression Assume the observation pair (X, Y ) comes from the following model

Y = XTβ∗ + ε, (19)

where ε denotes the Gaussian noise. In this case, the canonical link function is ψ′(x) = x.
Therefore ψ(x) = x2/2, which has a quadratic form. The third-order derivative of ψ(x)
vanishes for the linear model.

Proposition 6 In the linear model, suppose the covariate X follows the sub-Gaussian dis-

tribution. Then the T -th round SSDANE estimator β̂
(T )

satisfies that

|β̂
(T )
− β∗|2 = OP

{√
p log n∗

mn
+ rn

(p log n∗

n∗

)T/2}
.

For linear regression, the third term in (14) is disappeared when the canonical link
function is in linear form. In the following, we provide the lower bound of one-step SSDANE.

Proposition 7 In the linear model, assume the covariate X follows the sub-Gaussian dis-
tribution. Moreover, we assume that

inf
v∈Sp−1

λmin

[
Cov

{
(XXT −Σ)v

}]
≥ ρ1.

Let β̂
(0)

be an initial estimator which is independent to Xi’s and εi’s, then there exists a

constant c, such that the one-step SSDANE estimator β̂
(1)

satisfies

P
(
|β̂

(1)
− β∗|2 ≥ c

(√ p

mn
+ rn

√
p

n∗

))
≥ 1

2
, (20)

where rn = |β̂
(0)
− β∗|2.

Suppose there is no additional unlabeled data and we have n∗ = n. In this case, SSDANE

becomes the DANE and β̂
(1)

= β̂
(1)

o . Therefore, the DANE with only labeled data has the

lower bound c
(√

p
mn + rn

√
p
n

)
.

Logistic regression Assume the observation (X, Y ) ∈ Rp+1 admits the following condi-
tional probability function

P(Y |X) =
exp(YXTβ∗)

1 + exp(XTβ∗)
, (21)

where the response variable Y only takes value in {0, 1}. Then the canonical link function
ψ′(·) is defined as ψ(x) = ex/(1 + ex). It is not hard to verify that ψ fulfills Assumption 3.
Therefore, the theorems above hold for Logistic regression.

12
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3.3 Theory on non-distributed setting

To show a trivial case involving unlabeled data will decline the statistical efficiency, we
provide a result on asymptotic distribution in the non-distributed setting. Recall the loss
function

Lss(β) = − 1

n

∑
i∈D

YiX
T
i β +

1

n∗

∑
i∈H

ψ(XT
i β).

Define
β̂
ss
, argmin

β∈Rp

{
Lss(β)

}
. (22)

Proposition 8 (Asymptotic normality of the semi-supervised GLM estimator) Suppose As-
sumption 1 to 3 hold, and additionally, we assume the rate constraint p = o((n/ log n∗)2/3).
Then for any vector v ∈ Sp−1, we have that

√
n

σ(v)
vT(β̂

ss
− β∗) d−→ N (0, 1),

where {
σ(v)

}2
= vTH−1

(
C +

n∗ − n
n∗

Css
)
H−1v, (23)

here C = c(σ)E
[
ψ′′(XTβ∗)XXT

]
, Css = Cov

{
ψ′(XTβ∗)X

}
,

H = E
{
ψ′′(XTβ∗)XXT

}
.

Let n∗ = n in Proposition 8. In this case, D = H and hence β̂
ss

= β̂D. That is,
the asymptotic covariance matrix of β̂D is H−1CH−1. While the unlabeled data is used,

the covariance matrix would become to be H−1
(
C + n∗−n

n∗ Css
)
H−1 and hence has lower

statistical efficiency.

4. Empirical Analysis

In the empirical analysis, we conduct several experiments to show the effectiveness of our
proposed methods.

4.1 Simulation Studies on Synthetic Dataset

In this section, we show the performance of our proposed semi-supervised estimators on
linear regression and logistic regression.
Parameter Settings In both models, we assume the i.i.d. covariate vectorsXi = (Xi,1, ..., Xi,p)

T

are drawn from a multivariate normal distribution N (0,Σ) for i = 1, ..., N . Here the co-
variance matrix Σ is a p × p Toeplitz matrix with its (i, j)-th entry Σij = 0.5|i−j|, where
1 ≤ i, j ≤ p. We fix dimension p = 20 and the true coefficient

β∗ = (1, 0.95, 0.9, ..., 0.1, 0.05).

We repeat 100 independent simulations and report the averaged estimation error and
the corresponding standard error. We mainly compare the SSDANE (Algorithm 1) and
SSDANE-Avg (Algorithm 2) with the following six methods:
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• DANE: Supervised version of distributed approximate Newton estimator. We run
Algorithm 1 without using the additional unlabeled dataset.

• DANE-Avg: Supervised version of averaged distributed approximate Newton estima-
tor. We run Algorithm 2 without using the additional unlabeled dataset.

• DANEimp: Imputation-based distributed approximate Newton estimator. We inter-
polate the unlabeled data by the current estimator β̂, and run DANE for all pairs of
data.

• DANEimp-Avg: Imputation-based averaged distributed approximate Newton esti-
mator. We interpolate the unlabeled data by the current estimator β̂, and run
DANE-Avg for all pairs of data.

• Local estimator: We minimize the empirical loss function L1(β) = − 1
n

∑
i∈D1

YiX
T
i β+

1
n

∑
i∈D1

ψ(XT
i β) with the data on the master machine H1.

• Pooled estimator: We collect all labeled pairs into one machine and minimize the
empirical loss function.

In particular, we denote SSDANE-Avg(α) (DANE-Avg(α)) as the estimator which is the
average of the local SSDANE (DANE) estimators from α fraction of machines. For the
choice of the initial estimator, we uniformly use the local estimator on the master machine
H1.

4.1.1 Results for Linear Regression

We first consider linear regression, where the observation (X, Y ) is generated from the
linear model (19).
Effect of the Number of Machines and Local Unlabeled Data To investigate the effect
of the number of machines and local unlabeled data, we fix the labeled local sample size n
to be 100, and vary the number of machines m from {20, 50, 100}, and the unlabeled local
sample size n∗ from {100, 200, 500}. We compare the one-step SSDANE and SSDANE-Avg
with different averaging fractions. The results of the `2-errors and their standard errors are
reported in Table 1.

As we can see from above, for every fixed m, more unlabeled samples help reduce the
`2-error of the semi-supervised estimators. The averaged estimator SSDANE-Avg always
has a lower error than SSDANE, which only solves the problem (11) on the master machine.
Moreover, the more fraction of machines we average from, the smaller the estimation error
we get. All of these findings coincide with the theoretical results in Theorem 1 and Theorem
4.
Covariance of the gradient at β∗ From the proof of Theorem 2 and Proposition 8,
we observe that the asymptotic variance of the estimators differs only in the covariance
of the gradient of the loss function L. Therefore, to demonstrate the statistical efficiency
of our method in comparison with the naive semi-supervised estimator, we compare the
rescaled covariance of the gradient at the true parameter β∗. Specifically, for each round,
we generate N samples and compute N∇L(β∗)(∇L(β∗))T. Then, we repeat this process
100 times and compute their average, which provides the covariance of the gradient ∇L(β∗)
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Table 1: The `2-errors and their standard errors (in parentheses) of the one-step SSDANE,
SSDANE-Avg(0.2), SSDANE-Avg(0.5) and SSDANE-Avg(1) under labeled local sample
size n = 100. Data are generated from a linear model with parameter dimension p = 20.

m n∗ SSDANE SSDANE-Avg(0.2) SSDANE-Avg(0.5) SSDANE-Avg(1)
100 0.588(0.226) 0.310(0.083) 0.236(0.053) 0.213(0.042)

20 200 0.321(0.109) 0.193(0.041) 0.163(0.030) 0.154(0.026)
500 0.203(0.040) 0.156(0.026) 0.145(0.028) 0.142(0.028)
100 0.586(0.228) 0.227(0.056) 0.199(0.041) 0.187(0.035)

50 200 0.299(0.103) 0.131(0.029) 0.118(0.022) 0.112(0.020)
500 0.173(0.039) 0.101(0.019) 0.096(0.017) 0.094(0.016)
100 0.593(0.235) 0.199(0.049) 0.184(0.038) 0.178(0.036)

100 200 0.295(0.104) 0.106(0.023) 0.097(0.020) 0.095(0.019)
500 0.161(0.039) 0.073(0.015) 0.070(0.014) 0.069(0.013)

Table 2: The rescaled trace of the covariance Σ̂(∇L) of the L, Lss, L̃(1) and L̃(5) under
labeled local sample size n = 100. Data are generated from a linear model with parameter
dimension p = 20.

m n∗ L Lss L̃(1) L̃(5)

100 0.997 0.997 6.097 2891.910
20 200 0.997 12.443 3.720 1.763

500 0.997 18.476 2.196 1.046
100 0.979 0.979 13.591 9386.730

50 200 0.979 12.530 7.425 3.062
500 0.979 19.100 3.542 1.048
100 0.944 0.944 26.512 22642.400

100 200 0.944 12.228 13.755 5.829
500 0.944 18.367 5.822 0.998

(denoted as Σ̂(∇L)). Here the loss function is chosen as L (fully supervised empirical loss),
Lss (semi-supervised empirical loss), L̃(1) (1-step semi-supervised surrogate loss), and L̃(5)
(5-step semi-supervised surrogate loss). We present the trace of the covariance (Table 2),
the difference ‖Σ̂(∇L) − C‖ (Table 3), and draw the distribution of eigenvalues of Σ̂(∇L)
(Figure 1)

From Table 2, it can be observed that fully supervised surrogate loss (n∗ = n) has the
largest covariance trace. This is because the supervised estimator has a large bias. As
n∗ grows, the semi-supervised empirical loss exhibits a larger covariance trace than that
of L, which aligns with the result in Proposition 8. On the contrary, the semi-supervised
surrogate loss has a smaller covariance trace. In particular, for large iteration numbers and
unlabeled sample sizes, the semi-supervised surrogate loss has a covariance trace similar
to that of L. Table 3 reveals that Σ̂(∇L) approximates C for SSDANE when the local
unlabeled sample size is large. The naive semi-supervised loss has a larger difference as the
unlabeled sample size increases. Figure 1 demonstrates similar implications.
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Table 3: The norm of difference ‖Σ̂(∇L)−C‖ of the L, Lss, L̃(1) and L̃(5) under labeled local
sample size n = 100. Data are generated from a linear model with parameter dimension
p = 20.

m n∗ L Lss L̃(1) L̃(5)

100 1.787 1.787 3.211×101 3.331×104

20 200 1.787 7.892×101 1.716×101 6.037
500 1.787 1.121×102 8.215 1.963
100 2.224 2.224 7.789×101 1.157×105

50 200 2.224 8.153×101 4.016×101 1.634×101

500 2.224 1.262×102 1.698×101 2.290
100 2.138 2.138 1.554×102 2.717×105

100 200 2.138 8.200×101 7.753×101 3.946×101

500 2.138 1.214×102 3.028×101 2.202

Figure 1: The values of eigenvalues of Σ̂(∇L) in increasing order under the linear regression
model. The labeled local sample size takes value in 100, the number of machines is 50, the
unlabeled local sample size takes value in {0, 100, 400}, and the dimension p is 20.

Effect of the Number of Iterations Next, we study the effect of iterations. We set the
number of machines to be 100, the unlabeled local sample size to be 400, and vary the
labeled local sample size from {50, 100, 200}. The curves of `2-error over the number of
iterations are presented in Figure 2.

From Figure 2, we can see that in all cases, the SSDANE and SSDANE-Avg outperform
their fully supervised counterparts. The superiority is more obvious when the labeled local
sample size n is small. The imputation-based method DANEimp is similar to SSDANE
when only one machine has unlabeled data, but the averaged estimator DANEimp-Avg is
inferior to both SSDANE-Avg and DANE-Avg. This indicates that a naive combination
of imputation with DANE may lead to a deterioration in performance. Moreover, we find
that the fully supervised estimator DANE blows up in several steps when n is small, while
the semi-supervised estimators always converge well.

Effect of initialization From Proposition 6, in the linear model, the convergence rate
always increases as the iteration number grows. In the following experiment, we examine if
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Figure 2: The `2-error over the number of iterations under linear model. The labeled local
sample size takes value in {50, 100, 200}, the number of machine is 100, the unlabeled local
sample size is 400, and the dimension p is 20.

Table 4: The `2-errors and their standard errors (in parentheses) of the 1-step SSDANE,

5-step SSDANE, 1-step SSDANE-Avg, and 5-step SSDANE-Avg with initialization β̂
(0)

=
β∗ + ε, under labeled local sample size n = 100. Data are generated from a linear model
with parameter dimension p = 20.

m n∗ 1 Step SSDANE 1 Step SSDANE-Avg 5 Step SSDANE 5 Step SSDANE-Avg
100 3.434(1.212) 1.169(0.222) 28.978(37.931) 0.126(0.022)

20 200 2.135(0.717) 0.682(0.165) 1.476(1.927) 0.125(0.022)
500 1.248(0.354) 0.580(0.160) 0.145(0.038) 0.125(0.022)
100 3.496(1.273) 1.177(0.221) 33.016(48.324) 0.080(0.016)

50 200 2.128(0.722) 0.587(0.132) 1.462(2.004) 0.079(0.015)
500 1.184(0.338) 0.384(0.107) 0.989(0.032) 0.079(0.015)
100 3.492(1.300) 1.177(0.216) 33.780(51.572) 0.056(0.010)

100 200 2.138(0.734) 0.558(0.114) 1.475(2.026) 0.056(0.010)
500 1.175(0.346) 0.307(0.085) 0.077(0.028) 0.056(0.010)

the estimation error is sensitive to the initial point. To see that, we take the initial point

as β̂
(0)

= β∗ + ε, where the noise ε is sampled from N (0, Ip). It is not hard to see that

E[|β̂
(0)
− β∗|2] ≈

√
p, which violate the assumption in the theory. The result is presented

in Table 4. As shown in the linear model, the fully supervised estimator (n∗ = n) is highly
sensitive to initialization compared to the semi-supervised estimator (n∗ > n). Increasing
the amount of unlabeled data leads to greater robustness of the estimator.

Moreover, we extend our exploration to encompass the utilization of distributed batch
stochastic gradient descent (BSGD) and local stochastic gradient descent (LSGD) method-
ologies for initialization purposes. In this context, our approach employs a batch size of 0.1n
for both BSGD and LSGD, while conducting a total of 10 iterations. Within the framework
of BSGD, a constant step size is employed, while in alignment with the principles outlined
in Stich (2019), the step size in LSGD is determined as C/(t + 1). We compare SSDANE

and SSDANE-Avg initialized by the local estimator, random initialization (β̂
(0)

= β∗ + ε),
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Figure 3: The `2-error over the number of iterations under a linear model with different
initializations. The labeled local sample size takes value in {50, 100, 200}, the number of
machines is 100, the unlabeled local sample size is 400, and the dimension p is 20.

early-stopped BSGD and LSGD, and show how their estimation errors evolve with respect
to iterations. The results are elucidated in Figure 3.

As we can see from Figure 3, in the linear model, all these four initialization methods lead
to consistent estimators. The SSDANE-Avg method always outperforms its corresponding
SSDANE method. Notably, the BSGD and LSGD initialized methods exhibit smaller esti-
mation errors, consequently requiring fewer iterations to attain the optimal rate. In prac-
tical applications, the choice of initialization can be tailored to the characteristics of the
problem at hand. Specifically, when confronted with scenarios of ample local sample sizes,
the employment of a local minimizer for initialization is advocated, considering its intrinsic
advantage of circumventing communication overhead. Conversely, for a situation involving
diminutive local sample sizes, the adoption of BSGD and LSGD for initialization serves as a

prudent approach, aligning with the requisite criterion of achieving |β̂
(0)
−β∗|2 = oP(p−1/2).

4.1.2 Results for Logistic Regression

In this section, we consider logistic regression, where the observation (X, Y ) is generated
from the model (21). To solve the optimization problem (13) for the logistic regression
model, we apply conjugate gradient descent motivated by Minka (2003).

Effect of the Number of Machines and Local Unlabeled Data Similarly, as in the linear
model, we fix the labeled local sample size n to be 300 and vary the number of machines m
from {20, 50, 100}, and the unlabeled local sample size n∗ from {300, 450, 900}. We compare
the one-step SSDANE and SSDANE-Avg with different averaging fractions. The results are
shown in Table 5. We can find similar phenomena as in the linear model, which shows the
unlabeled dataset and averaging fraction play important roles in reducing the estimation
errors.

Covariance of the gradient at β∗ In this part, we compare the various quantities of the
covariance matrix Σ̂(∇L) including the rescaled trace (Table 6), the difference ‖Σ̂(∇L)−C‖
(Table 7), and draw the distribution of eigenvalues of Σ̂(∇L) (Figure 4). We can observe a
similar phenomenon as in the linear model.
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Table 5: The `2-errors and their standard errors (in parentheses) of the one-step SSDANE,
SSDANE-Avg(0.2), SSDANE-Avg(0.5) and SSDANE-Avg(1) under labeled local sample
size n = 300. Data are generated from a logistic regression model with parameter dimension
p = 20.

m n∗ SSDANE SSDANE-Avg(0.2) SSDANE-Avg(0.5) SSDANE-Avg(1)
300 0.692(0.267) 0.414(0.105) 0.347(0.074) 0.325(0.061)

20 450 0.510(0.154) 0.347(0.076) 0.309(0.064) 0.294(0.053)
900 0.375(0.080) 0.299(0.053) 0.284(0.052) 0.278(0.049)
300 0.656(0.301) 0.280(0.072) 0.247(0.054) 0.239(0.047)

50 450 0.455(0.176) 0.226(0.053) 0.204(0.042) 0.199(0.037)
900 0.309(0.079) 0.189(0.035) 0.178(0.032) 0.177(0.031)
300 0.634(0.281) 0.226(0.046) 0.210(0.039) 0.204(0.036)

100 450 0.437(0.169) 0.172(0.033) 0.161(0.028) 0.157(0.028)
900 0.285(0.079) 0.137(0.023) 0.131(0.022) 0.129(0.022)

Table 6: The rescaled of the covariace Σ̂(∇L) of Σ̂(∇L) of L, Lss, L̃(1) and L̃(5) under
labeled local sample size n = 300. Data are generated from a logistic regression model with
parameter dimension p = 20.

m n∗ L Lss L̃(1) L̃(5)

300 0.074 0.074 0.222 0.271
20 450 0.074 0.218 0.174 0.091

900 0.074 0.355 0.130 0.077
300 0.073 0.073 0.441 0.693

50 450 0.073 0.227 0.325 0.108
900 0.073 0.348 0.211 0.078
300 0.076 0.076 0.809 1.421

100 450 0.076 0.213 0.570 0.133
900 0.076 0.344 0.336 0.078

Effect of the Number of Iterations In this experiment, we fix the number of machines
as 100, the unlabeled local sample size as 600, and vary the labeled local sample size
from {100, 150, 300}. Similarly, from Figure 5, we find that the semi-supervised estima-
tors SSDANE and SSDANE-Avg are more stable and accurate, especially when the la-
beled local sample size n is small. Moreover, DANEimp-Avg always performs worse than
SSDANE-Avg.

Effect of initialization In Theorem 1 and 4, our theory suggests that the algorithm
converges only when the initial rate rn = o(1/

√
p). In this experiment, we check if this

requirement is necessary. Similarly, as in the linear model, we take the initial point as

β̂
(0)

= β∗+ε, where the noise ε is sampled from N (0, Ip). The result of `2-error is reported
in Table 8.

In the table, we denote ‘/’ if the algorithm blows up. We can observe a similar trend
as in the linear model, where the semi-supervised estimator shows greater robustness to
initialization than its fully supervised counterpart. Additionally, the SSDANE algorithm
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Table 7: The norm of difference ‖Σ̂(∇L)− C‖ of L, Lss, L̃(1) and L̃(5) under labeled local
sample size n = 300. Data are generated from a logistic regression model with parameter
dimension p = 20.

m n∗ L Lss L̃(1) L̃(5)

300 0.152 0.152 0.937 1.578
20 450 0.152 0.935 0.668 0.224

900 0.152 1.702 0.411 0.163
300 0.138 0.138 2.250 5.041

50 450 0.138 0.967 1.567 0.349
900 0.138 1.662 0.908 0.143
300 0.146 0.146 4.424 10.456

100 450 0.146 0.900 2.975 0.549
900 0.146 1.610 1.618 0.154

Figure 4: The values of eigenvalues of Σ̂(∇L) in increasing order under the logistic regression
model. The labeled local sample size is 300, the number of machines is 50, the unlabeled
local sample size takes value in {0, 150, 600}, and the dimension p is 20.

exhibits greater robustness than SSDANE-Avg. These findings suggest that there may
be scope for further improvement in Theorem 1 and 4. We can also find that the 5-
step SSDANE exhibits a large variance or even blows up when confronted with scenarios
of a limited number of covariates n∗. We concur that this behavior could be attributed
to unfavorable initialization coupled with the small value of n∗. In the context of our
theoretical framework, specifically referencing Theorem 1 and Theorem 4, it is discernible
that when

√
prn or p log n∗/n∗ is greater than 1, the statistical rate escalates with an

increasing number of steps. This phenomenon potentially elucidates the reasoning behind
the occurrence where a 5-step SSDANE is worse than its single-step counterpart in certain
instances.

We extend our experiment to investigate the utilization of an array of initialization
strategies, including the use of the local minimizer, random input, early-stopped BSGD
and LSGD, thereby mirroring the approach adopted in the linear model context. The
selection of hyperparameters aligns with the configuration outlined in Section 4.1.1. Con-
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Figure 5: The `2-error over the number of iterations under the logistic regression model.
The labeled local sample size takes value in {100, 150, 300}, the number of machines is 100,
the unlabeled local sample size is 600, and the dimension p is 20.

Table 8: The `2-errors and their standard errors (in parentheses) of the 1-step SSDANE,

5-step SSDANE, 1-step SSDANE-Avg, and 5-step SSDANE-Avg with initialization β̂
(0)

=
β∗+ε, under labeled local sample size n = 300. Data are generated from a logistic regression
model with parameter dimension p = 20.

m n∗ 1 Step SSDANE 1 Step SSDANE-Avg 5 Step SSDANE 5 Step SSDANE-Avg
300 10.193(20.198) 115.690(450.732) / /

20 450 4.715(10.561) 3.239(4.366) 0.431(0.252) /
900 1.532(2.203) 1.042(1.651) 0.264(0.053) /
300 10.245(21.135) 133.470(316.598) / /

50 450 4.963(12.696) 2.994(3.789) / /
900 1.385(1.614) 0.860(1.254) 0.174(0.047) /
300 10.197(21.368) 89.883(180.015) / /

100 450 4.912(13.116) 7.447(44.892) / /
900 1.400(2.047) 0.757(0.961) 0.127(0.043) /

trasting with the findings in Figure 3, we can find that random initialization may result
in divergence in the SSDANE-Avg method. However, as the local sample size increases,
the SSDANE-Avg method exhibits convergence. This observation suggests that both our
SSDANE and SSDANE-Avg methods benefit from a well-chosen initialization, and a larger
local sample size exerts a positive influence in mitigating sensitivity to the initialization
conditions. This phenomenon can be partially elucidated through Theorem 1 and 4.

4.2 Application to Real-World Benchmarks

In this section, we analyze the CelebA dataset2 from the Kaggle website, which is included in
LEAF (Caldas et al., 2018), a standard distributed learning benchmark. Our aim is to train
a classifier that distinguishes young people from old ones. In the dataset, each variable has
39 attributes. We take the total sample size as 120000, and randomly partition the dataset

2 https://www.kaggle.com/datasets/jessicali9530/celeba-dataset
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Figure 6: The `2-error over the number of iterations under a logistic model with different
initializations. The labeled local sample size takes value in {100, 150, 300}, the number of
machines is 100, the unlabeled local sample size is 600, and the dimension p is 20.

Figure 7: CelebA dataset. The classification error over iterations, under various pairs of
(m,n). The total training sample size N is 20000, the unlabeled sample size is 80000, the
test sample size is 20000, and the dimension p is 39.

into 20000 testing data, 20000 labeled training data, and 80000 unlabeled training data. We
perform 100 random partitions of the dataset and report the averaged classification error
on the testing set. We consider three cases where (m,n) = (20, 1000),(40, 500) and (80, 250)
respectively. The result is shown in Figure 7. It is not hard to see that the proposed semi-
supervised methods always outperform their supervised counterparts, and the superiority of
the semi-supervised method is more obvious when the labeled local sample size n is small.
While the imputation-based method DANEimp is comparable to SSDANE, the averaged
estimator DANEimp-Avg is much worse than SSDANE-Avg. This result also reveals that
naively combining imputation with DANE may not improve the training performance.

5. Concluding Remarks and Future Study

In this paper, we study the semi-supervised generalized linear model in the distributed
setup. With the assistance of the additional unlabeled data, we theoretically show that the
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proposed estimators enjoy higher statistical accuracy than their fully supervised counter-
parts. The superiority is also illustrated by numerical experiments. In the future, there are
several directions worth being explored. For example, it is interesting to study distributed
semi-supervised learning in a high-dimensional regime. We believe that the unlabeled data
can obtain a similar accuracy-enhancement effect when incorporated with the one-shot av-
eraging method (Lee et al., 2017) and the multi-round distributed sparse learning method
(Wang et al., 2017; Jordan et al., 2019). Second, while we focus on the scenario where the
model is well-specified, it is important to consider the distributed semi-supervised learn-
ing for miss-specified models (Bellec et al., 2018; Chakrabortty and Cai, 2018; Zhang and
Bradic, 2021; Deng et al., 2020; Azriel et al., 2022). Third, it will be of great importance to
explore the distributed semi-supervised ridge regression (Dobriban and Sheng, 2021, 2020;
Sheng and Dobriban, 2020). Lastly, of profound significance is the intriguing prospect of
synergistically investigating the amalgamation of research endeavors focused on distributed
training within the context of imbalanced data (see, e.g., Duan et al. (2021a,b); Chen et al.
(2023)) with our distributed semi-supervised approach.
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Appendix

The appendix consists of three parts. In Appendix A, we provide proof for the theoretical
results of SSDANE and SSDANE-Avg in Section 3.1. In Appendix B, we prove the theories
in Section 3.2, especially the rate lower bound of SSDANE for the linear model. Appendix C
is devoted to proving the normality result for the semi-supervised generalized linear model
in the single machine setting, namely the theorems in Section 3.3.

Appendix A. Proof of Theories in Section 3.1

Proof [Proof of Equation (6) ] Notice that

E
[ 1

n

∑
i∈D

{
− YiXi +Xiψ

′
(XT

i β
∗)
}]

= 0 = E
[ 1

n∗

∑
i∈H

Xiψ
′
(XT

i β
∗)− 1

n

∑
i∈D

Xiψ
′
(XT

i β
∗)
]
,

and

Cov
( 1

n

∑
i∈D

{
− YiXi +Xiψ

′
(XT

i β
∗)
}
,

1

n∗

∑
i∈H

Xiψ
′
(XT

i β
∗)− 1

n

∑
i∈D

Xiψ
′
(XT

i β
∗)
)

= 0,

we have that

Cov
(
− 1

n

∑
i∈D

YiXi +
1

n∗

∑
i∈H

Xiψ
′
(XT

i β
∗)
)

(24)

=Cov
( 1

n

∑
i∈D

{
− YiXi +Xiψ

′
(XT

i β
∗)
})

+ Cov
( 1

n∗

∑
i∈H

Xiψ
′
(XT

i β
∗)− 1

n

∑
i∈D

Xiψ
′
(XT

i β
∗)
)
.

We shall compute them respectively. For the first term, since each Xi are independent to
each other, we have that

Cov
( 1

n

∑
i∈D

{
− YiXi +Xiψ

′
(XT

i β
∗)
})

=
1

n
Cov

(
− YX +Xψ

′
(XTβ∗)

)
.

For the second term in (24), we compute that
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( 1

n∗

∑
i∈H

Xiψ
′
(XT

i β
∗)− 1

n

∑
i∈D

Xiψ
′
(XT

i β
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Xiψ
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i β
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nn∗

Cov
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Xψ′(XTβ∗)

)
.

Then (6) can be obtained by substituting the above two formulas into (24).
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Lemma 9 Given a convex loss function L(β), suppose it is second-order differentiable, and
there exist constants ρ0, r0 such that

inf
β:|β−β∗|2≤r0

inf
v∈Sp−1

vT∇2L(β)v ≥ ρ0, (25)

and r0 > 3ρ−10 |∇L(β∗)|2, then the minimizer β of L(β) satisfies that

|β − β∗|2 ≤
3

ρ0
|∇L(β∗)|2.

Proof For simplicity, we denote bn = 3ρ−10 |∇L(β∗)|2, and construct the set Θ1 = {β : |β−
β∗|2 = bn} in the parameter space. Then clearly we know that Θ1 ⊆ {β : |β − β∗|2 ≤ r0}.
We will show that L(β) > L(β∗) strictly holds uniformly for all β ∈ Θ1. To show this, we
compute that

L(β)− L(β∗)

=

∫ 1

0
(β − β∗)T∇L

{
β∗ + t(β − β∗)

}
dt

=(β − β∗)T∇L(β∗) +

∫ 1

0
(1− t)(β − β∗)T∇2L

{
β∗ + t(β − β)

}
(β − β∗)dt

≥ρ0
2
|β − β∗|22 − |∇L(β∗)|2 · |β − β∗|2

=
ρ0
2
× 3ρ−10 |∇L(β∗)|2|β − β∗|2 − |∇L(β∗)|2 · |β − β∗|2 > 0.

Then by convexity of the loss function L(β), we have that |β −β∗|2 ≤ 3
ρ0
|∇L(β∗)|2, which

completes the proof.

Lemma 10 Suppose Assumption 1 to 3 hold. Assume r = o(1), then for each t ≥ 1, there
is

inf
β:|β−β∗|2≤r

inf
v∈Sp−1

vT∇2L̃(t)(β)v ≥ ρ

2
,

holds with probability not less than 1−O((n∗)−pτ ) for some constant τ > 0.

Proof For arbitrary β satisfying |β − β|2 ≤ r, there is

vT∇2L̃(t)(β)v

=
1

n∗

∑
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ψ′′
(
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i β
)(
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)2
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{
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0
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i (β − β∗)
}(
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ψ′′
(
XT

i β
∗)XiX

T
i − E

{
ψ′′(XTβ∗)XXT

}
︸ ︷︷ ︸

T 2

]
v. (26)
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It left to bound the term |T1| and ‖T 2‖ respectively.
Bound of |T1|: From Assumption 3, It is not hard to see that

|T1| =

∣∣∣∣∣∣ 1
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0
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dt
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∣∣∣∣∣∣ .

(27)

Denote N as the 1/2-net of Sp−1, by Lemma 5.2 of Vershynin (2010) we know that |N| ≤ 5p.
Then there is
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|ṽTXi|3
∣∣∣∣∣∣+ 4 max
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Note that for each ṽ ∈ N, there is

max
ṽ∈N

E
[
exp

{(
η3/2|ṽTXi|3

)2/3}]
≤ sup
ṽ∈Sp−1

E
[
exp

{
η|ṽTXi|2

}]
≤ C0.

We know that |ṽTXi|3’s are sub-Weibull(2/3) random variables. Therefore, by Theorem
3.1 of Kuchibhotla and Chakrabortty (2022), there exist constants c3, τ > 0 such that

P
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(28)
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which tends to 0 when τ1 > 1. On the other hand, we compute that

sup
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0
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where the second line uses the elementary inequality |x|3 ≤ 1
2e
|x|. Combining (27), (28) and

(29) we have that
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Bound of ‖T 2‖: Denote N as the 1/4-net of Sp−1, by Lemma 5.2 of Vershynin (2010) we
know that |N| ≤ 9p. Then there is
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For each ṽ ∈ N, it is not hard to see that ψ′′
(
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i β
∗)(vTXi)

2 is sub-exponential random
variable. Therefore we can apply Lemma 1 of Cai and Liu (2011) and yield
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≤9p(n∗)−τ2p ≤ (n∗)−(τ2−1)p,

for some constant τ2 > 0. Substitute this bound into (30) we have that ‖T 2‖ = o(1).
Substitute the bound of |T1| and ‖T 2‖ into (26) we finally have that

vT∇2L̃(t)(β)v

≥vTE
{
ψ′′(XTβ∗)XXT

}
v − |T1| − ‖T 2‖ ≥

ρ

2
,

27



Tu, Liu, and Mao

hold with probability not less than 1 − (n∗)−(τ1−1)p − (n∗)−(τ2−1)p = 1 − O((n∗)−τp) by
taking τ = min{τ1 − 1, τ2 − 1}, which proves the lemma.

Proof [Proof of Theorem 1] For simplicity, we first consider the convergence rate of β̂
(1)

.
By Lemma 10, we know the condition (25) is sufficed with high probability. Now using
Lemma 9, we know that it is enough to bound |L̃(1)(β∗)|2. Indeed, we can compute that
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Therefore we have
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Similarly, we can show that

|T2|2 = OP

(
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√
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√
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)
. (33)
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T3 is the average of mn copies of −YX −ψ(XTβ∗)X, thus we can simply apply Lemma 1
of Cai and Liu (2011) and yield

|T3|2 = OP

(√
p log n∗

mn

)
. (34)

Plugging (32), (33) and (34) into (31) we have
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Therefore, by Lemma 9 we obtain
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Apply the above formula iteratively we can obtain Theorem 1.

Proof [Proof of Theorem 2] Since |β̂
(t−1)

− β∗|2 = OP(
√
p log n∗/(mn)), follow the same

strategy as in the proof of Theorem 1, we can show that
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For each ṽ ∈ Sp−1, we know
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∗)− Yi)ṽTXi,

which is the average of mn i.i.d. terms. Compute that

Var
[
(ψ′(XT

i β
∗)− Yi)ṽTXi

]
= c(σ)E

[
ψ′′(XTβ∗)(ṽTX)2

]
.

Therefore, by the central limit theorem, there is

√
mn

σ(ṽ)
ṽT

1

m

m∑
j=1

∇Lj(β∗)
d−→ N (0, 1),

where

{σ(ṽ)}2 = ṽTCṽ,
and C = c(σ)E

[
ψ′′(XTβ∗)XXT

]
.

Next we assume (p log n∗)2 = o(n∗) and p3 log2 n∗ = o(mn), and replace ṽ by
[
E
{
ψ′′(XTβ∗)XXT

}]−1
v,

we can obtain the asymptotic normality result for vT(β̂
(t)
− β∗).

Proof [Proof of Theorem 4] We first consider the convergence rate of β̂
(1)

Avg. For each

β̂
(1)

j = argmin L̃(1)j (β) (where j ∈ U), by Theorem 1 we know that

∣∣β̂(1)

j − β∗
∣∣
2

= OP

(√
p log n∗

mn
+ rn

√
p log n∗

n∗
+
√
pr2n

)
.

By the optimality condition, there is

0 = ∇L̃(1)j (β̂
(1)

j )

=∇Lssj (β̂
(1)

j )−∇Lssj (β̂
(0)

) +
1

m

m∑
k=1

∇Lk(β̂
(0)

)

=E
{
ψ′′(XTβ∗)XXT

}
(β̂

(1)

j − β∗) +∇Lssj (β̂
(1)

j )−∇Lssj (β∗)− E
{
ψ′′(XTβ∗)XXT

}
(β̂

(1)

j − β∗)

+∇Lssj (β∗)−∇Lssj (β̂
(0)

) +
1

m

m∑
k=1

∇Lk(β̂
(0)

)

⇒β̂
(1)

j − β∗ = −
[
E
{
ψ′′(XTβ∗)XXT

}]−1[
∇Lssj (β̂

(1)

j )−∇Lssj (β∗)− E
{
ψ′′(XTβ∗)XXT

}
(β̂

(1)

j − β∗)

+∇Lssj (β∗)−∇Lssj (β̂
(0)

) +
1

m

m∑
k=1

∇Lk(β̂
(0)

)

]
.
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Take the average over j ∈ U and take the norm on both sides, we have that∣∣∣β̂(1)

Avg − β∗
∣∣∣
2

=

∣∣∣∣∣∣ 1

|U|
∑
j∈U

β̂
(1)

j − β∗
∣∣∣∣∣∣
2

≤ρ−1
[∣∣∣ 1

|U|
∑
j∈U

{
∇Lssj (β̂

(1)

j )−∇Lssj (β∗)− E
{
ψ′′(XTβ∗)XXT

}
(β̂

(1)

j − β∗)
}∣∣∣

2

+
∣∣∣ 1

|U|
∑
j∈U

{
∇Lssj (β∗)−∇Lssj (β̂

(0)
) +∇Lj(β̂

(0)
)
}∣∣∣

2

]

≤ρ−1
[

max
j∈U

∣∣∣∇Lssj (β̂
(1)

j )−∇Lssj (β∗)− E
{
ψ′′(XTβ∗)XXT

}
(β̂

(1)

j − β∗)
∣∣∣
2︸ ︷︷ ︸

T1

+
∣∣∣ 1

|U|
∑
j∈U

{
∇Lssj (β∗)−∇Lssj (β̂

(0)
) +∇Lj(β̂

(0)
)︸ ︷︷ ︸

T 2

∣∣∣
2

]
. (35)

Following the strategy of the proof of Theorem 1, we can prove that

T1 =OP

(
max

1≤j≤m
|β̂

(1)

j − β∗|2

√
p log n∗

n∗
+
√
p
(

max
1≤j≤m

|β̂
(1)

j − β∗|2
)2)

=OP

(
p log n∗√
mnn∗

+ rn
p log n∗

n∗
+ p3/2r4n

)
,

|T 2|2 =OP

(√
p log n∗

mn
+ rn

√
p log n∗

|U|n∗
+
√
pr2n

)
.

Plug them into (35) we have that∣∣∣β̂(1)

Avg − β∗
∣∣∣
2

= OP

(√
p log n∗

mn
+ rn

p log n∗

n∗
+ rn

√
p log n∗

|U|n∗
+
√
pr2n

)
.

Then Theorem 4 can be proved by applying Theorem 4 inductively.

Appendix B. Proof of Theories in Section 3.2

Proof [Proof of Proposition 6] Notice that in the linear regression model, the canonical
link function ψ′(x) = x satisfies ψ′′′(x) = 0. Therefore, in the proof of Theorem 1, we can
obtain that∣∣∣∇Lss1 (β∗)−∇Lss1 (β̂

(0)
)− E

[
ψ′′
(
XTβ∗

)
XXT

]
(β∗ − β̂

(0)
)
∣∣∣
2

= OP

(
rn

√
p log n∗

n∗

)
∣∣∣ 1

m

m∑
j=1

∇Lj(β∗)−
1

m

m∑
j=1

∇Lj(β̂
(0)

)− E
[
ψ′′
(
XTβ∗

)
XXT

]
(β∗ − β̂

(0)
)
∣∣∣
2

= OP

(
rn

√
p log n∗

mn

)
,
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where the term
√
pr2n is eliminated. Therefore, the corollary is proved by plugging the above

bound into (31) of Theorem 1.

Proof [Proof of Proposition 7] For linear model, given the initial estimator β̂
(0)

, the one-
step SSDANE can be written explicitly as follows

β̂
(1)

= β̂
(0)
− (Σ̂

ss

1 )−1
{ 1

mn

m∑
j=1

∑
i∈Dj

XiX
T
i β̂

(0)
− 1

mn

m∑
j=1

∑
i∈Dj

YiXi

}
,

where Σ̂
ss

1 = (n∗)−1
∑

i∈H1
XiX

T
i . Then the statistical error β̂

(1)
−β∗ can be written down

explicitly as follows

β̂
(1)
− β∗

=(Σ̂
ss

1 )−1
{ 1

n∗

∑
i∈H0

XiX
T
i (β̂

(0)
− β∗)− 1

mn

m∑
j=1

∑
i∈Dj

XiX
T
i β̂

(0)
+

1

mn

m∑
j=1

∑
i∈Dj

YiXi

}

=(Σ̂
ss

1 )−1
[( 1

n∗

∑
i∈H1

XiX
T
i −

1

mn

m∑
j=1

∑
i∈Dj

XiX
T
i

)
(β̂

(0)
− β∗) +

1

mn

m∑
j=1

∑
i∈Dj

εiXi

]

=(Σ̂
ss

1 )−1

[ ∑
i∈D∗1

1

n∗

(
XiX

T
i −Σ

)
(β̂

(0)
− β∗) +

∑
i∈D1

{mn− n∗
mnn∗

(
XiX

T
i −Σ

)
(β̂

(0)
− β∗) +

1

mn
εiXi

}

−
m∑
j=2

∑
i∈Dj

1

mn

{(
XiX

T
i −Σ

)
(β̂

(0)
− β∗) + εiXi

}]
,(Σ̂

ss

1 )−1T . (36)

Since we already assume that β̂
(0)

is independent to allXi’s and εi’s, there are sum of m(n−
1) +n∗ independent, zero-mean terms in the square bracket. For notational convenience we

denote Zi =
(
XiX

T
i −Σ

)
(β̂

(0)
− β∗)/|β̂

(0)
− β∗|2 and W i = εiXi, then we have that

Cov(Zi) = Cov

XiX
T
i

β̂
(0)
− β∗

|β̂
(0)
− β∗|2

 , Cov(W i) = σ2Σ, Cov(Zi,W i) = 0.

Thus we can compute that

Cov(T )

=
n∗ − n
(n∗)2

r2nCov(Z) +
n(mn− n∗)2

(mnn∗)2
r2nCov(Z) +

n

(mn)2
Cov(W ) +

n(m− 1)

(mn)2
r2nCov(Z) +

n(m− 1)

(mn)2
Cov(W )

=

(
1

n∗
+
n∗ − 2n

mn∗n

)
r2nCov(Z) +

1

mn
Cov(W ). (37)

32



Distributed Estimation on Semi-Supervised Generalized Linear Model

Moreover, there is

E

∑
i∈D∗1

∣∣∣∣ 1

n∗
rnZi

∣∣∣∣3
2

+
∑
i∈D1

∣∣∣∣mn− n∗mnn∗
rnZi +

1

mn
W i

∣∣∣∣3
2

+
m∑
j=2

∑
i∈Dj

∣∣∣∣ 1

mn
rnZi +

1

mn
W i

∣∣∣∣3
2


≤E

∑
i∈D∗1

∣∣∣∣ 1

n∗
rnZi

∣∣∣∣3
2

+
∑
i∈D1

4

(∣∣∣∣mn− n∗mnn∗
rnZi

∣∣∣∣3
2

+

∣∣∣∣ 1

mn
W i

∣∣∣∣3
2

)
+

m∑
j=2

∑
i∈Dj

4

(∣∣∣∣ 1

mn
rnZi

∣∣∣∣3
2

+

∣∣∣∣ 1

mn
W i

∣∣∣∣3
2

)
≤
(

16

(n∗)2
+

16

(mn)2

)
r3nE

[
|Z|32

]
+

4

(mn)2
E
[
|W |32

]
≤ C0p

3/2

(
r3n

(n∗)2
+

1

(mn)2

)
,

for some constant C0 > 0. Denote T̃ = (Cov(T ))−1/2T , then we can apply multivariate
Berry-Esseen theorem (see Theorem 1.1 of Raič (2019)) and yield

∣∣∣P(T̃ ∈ S)−N (0, Ip){S}
∣∣∣ ≤ C1p

7/4

{
min

(
1√
n∗
,
(rn
√
mn)3

(n∗)2

)
+

1√
mn

}
= o(1),

for all measurable convex S ⊆ Rp. Let T = (T 1, ..., T p)
T follows p-dimensional standard

Gaussian distribution N (0, Ip), then we can apply Lemma 1 of Cai and Liu (2011) to the
i.i.d. sequence T 2

i − 1 and obtain that

P
(
|T |2 ≥

√
p

2

)
= P

(
p∑
l=1

(T 2
l − 1) ≥ −p

2

)

≥1− P

(∣∣∣ p∑
l=1

(T 2
l − 1)

∣∣∣ ≥ p

2

)
≥ 3

4
,

for sufficiently large p. Then there is

P(|T̃ | ≥
√
p/2) ≥ P(|T | ≥

√
p/2)−

∣∣∣P(|T̃ | ≥
√
p/2)− P(|T | ≥

√
p/2)

∣∣∣ ≥ 5

8
.

By assumption λmin(Cov(Z)), λmin(Cov(W )) ≥ ρ1, then from (37) we know

λmin

{
Cov(T )

}
≥ C3ρ1

(
r2n
n∗

+
1

mn

)
.

Then there is

P
(
|T 2|2 ≥ C3ρ1

(
rn√
n∗

+
1√
mn

)√
p

2

)
≥ P

(
|T 2|2 ≥

√
p

2

)
≥ 5

8
. (38)

Following the strategy, in the proof of Lemma 10 we can show that

P
(
λmin

{
(Σ̂

ss
)−1
}
≤ ρ

2

)
= P

(
λmax

{
Σ̂

ss}
≥ 2ρ−1

)
≤ 1

8
.
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Therefore by combining (38) and (36), we know that

P
(
|β̂

(1)
− β∗|2 ≥

ρ

2
C3ρ1

(
rn√
n∗

+
1√
mn

)√
p

2

)
≥P
(
|T 2|2 ≥ C3ρ1

(
rn√
n∗

+
1√
mn

)√
p

2
; λmin

{
(Σ̂

ss
)−1
}
≥ ρ

2

)
≥P
(
|T 2|2 ≥ C3ρ1

(
rn√
n∗

+
1√
mn

)√
p

2

)
− P

(
λmin

{
(Σ̂

ss
)−1
}
≤ ρ

2

)
≥5

8
− 1

8
=

1

2
,

which proves the theorem.

Appendix C. Proof of Theories in Section 3.3

Proof [Proof of Proposition 8] We first prove the convergence rate of β̂
ss

. Notice that the
semi-supervised empirical loss Lss(β) defined in (5) has the same Hessian matrix as the
surrogate loss L̃(1)(β) defined in (10). Therefore by Lemma 10, it holds that

inf
β:|β−β∗|2≤r

inf
v∈Sp−1

vT∇2Lss(β)v ≥ ρ

2
,

Then by Lemma 9, we only need to bound the term |∇Lss(β∗)|2. Note that for arbitrary
unit vector v ∈ Sp−1, there is

v∇Lss(β∗)

=− 1

n

∑
i∈D

Yiv
TXi +

1

n∗

∑
i∈H

ψ′(XT
i β
∗)vTXi

=
1

n

∑
i∈D

[
−YivTXi + E

{
ψ′(XT

i β
∗)vTXi

}]
+

1

n∗

∑
i∈H

[
ψ′(XT

i β
∗)vTXi − E

{
ψ′(XT

i β
∗)vTXi

}]
,

Denote E(X, η) = E[X2 exp(η|X|)], we compute that

E
[
−YivTXi + E

{
ψ′(XT

i β
∗)vTXi

}
, η0
]

≤ 1

η20
E
[
exp

(
2η0
∣∣− YivTXi + E

{
ψ′(XT

i β
∗)vTXi

}∣∣)]
≤ 1

η20

{
E
[
exp

(
2η0
∣∣YivTXi

∣∣)]}2

≤ 1

η20

{
E
[
exp

(
η0
∣∣Yi∣∣2) exp

(
η0
∣∣vTXi

∣∣2)]}2
≤ 1

η20
C4
0 ,

where the second line uses the elementary inequality x2 ≤ ex, the third line uses Jensen’s
inequality, and the last line uses Cauchy’s inequality. Similarly, we have that

E
[
ψ′(XT

i β
∗)vTXi − E

{
ψ′(XT

i β
∗)vTXi

}
, η0
]
≤ 1

η20
C4
0 .
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Then we can apply Lemma 1 of Cai and Liu (2011) and yield that

1

n

∑
i∈D

[
−YivTXi + E

{
ψ′(XT

i β
∗)vTXi

}]
= OP

(√
log n∗

n

)
,

1

n∗

∑
i∈H

[
ψ′(XT

i β
∗)vTXi − E

{
ψ′(XT

i β
∗)vTXi

}]
= OP

(√
log n∗

n∗

)
.

Therefore, we know that there exists a constant c1 such that

|∇Lss(β∗)|2 =

√√√√ p∑
l=1

∣∣eTl ∇Lss(β∗)∣∣2
≤c1

(√
p log n∗

n
+

√
p log n∗

n∗

)
,

with probability not less than 1 − (n∗)−τ , where τ > 0 is some positive constant and el
(where l = 1, ..., p) denotes the l-th coordinate vectors. Therefore, by Lemma 9, we know
that ∣∣∣β̂ss

− β∗
∣∣∣
2

= OP

(√
p log n∗

n
+

√
p log n∗

n∗

)
. (39)

On the other hand, by definition of β̂
ss

in (22) we have that

0 =∇Lss(β̂
ss

) = − 1

n

∑
i∈D

YiX
T
i +

1

n∗

∑
i∈H

ψ′(XT
i β̂

ss
)Xi

=− 1

n

∑
i∈D

YiX
T
i +

1

n∗

∑
i∈H

ψ′(XT
i β
∗)Xi +

1

n∗

∑
i∈H

{
ψ′(XT

i β̂
ss

)− ψ′(XT
i β
∗)
}
Xi

=− 1

n

∑
i∈D

YiX
T
i +

1

n∗

∑
i∈H

ψ′(XT
i β
∗)Xi

+
1

n∗

∑
i∈H

∫ 1

0
ψ′′
(
XT

i

{
β∗ + t(β̂

ss
− β∗)

})
XiX

T
i (β̂

ss
− β∗)dt

⇒ 1

n

∑
i∈D

YiX
T
i −

1

n∗

∑
i∈H

ψ′(XT
i β
∗)Xi (40)

=
1

n∗

∑
i∈H

∫ 1

0
(1− t)ψ′′′

(
XT

i

{
β∗ + t(β̂

ss
− β∗)

})
Xi

{
XT

i (β̂
ss
− β∗)

}2
dt

+
[ 1

n∗

∑
i∈H

ψ′′(XT
i β
∗)XiX

T
i − E

{
ψ′′(XTβ∗)XXT

}]
(β̂

ss
− β∗) + E

{
ψ′′(XTβ∗)XXT

}
(β̂

ss
− β∗).
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Using the results in the proof of Lemma 10, we know that∣∣∣∣∣ 1

n∗

∑
i∈H

∫ 1

0
(1− t)ψ′′′

(
XT

i

{
β∗ + t(β̂

ss
− β∗)

})
Xi

{
XT

i (β̂
ss
− β∗)

}2
dt

∣∣∣∣∣
2

=OP

(√
p|β̂

ss
− β∗|22

)
= OP

(
p3/2 log n∗

n

)
,∣∣∣∣∣[ 1

n∗

∑
i∈H

ψ′′(XT
i β
∗)XiX

T
i − E

{
ψ′′(XTβ∗)XXT

}]
(β̂

ss
− β∗)

∣∣∣∣∣
2

=OP

(√
p log n∗

n∗
|β̂

ss
− β∗|2

)
= OP

(
p log n∗√
nn∗

)
.

Substitute these bounds into (40), we have that

E
{
ψ′′(XTβ∗)XXT

}
(β̂

ss
− β∗) =

1

n

∑
i∈D

YiX
T
i −

1

n∗

∑
i∈H

ψ′(XT
i β
∗)Xi +OP

(
p3/2 log n∗

n

)

⇒β̂
ss
− β∗ =

[
E
{
ψ′′(XTβ∗)XXT

}]−1∇Lss(β∗) +OP

(
p3/2 log n∗

n

)
.

(41)
For each ṽ ∈ Sp−1, we know

ṽT∇Lss(β∗) =− 1

n

∑
i∈D

Yiṽ
TXi +

1

n∗

∑
i∈H

ψ′(XT
i β
∗)ṽTXi

=
∑
i∈D

[
− 1

n
Yiṽ

TXi +
1

n∗
ψ′(XT

i β
∗)ṽTXi +

n∗ − n
nn∗

E
{
ψ′(XT

i β
∗)ṽTXi

}]
+
∑
i∈D∗

[
1

n∗
ψ′(XT

i β
∗)ṽTXi −

1

n∗
E
{
ψ′(XT

i β
∗)ṽTXi

}]
,

which is the sum of n∗ independent, zero-mean random variables. Compute that

Var

[
− 1

n
Yiṽ

TXi +
1

n∗
ψ′(XT

i β
∗)ṽTXi +

n∗ − n
nn∗

E
{
ψ′(XT

i β
∗)ṽTXi

}]
=

1

n2
Var

[
Yiṽ

TXi − ψ′(XT
i β
∗)ṽTXi

]
+

(n∗ − n)2

(nn∗)2
Var

[
ψ′(XT

i β
∗)ṽTXi − E

{
ψ′(XT

i β
∗)ṽTXi

}]
=
c(σ)

n2
E
[
ψ′′(XTβ∗)(ṽTX)2

]
+

(n∗ − n)2

(nn∗)2
Var

[
ψ′(XTβ∗)ṽTX

]
,

Var

[
1

n∗
ψ′(XT

i β
∗)ṽTXi −

1

n∗
E
{
ψ′(XT

i β
∗)ṽTXi

}]
=

1

(n∗)2
Var

[
ψ′(XTβ∗)ṽTX

]
.

Since from Assumption 2 we know both ṽTXi and ψ′(XT
i β
∗) are sub-Gaussian random vari-

ables, we know that the Lindeberg condition for central limit theorem is sufficed. Therefore,
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by central limit theorem (see, e.g., Theorem 9.1.1 of Chow and Teicher (2012)), we have
that √

n

σ(ṽ)
ṽT∇Lss(β∗) d−→ N (0, 1), (42)

where{
σ(ṽ)

}2
=n2Var

[
− 1

n
Yiṽ

TXi +
1

n∗
ψ′(XT

i β
∗)ṽTXi +

n∗ − n
nn∗

E
{
ψ′(XT

i β
∗)ṽTXi

}]
+ (n∗ − n)nVar

[
1

n∗
ψ′(XT

i β
∗)ṽTXi −

1

n∗
E
{
ψ′(XT

i β
∗)ṽTXi

}]
=c(σ)E

[
ψ′′(XTβ∗)(ṽTX)2

]
+
n∗ − n
n∗

Var
[
ψ′(XTβ∗)ṽTX

]
.

We can also write it in the following way

{
σ(ṽ)

}2
=ṽT

(
C +

n∗ − n
n∗

Css
)
ṽ

where C =c(σ)E
[
ψ′′(XTβ∗)XXT

]
,

Css =Cov
{
ψ′(XTβ∗)X

}
.

Next we assume p3/2 log n∗ = o(n), and replace ṽ by
[
E
{
ψ′′(XTβ∗)XXT

}]−1
v, we can

obtain the asymptotic normality result for vT(β̂
ss
− β∗).
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