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Abstract

Search algorithms for bandit problems are applicable in materials discovery. However, ob-
jectives of the conventional bandit problem are different from those of materials discovery.
The conventional bandit problem aims to maximize the total rewards, whereas materials
discovery aims to achieve breakthroughs in material properties. The max K-armed bandit
(MKB) problem, which aims to acquire the single best reward, matches with the discov-
ery tasks better than the conventional bandit. However, typical MKB algorithms are not
directly applicable to materials discovery due to some difficulties. The typical algorithms
have many hyperparameters and some difficulty in the directly implementation for the ma-
terials discovery. Thus, we propose a new MKB algorithm using an upper confidence
bound of expected improvement of the best reward. This approach is guaranteed to be
asymptotic to greedy oracles, which does not depend on the time horizon. In addition,
compared with other MKB algorithms, the proposed algorithm has only one hyperparam-
eter, which is advantageous in materials discovery. We applied the proposed algorithm to
synthetic problems and molecular-design demonstrations using a Monte Carlo tree search.
According to the results, the proposed algorithm stably outperformed other bandit algo-
rithms in the late stage of the search process, unless the optimal arm coincides in the MKB
and conventional bandit settings.

Keywords: Max K-armed bandit problem, Confidence bounds, Monte Carlo tree search,
Molecular design, Greedy oracle

1. Introduction

Materials discovery integrated with machine learning is a field with immense growth po-
tential. Material property predictions using regression and clustering methods (Liu et al.,
2017; Meredig et al., 2018; Butler et al., 2018; Ramprasad et al., 2017; Pilania et al., 2013)
are recognized as a beneficial approach in the development workplace. Materials discovery
using deep learning (Agrawal and Choudhary, 2019; Jha et al., 2018), transfer learning (Jha
et al., 2019; Yamada et al., 2019), and generative models (Sanchez-Lengeling et al., 2017;
Sanchez-Lengeling and Aspuru-Guzik, 2018) is actively under investigation in advanced re-
searches. Autonomous searches based on Bayesian optimization (Ueno et al., 2016; Kusne
et al., 2020), Monte Carlo tree search (MCTS) (M. Dieb et al., 2017; Yang et al., 2017; Ju
et al., 2018; Segler et al., 2018; Kiyohara and Mizoguchi, 2018; M. Dieb et al., 2018; Ka-
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jita et al., 2020; Kikkawa et al., 2020; Patra et al., 2020), and reinforcement learning (RL)
(Sanchez-Lengeling et al., 2017; Popova et al., 2018; Olivecrona et al., 2017) have also been
investigated to accelerate materials discovery. Active learning approaches (Kusne et al.,
2020; Del Rosario et al., 2020) and the effective use of failed experiments (Raccuglia et al.,
2016) are also important for overcoming the limitations of data generation in materials
science.

Finding novel materials with record-breaking properties of interest is one of the goals of
materials discovery. However, the guiding principles of MCTS and RL seem to differ from
the goal of materials discovery because these approaches mainly focus on maximizing the
total reward (Auer et al., 2002; Kocsis and Szepesvári, 2006; Browne et al., 2012; Sutton
and Barto, 2018) rather than discovering a record-breaking material property. Therefore,
these approaches tend to avoid selections with high failure rates even though those could
lead to a few great breakthroughs. Because failure is often a prerequisite for success, these
approaches are not always optimal for achieving a significant discovery.

The max K-armed bandit (MKB) problem (Cicirello and Smith, 2005), also called the
extreme bandit (Carpentier and Valko, 2014) or the max bandit (David and Shimkin, 2016),
is a promising problem setting for materials discovery. In the MKB problem, a player aims
to maximize the single best reward from a slot with K arms instead of the total reward in
the conventional bandit problem (Lai and Robbins, 1985). Owing to these modifications,
the algorithms for the MKB problem can explore the adventurous arm rather than the
stable arm.

Several algorithms have been proposed for the MKB problem (Carpentier and Valko,
2014; David and Shimkin, 2016; Streeter and Smith, 2006b; Achab et al., 2017; Streeter
and Smith, 2006a; Baudry et al., 2022; Bhatt et al., 2022). However, their practical ap-
plications in materials discovery are limited. Some of them consider the time horizon T
as a hyperparameter, even though their applications for MCTS are associated with many
drawbacks. Other methods involve many hyperparameters depending on unknown reward
distributions. This requires a time-consuming parameter tuning, which is extremely costly
for materials discovery. To overcome these difficulties, we propose an MKB algorithm with
one hyperparameter that employs an upper confidence bound (UCB) of the expected im-
provement (EI) of the maximum reward as the selection index of the arm. We apply this
algorithm to synthetic problems and demonstrations of materials discovery using MCTS.

The primary contributions of this study are as follows:

1. We propose MKB algorithms by introducing the UCB of EI of the best reward1,
which has only one hyperparameter to control the balance between exploration and
exploitation.

2. We demonstrate that the MCTS approach based on the MKB algorithm is effective
for materials discovery than other MCTS algorithms based on the conventional bandit
algorithm.

3. We prove that asymptotically optimal MKB algorithms can be generated using the
UCB of EI of the best reward.

1. An algorithm is based on a tentative value of the UCB of the EI.
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4. We propose a time-independent oracle named Kikkawa’s greedy oracle. This oracle
makes it possible to discuss the MKB problem in the almost same manner as the
conventional bandit problem.

5. To the best of our knowledge, this is the first study to actually apply the MKB
algorithm to materials discovery.

The remainder of this paper is structured as follows. Section 2 describes the related
work of the MKB problem, materials discovery using MCTS, and related algorithms. After
that, we define some terms and representations in Section 3. In Section 4, we describe
the idea to create an MKB algorithm. In the following Section 5, the derivation of the
proposed algorithm is presented. Section 6 demonstrates the experiments conducted for
comparing the proposed algorithm with other bandit algorithms. In Section 7, we discuss
the subtleties of the MKB problem and theoretical aspect of the role of the UCB of EI for
the MKB problem. Finally, Section 8 presents our conclusions and discussions on the future
outlook of the proposed algorithm.

2. Related Work

In this section, we first describe the related work of the MKB problem, materials discovery
using MCTS, and related algorithms.

2.1 Max K-armed bandit problem

The MKB problem is expressed as a policy-decision problem that maximizes the single best
reward maxt∈[T ] rk(t)(t), where [T ] := {1, 2, . . . , T}, rk(t) is the reward from the k-th arm
at time t with a time-independent distribution fk(r), and k(t) is the selected arm index
at time t determined based on the policy to be tuned (Cicirello and Smith, 2005). This
is a simple variant of the conventional bandit problem, which aims to maximize the total
reward

∑
t∈[T ] rk(t)(t) (Lai and Robbins, 1985).

The MKB problem was first proposed by Cicirello and Smith (2005), who derived the
optimal allocation order for this problem with the Gumbel-type reward distribution. The
following year, Streeter and Smith (2006a) proposed an asymptotically optimal algorithm
using the explore-then-commit (ETC) approach. They also proposed a UCB algorithm for
the MKB problem, called ThresholdAscent, in the same year (Streeter and Smith, 2006b).
This algorithm used a UCB of E[1[rk > rs-th]] as the selection index, where rs-th was the
s-th maximum of observed rewards.

The next stream of the algorithm development for the MKB problem was undertaken
by Carpentier and Valko (2014). They estimated a finite-time upper bound of E[rmax]
assuming the reward distribution as the second-order Pareto distribution and proposed
ExtremeHunter algorithm based on it. Achab et al. (2017) proposed the ETC version of
ExtremeHunter, and they also proposed a simple algorithm, denoted RobustUCBMax in this
paper. The RobustUCBMax used a robust UCB (Bubeck et al., 2013) of E[rk1[rk > u]],
where u was a threshold parameter. A probably approximately correct (PAC) approach
for the MKB problem called Max-CB was discussed theoretically by David and Shimkin
(2016).
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Recently, distribution-free (DF) approaches were used to create new MKB algorithms.
Bhatt et al. (2022) proposed Max-Median algorithm. In their algorithm, the order statistic,
which estimates the median of maxima in conceivable subsets of observed rewards, was
adopted as the selection index. Baudry et al. (2022) also employed the quantile of maxima
(QoMax) as an extension of the median of maxima, and developed ETC algorithm and
subsampling dueling algorithm (SDA) using QoMax, which was directly calculated from
the subsets of observed rewards.

Here, we summarize the features of the MKB algorithms in Table 1. Additionally, we
show the main target of these algorithms in this table. The MKB algorithms have not been
applied for materials discovery in the previous studies, although it was discussed by David
and Shimkin (2016).

Table 1: MKB algorithms. The term “Anytime” refers to algorithms that do not employ
T as a hyperparameter.

Algorithm Approach Anytime # of parameters Target

MaxSearch (this work) UCB yes 1 synthetic problem,
materials discovery

asymptotically
algorithm

ETC no 2 -

ThresholdAscent UCB no 2 scheduling
ExtremeHunter finite-time

upper bound
no 5 synthetic problems,

traffic analysis
ExtremeETC ETC no 5 synthetic problem
RobustUCBMax UCB yes 3 synthetic problem
Max-CB PAC yes 2 -
MaxMedian DF yes 2 synthetic problem
QoMax-ETC DF-ETC no 3 synthetic problem
QoMax-SDA DF-SDA yes 3 synthetic problem

Some researchers also contributed theoretically. Cicirello and Smith (2005) stated that
in the case of the MKB problem with the Gumbel-type reward distributions, the optimal
algorithm should sample the observed best arm at a rate increasing double exponentially
relative to the other arms. Carpentier and Valko (2014) introduced an expected regret,
called extreme regret, for the MKB problem. They also proposed an algorithm where the
regret had o(E

[
maxt∈[T ] rk(t)

]
). Although these theoretical developments were traced to

the analogies of the conventional bandit problem, Nishihara et al. (2016) proved that no
policy is guaranteed to asymptotically approach the oracle used by Carpentier and Valko
(2014) in some settings. Nishihara et al. (2016) also pointed out some other subtleties on
the MKB problem and proposed an oracle using EI although they does not analyze it much.

2.2 Materials discovery using Monte Carlo tree search

There are several studies relating to materials discovery using MCTS (M. Dieb et al., 2017;
Yang et al., 2017; Ju et al., 2018; Segler et al., 2018; Kiyohara and Mizoguchi, 2018; M. Dieb
et al., 2018; Kajita et al., 2020; Kikkawa et al., 2020; Patra et al., 2020). M. Dieb et al.
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(2017), in the pioneering work, compiled Si-Ge interfacial conformations into binaries and
optimized them to maximize the thermal conductance using MCTS. Ju et al. (2018) also
optimized the interface roughness by ternary embedding. The optimizations of the grain
boundary (Kiyohara and Mizoguchi, 2018), doping (M. Dieb et al., 2018), and chemical
syntheses (Segler et al., 2018; Patra et al., 2020) have also been investigated.

Yang et al. (2017) applied MCTS to the optimization of chemical structures. They
introduced a search tree in which nodes correspond to the simplified molecular-input line-
entry system (SMILES) characters (Weininger, 1988), e.g., “C”, “O”, “(”, and “)”. Because
the SMILES grammar can express most of molecules, the chemical-structure optimization is
regarded as a string optimization in this approach. They showed that the MCTS approach
outperformed other approaches in the SMILES search.

The MCTS approach using SMILES was employed in subsequent studies. Kajita et al.
(2020) introduced fragments of SMILES, such as “CC” and “CO” to restrict the search
space of chemical structures. In their study, they attempted 5,500 evaluations 10 times
using molecular dynamics (MD) simulations in a search run. They also confirmed the
properties of the molecules with high rewards by synthetic experiments. Kikkawa et al.
(2020) improved the flexibility of the restriction by introducing rule-based grammar into
the search tree using a maze game. They also evaluated several thousand molecules in a
search run using MD simulations.

2.3 Other algorithms

The application of the single-player MCTS (Schadd et al., 2008) for materials discovery has
also been considered. In this approach, a variance-dependent term is empirically added to
the selection index of the UCB. Herein, we denote the bandit algorithm using this modified
index spUCB.

We note that the best-arm identification, such as the UCBE algorithm (Audibert et al.,
2010), is different from the MKB algorithm. The best-arm identification aims to find the
arm with the maximum “expectation” reward not the “single” maximum through a search
run. The algorithms based on the best-arm identification barely select arms with a low
expectation reward even if the arm affords a high reward at low rates.

3. Definitions

The definitions used in this section through Section 5 are listed as follows:

Definition 1 (Bandit problem) The K-armed bandit problem, or simply bandit problem,
is a problem to maximize (minimize) some objective

G
[
{k(t)}t∈[T ] ; {rk(t)}k∈[K],t∈[T ]

]
(1)

in a selection game with K arms during time horizon T , where k(t), t ∈ [T ] is a player’s
selection which should be optimized. The arm k ∈ [K] returns a reward rk(t), t ∈ [T ] at
time t, following unknown time-independent reward distribution fk(r). A player also does
not know T in the “anytime” setting. We usually omit the dependency of G on k(t) and
rk(t), k ∈ [K], and t ∈ [T ].
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Definition 2 (Conventional bandit problem) The conventional bandit problem is a ban-
dit problem to maximize the total reward

Gsum
[
{k(t)}t∈[T ]

]
:=
∑
t∈[T ]

rk(t)(t). (2)

Definition 3 (MKB problem) The MKB problem is a bandit problem to maximize the
single maximum reward

Gmax
[
{k(t)}t∈[T ]

]
:= max

t∈[T ]
rk(t)(t). (3)

Definition 4 (EI) In the bandit problem, the EI of arm k at time τ ≤ T is defined as

EI [k, τ ;G] := Efk
[
G
[
{k̃(t)}t∈[τ ]

]]
− Efk

[
G
[
{k(t)}t∈[τ−1]

]]
, (4)

where k̃(t) = k(t) when t ∈ [τ − 1] and k̃(t) = k when t = τ .

Definition 5 (Complementary error function)

erfc(x) :=
2

π

∫ ∞
x

exp(−x2)dx. (5)

Definition 6 (Integral of erfc(x) (Olver et al., 2010))

ierfc(x) :=

∫ ∞
x

erfc(x)dx =
1√
π

exp(−x2)− x erfc(x). (6)

Definition 7 (Sub-gaussian) A distribution f(r) is called a sub-gaussian distribution
when ∃m ∈ R and ∃s ∈ R+, such that

Pf [|r| < u] ≤ U(u;m, s2), (7)

where

U(r;m, s2) := 2 exp

[
−(r −m)2

2s2

]
. (8)

The m and s2 are called the mean and variance proxies, respectively.

Definition 8

I(r;m, s2) :=

∫ ∞
r

U(u;m, s2)du =
√

2πs2 erfc

[
r −m√

2s2

]
. (9)

Definition 9 (Tentative upper bound) The symbol / means that the right value is a
tentative value of the upper bound of the left value.

Definition 10 (Sub-exponential) A distribution g(x) is called a sub-exponential when
∃b ≥ 0, such that

Pg(x){x ≥ u} ≤ 2 exp
(
−u
b

)
. (10)
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4. Our Concept

Our main claim in this article is the effectiveness of Algorithm 1 which uses a UCB of EI of
the single best reward as the selection index. We first show the reasonability of the use of
a UCB of EI for the bandit algorithm by taking the conventional UCB (Auer et al., 2002;
Bubeck et al., 2013) as an example. This example is intuitively clear although it is not
rigorous. We provide a more theoretical discussion in Section 7. We also show in Lemmas
13 and 14 that the EI of the single best reward can be calculated from a survival function
of fk(r). The substantial value is estimated in Theorem 16 in the next section.

In the conventional bandit problem, the EI becomes the expected reward as shown in
the following lemma.

Lemma 11 (EI of conventional bandit problem) In the conventional bandit problem,

EI [k, τ ;Gsum] = Efk [r]. (11)

Based on this lemma, we can consider that the conventional UCB algorithm (Auer et al.,
2002) uses a UCB of EI[k, τ ;Gsum] as a selection index. This relation of the conventional
UCB and EI implies that the same approach is valid in the MKB problem as follows.

Theorem 12 (MaxSearch strategy) Let zk := z(k, R(τ − 1); Gmax) be a UCB of
EI[k, τ ;Gmax], where R(τ) :=

{
{k(t), rk(t)(t)}

}
t∈τ is the set of the pairs of the selected arm

ids and rewards previously played and obtained. The strategy which selects

argmax
k∈[K]

z(k,R(τ − 1);Gmax) (12)

in each selection (Algorithm 1) is an asymptotically optimal approach in the MKB bandit
problem.

Proof See Section 7.

Algorithm 1 MaxSearch

Input: number of arms K, current time τ , and previous records R(τ − 1).
Output: selected arm index k̂.
1: for each k ∈ [K] do
2: calculate zk = z(k,R(τ − 1);Gmax)
3: end for
4: k̂ ← argmax

k∈[K]
zk

5: return k̂

Theorem 12 does not state the explicit form of z(k,R(τ − 1);Gmax) . Therefore, we
should estimate it to use Algorithm 1. The lemmas are footholds for the estimation.

Lemma 13 (EI of MKB problem) In the MKB problem, let rmax := maxt∈[τ−1] rk(t)(t)
be given. Then,

EI[k, τ ;Gmax] = Efk
[
max{rk(t)(t), rmax}

]
− rmax. (13)
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Lemma 14 (EI and survival function) Let r be an independent identical distributed
(i.i.d.) random variable following f(r) and r0 be given. Then,

Ef [max {r, r0}]− r0 =

∫ ∞
r0

S(u)du, (14)

where

S(r) :=

∫ ∞
r

f(u)du (15)

is the survival function of f(r).

Proof

Ef [max {r, r0}] =

∫ r0

−∞
r0f(r)dr +

∫ ∞
r0

rf(r)dr

=

∫ r0

−∞
r0f(r)dr +

∫ ∞
r0

∫ r

0
duf(r)dr

=

∫ r0

−∞
r0f(r)dr +

∫ r0

0
du

∫ ∞
r0

f(r)dr +

∫ ∞
r0

du

∫ ∞
u

f(r)dr

= r0 +

∫ ∞
r0

S(u)du.

(16)

Here, in switching the order of the integration, we used

r0 ≤ r ∩ 0 ≤ u ≤ r ⇔ (0 ≤ u ≤ r0 ∩ r0 ≤ r) ∪ (r0 ≤ u ∩ u ≤ r). (17)

Lemma 13 assumes rmax given. It is no problem in the implementation because rmax can
be recorded on a O(1) memory. Lemma 14 says that the EI in Lemma 13 can be calculated
from the survival function of the reward distribution. Because of this, the remained work to
obtain the selection index is the estimation of a substantial form of a UCB of

∫∞
rmax Sk(r)dr

with some assumption for the reward distribution.

5. Estimation for Selection Index

In this section, we derive two concrete forms of the UCB of EI. One is derived strictly
under Gaussian reward settings, and the other is derived approximately under sub-gaussian
reward settings. As will be shown in the next section, the former appears to better match
the tasks of materials discovery. However, the assumption for the reward distribution in
the latter approach is looser than that in the former. Because the material properties of
different materials groups are sometimes bounded do not lie on a continuum, the latter
might be preferable in some cases of practical materials discovery.

5.1 Selection Index under Gaussian Reward Settings

Under Gaussian reward settings, the reward distributions are written as

fk(r) = N (r;µk, σ
2
k), (18)
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where N (r;µ, σ2) is a Gaussian distribution with mean µ and variance σ2. In this case, the
confidence interval of

∫∞
r Sk(u)du is given as follows:

Proposition 15 (Confidence interval of
∫∞
r S(u)du) Let f(r) be a Gaussian distribu-

tion with mean µ and variance σ2. Let S(r) be a survival function of f(r) and let ri, i ∈ [n]
be i.i.d. Gaussian random variables following f(r). We then have,√

σ̂2−
2

ierfc

r − µ̂−√
2σ̂2−

 ≤ ∫ ∞
r

S(u)du ≤

√
σ̂2+
2

ierfc

r − µ̂+√
2σ̂2+

 (19)

with confidential level 1− α, where

µ̂± := µ̄± tn−1,1−α
2

σ̄√
n
, σ̂2± :=

(n− 1)σ̄2

χ2
n−1, 1

2
∓ 1−α

2

, (20)

µ̄ :=
1

n

n∑
i=1

ri, σ̄2 :=
1

n− 1

n∑
i=1

(ri − µ̄)2. (21)

Here, tn,p and χ2
n,p are the p-quantiles of t and χ2 distributions, respectively.

Proof The function ∫ ∞
r

S(u)du =

√
σ2

2
ierfc

(
r − µ√

2σ2

)
(22)

is a monotonically increasing function of µ and σ2. Therefore, its confidence interval can
be simply obtained by substituting the lower and upper confidence bounds µ̂− ≤ µ ≤ µ̂+
and σ̂2− ≤ σ2 ≤ σ̂2+ (Pishro-Nik, 2014) into the function.

From this proposition and Theorem 12, the selection index is obtained as

zk =

√
σ̂2k
2

ierfc

r − µ̂k√
2σ̂2k

 , (23)

µ̂k = µ̄k + tnk−1,1−α2
σ̄k√
nk
, σ̂2k =

(nk − 1)σ̄2k
χ2
nk−1,α2

, (24)

µ̄k =
1

nk

∑
k(t)=k,
t∈[τ−1]

rk(t)(t), σ̄2k =
1

nk − 1

∑
k(t)=k,
t∈[τ−1]

(rk(t)(t)− µ̄k)2, (25)

where nk is the number that the arm k is selected previously. The summations in the
calculation of µ̄k and σ̄2k are also performed only when the arm k is selected. The parameter
α, which determines the balance between exploration and exploitation, is determined as

α = ν−c
2
,where ν =

∑
k∈[K]

nk. (26)
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This value, usually called the allocation order, is consistent with the optimal order of the
conventional bandit problem (Auer et al., 2002). However, it is inconsistent with the double
exponential order, which is optimal in the MKB with Gumbel-type reward distributions
(Cicirello and Smith, 2005). Considering the uncertainty of the MKB problem discussed in
Section 7, the optimal allocation order will be explored in future work. Equation (23) is
numerically calculated using Algorithm 2. In the present experiments, we set c = 1.

Algorithm 2 Selection index under Gaussian settings

Input: total number of selections previously performed ν, number of times the target arm
is selected n, sum of the rewards obtained from the target arm R, sum of the square
rewards obtained from the target arm Q, the maximum reward obtained until the
current time rmax, and the hyperparameter c.

Output: selection index z.
1: if n > 1 then
2: µ̄← R/n
3: σ̄2 ← (Q− nµ̄2)/(n− 1)
4: α← ν−c

2

5: µ̂← µ̄+ tn−1,1−α/2
√
σ̄2/n

6: σ̂2 ← (n− 1)σ̄2/χ2
n−1,α/2

7: z ←
√
σ̂2/2 ierfc

[
(rmax − µ̂)/

√
2σ̂2
]

8: else
9: z ←∞

10: end if
11: return z

5.2 Selection Index under Sub-gaussian Reward Settings

Employing the sub-gaussian assumption in the reward distributions, we have∫ ∞
r

Sk(u)du ≤ I(r;mk, s
2
k). (27)

Therefore, we can use a UCB of I(rmax;m, s2) as the selection index . We could only
estimate a tentative value of this UCB as follows:

Proposition 16 (UCB of I(r;m, s2)) Let f(r) be a sub-gaussian distribution with mean
proxy m and variance proxy s2. Let S(r) be a survival function of f(r). Let ri, i ∈ [n] be
i.i.d. sub-gaussian random variables following f(r). Then,

I(r;m, s2) / I(r; m̂, ŝ2) (28)

with the confidential level 0 < 1−α < 1− exp[−(
√

2−
√

2− ln 2)2n], or almost equivalently
n > −13.613 lnα > 0, where

m̂ :=
1

n

n∑
i=1

ri, (29)
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ŝ2 :=
1

2[ln 2− γ(α, n)]

(
1

n

n∑
i=1

r2i − m̂2

)
, (30)

and

γ(α, n) :=
lnα

n
+ 2

√
−2 lnα

n
. (31)

This proposition is weak because it states only a tentative value. However, Algorithm 1
with the selection index calculated from Algorithm 3, which is based on Proposition 16,
performed well as shown in Section 6.

Algorithm 3 Selection index under sub-gaussian settings

Input: total number of selections previously performed ν, number of times the target arm
is selected n, sum of the rewards obtained from the target arm R, sum of the square
rewards obtained from the target arm Q, the maximum reward obtained until the
current time rmax, and the hyperparameter c.

Output: selection index z.
1: if n = 0 or ν < 2 then
2: z ←∞
3: else
4: β ← c

√
(ln ν)/n

5: γ ← −β2 + 2
√

2β
6: if γ > ln 2 then
7: z ←∞
8: else
9: m̂← R/n

10: ŝ2 ← (Q/n− m̂2)/[2(ln 2− γ)]

11: z ←
√

2πŝ2 erfc
[
(rmax − m̂)/

√
2ŝ2
]

12: end if
13: end if
14: return z

The reason for the weakness of Proposition 16 is that the sub-gaussian assumption lacks
an upper bound of s2(Lemma 18). We alternatively use a lower bound of s2 in this lemma
to derive Proposition 16. The term ”tentative” represents the theoretical inauthenticity of
this treatment. This alternative is valid only if the lower bound captures the characteristics
of the tail distributions, but the assumption appears to be reasonable from the results in
Section 6. The derivation of Proposition 16 is based on Bernstein’s inequality in Proposition
20 because the lower bound of s2 contains the expected square value of the reward. The
details are given in the following subsections.

5.2.1 Sub-Gaussian assumption

Using the sub-gaussian assumption, a UCB of I(r;m, s2) is given by the following conceptual
lemma.

11
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Lemma 17 (UCB of I(r;m, s2)) Consider n samples {ri}, i ∈ [n] taken from the sub-
gaussian distribution f(r) with mean proxy m and variance proxy s2. Let m̂ and ŝ2 be
UCBs of the mean and variance proxies with the confidence level 0 < 1−α < 1, respectively.
Then,

I(r;m, s2) ≤ I(r; m̂, ŝ2) (32)

with the confidence level 1− α, when r ≥ m.

Proof With the confidence level 1 − α, m ≤ m̂ and s2 ≤ ŝ2. I(m;m, s2) ≤ I(m; m̂, ŝ2).
I(r;m, s2) is monotonically decreasing for r and increasing for m and s2. Then, I(r;m, s2) ≤
I(r; m̂, ŝ2) when r ≥ m.

In this lemma, UCBs denoted as m̂ and ŝ2 are virtual. Thus, we represent it using the term
“conceptual”. Unfortunately, as the following lemma indicates, even the upper bound of s2

cannot be determined under the sub-gaussian assumption.

Lemma 18 (Bounds on s2) Let f(r) is a sub-gaussian with mean proxy m and variance
proxy s2. Then,

2s2 ≥
Ef [(r −m)2]

ln 2
. (33)

There are no upper bounds on s2.

Proof Lower bound: As an equivalent condition to the sub-gaussian on Definition 7, the
following Orlicz condition is established (Vershynin, 2018).

Ef
[
exp

[
(r −m)2

2s2

]]
≤ 2. (34)

Applying Jensen’s inequality to this condition, we obtain exp
[
Ef [(r −m)2]/(2s2)

]
≤ 2.

Then, 2s2 ≥ Ef [(r −m)2]/ ln 2.
No upper bound: From the sub-gaussian definition, f(r) ≤ U(r;m, s2). Then, f(r) ≤

U(r;m, ŝ2), where ŝ2 > s2. Therefore, f(r) can be considered as a sub-gaussian with
variance proxy ŝ2 > s2. It means no upper bound of s2.

Because of this lemma, we gave up deriving a rigor UCB of s2. Alternatively, we decided
to use a UCB of the lower bound Ef [(r −m)2]/ ln 2 as a tentative UCB.

5.2.2 Derivation for Theorem 16

To estimate a UCB of Ef [(r −m)2]/ ln 2, we first indicate the sub-exponential property of
(r −m)2 in Lemma 19. A UCB of the expected value of the sub-exponential distribution
is known to be estimated from Bernstein’s inequality (Vershynin, 2018). Therefore, we
estimate a UCB of Ef [(r−m)2]/ ln 2 using a variant of Bernstein’s inequality in Proposition
20. This result gives a tentative value of the UCB of s2 in Lemma 22. Then, applying Lemma
22 to Lemma 17, we obtain Proposition 16.

As is shown in the following lemma, (r −m)2 becomes sub-exponential under the sub-
gaussian assumption.

Lemma 19 (Sub-exponential property of square reward) Let r be an i.i.d. random
variable following sub-gaussian f(r) with variance proxy s2. Then, ∀m ∈ R, x = (r −m)2

follows a sub-exponential with parameter b = 2s2.

12
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Proof Let r be an i.i.d. random variable following a sub-gaussian f(r) with mean proxy
m and variance proxy s2. Let g(x) be the distribution of x = (r −m)2. Then, ∀u ≥ 0,

Pg{x ≥ u} = Pf{(r −m)2 ≥ u} = Pf{|r −m| ≥
√
u}

≤ 2 exp
(
− u

2s2

)
= 2 exp

(
−u
b

)
,

(35)

where b = 2s2. We used the definition of sub-exponential property for the last inequality.

Using the sub-exponential property of (r −m)2, a UCB of Ef [(r −m)2] can be estimated
from a variant of Bernstein’s inequality.

Proposition 20 (Bernstein’s inequality) Let g(x) be a sub-exponential distribution with
parameter b. Let x1, x2, . . . , xn > 0 be i.i.d. sub-exponential random variables following
g(x). Then,

Pg

{
1

n

n∑
i=1

xi − Eg [x] ≥ u

}
≤ exp (2

√
2nw+ − nw2

+ − 2n), (36)

and

Pg

{
Eg [x]− 1

n

n∑
i=1

xi ≥ u

}
≤
{

exp (2
√

2nw− − nw2
− − 2n) 0 ≤ u < 3b/2

exp
[
−
(
ub−1 + 1

)
n
]

3b/2 ≤ u , (37)

where u ≥ 0 and w± :=
√
±ub−1 + 2.

The proof is presented in Appendix A. From Lemma 19 and Proposition 20, a UCB of
Ef [(r −m)2] is given as follows:

Corollary 21 (Confidence bounds of Ef [(r −m)2]) Consider n samples {ri}i∈[n] taken
from the sub-gaussian distribution f(r) with mean proxy m and variance proxy s2. Then,

1

n

n∑
i=1

(ri −m)2 − γ+b ≤ Ef
[
(r −m)2

]
≤ 1

n

n∑
i=1

(ri −m)2 + γ−b, (38)

when γ+ := β2 + 2
√

2β and

γ− :=

{
−β2 + 2

√
2β 0 < β < 1/

√
2

1 + β2 1/
√

2 ≤ β,

with a confidence level of 0 < 1− α < 1, where β :=
√
− lnα/n and b := 2s2.

Using this corollary, we obtain a tentative UCB of s2 as follows:

Lemma 22 (Tentative UCB of s2) Consider n samples {ri}i∈[n] taken from the sub-
gaussian distribution f(r) with mean proxy m and variance proxy s2. Then,

s2 /
1

2n(ln 2− γ)

n∑
i=1

(ri −m)2 (39)

with the confidence level 0 < 1− α < 1− exp[−(
√

2−
√

2− ln 2)2n], or almost equivalently
n > −13.613 lnα > 0. γ := −β2 + 2

√
2β, where β :=

√
− lnα/n.
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Proof Substituting 2s2 ln 2 = Ef [(r −m)2] into Corollary 21,

2s2 ln 2 ≤ 1

n

n∑
i=1

(ri −m)2 + 2s2γ−. (40)

Then, when 0 < γ− < ln 2 < 1/
√

2,

s2 ≤ 1

2n(ln 2− γ−)

n∑
i=1

(ri −m)2. (41)

From the bounds of γ−, 0 < β <
√

2−
√

2− ln 2, which is equivalent to the bounds of α in
this lemma.

Lemmas 17 and 22 contain unknown m̂ and m. We simply select m = m̂ = (
∑n

i=1 ri)/n
because we only estimated the tentative value of ŝ2. Proposition 16 is then obtained from
these lemmas. Using the sample means for m and m̂ is also justified in terms of the order
of convergence. The confidence bounds of the sample mean of the reward converge to the
expected mean at O(n−1/2) (Auer et al., 2002). Then, we expect that m and m̂ also converge
in the same order. This order is faster than O(n−1/4), which is the order of convergence of
ŝ in Lemma 22. In this case, I(r; m̂, ŝ2) in Lemma 17 converges to limn→∞ I(r; m̂, ŝ2) at
the same order of ŝ. Because of this, it is sufficient to correctly evaluate only ŝ.

5.2.3 Derivation for Algorithm 3

Setting α = ν−c
2
, we can implement the UCB in Theorem 16 as Algorithm 3. We use

symbol ν instead of τ − 1 because of the generality in MCTS. In this algorithm, c is
a hyperparameter that controls the balance between exploration and exploitation. We
recommend c = 1/

√
13.613 to satisfy the condition, γ < ln 2, when n > ln ν. To explore the

search space more randomly, a larger c should be used. In the implementation, when the
same z value was obtained from other arms, one of the arms was selected randomly. The
inequality, n > ln ν, indicates that our algorithm allocates at least ln ν trials for the non-
optimal arms. This allocation order is consistent with the optimal order for the conventional
bandit problem (Auer et al., 2002).

6. Experiments and Results

We conduct two types of numerical experiments to compare our algorithms with other
algorithms. One is the synthetic bandit problems with the Gaussian reward distributions,
and the other is SMILES optimization using MCTS (Yang et al., 2017; Kajita et al., 2020;
Kikkawa et al., 2020) as the demonstrations for materials discovery. We employed a single
set of recommended or reasonable hyperparameters for all the experiments because the
tuning of hyperparameters for the actual applications in materials discovery is extremely
expensive. We set T = 10, 000 considering the realistic applications (Kajita et al., 2020;
Kikkawa et al., 2020) unless the observed maximum reward clearly does not converge. We
present the details of other algorithms in Appendix B.
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6.1 Synthetic problems for bandits

The synthetic problems explored in the experiments include the following:

“easy” problem
This problem consists of three arms with the Gaussian parameters (µ1, σ1) = (1, 1),
(µ2, σ2) = (0, 2), and (µ3, σ3) = (−1, 3). Arm 3 is optimal for the MKB problem
because of its large variance. However, in the conventional bandit approaches, arm 1
is preferred because of its high expectation reward.

“difficult” problem
This problem consists of three arms with (µ1, σ1) = (−0.2, 1.1), (µ2, σ2) = (0, 1), and
(µ3, σ3) = (−0.8, 1.2). In this problem, the optimal arm in the MKB problem switches
depending on the total number of trials. Arm 1 is optimal 102 � T � 109 because
µ1 +2σ1 = µ2 +2σ2 and µ1 +6σ1 = µ3 +6σ3. The algorithms for determining the arm
with the maximum expectation reward will select arm 2. An algorithm with a strong
tendency to choose arms with high variances will have a higher preference toward arm
3 than arm 1. It is a challenge for the MKB algorithm to select arm 1 correctly.

“unfavorable” problem
This problem comprises three arms with the same variance; the Gaussian parameters
of each arm were set to (µ1, σ1) = (1, 1), (µ2, σ2) = (0, 1), and (µ3, σ3) = (−1, 1),
respectively. In this setting, arm 1 is optimal. the conventional UCB will select the
optimal arm correctly because this arm has the highest mean reward. The MKB
algorithms will lose the conventional UCB because these algorithms incur costs for
estimating the variance of each arm.

The transition plots of the observed maximum and the ratio of the optimal arm selection
averaged over 100 independent runs are shown in Figure 1. The plots of the observed maxi-
mum can directly evaluate the performance of the MKB algorithm; however it is susceptible
to data variability. The ratio of the optimal arm selection can help in that case.

In the result of the “easy” problem, the MKB algorithms exhibit higher observed maxi-
mum reward than the random search on average. Although the obtained maximum rewards
are similar among these MKB algorithms, the ratios of the optimal arm selected clearly show
that our algorithms identify the best arm first. As expected, the conventional UCB mainly
selected the non-optimal arm. The spUCB and UCBE also afforded worse results than those
of the random search.

In the “difficult” problem, the selection ratios show that the MKB algorithms selected
the optimal arm more frequently than the random search, although slight differences were
observed in the observed maximum reward. In particular, our algorithms more efficiently
select the optimal arm than other MKB algorithms. The performances of the random
search and UCBE were almost the same, and spUCB and the conventional UCB exhibited
the worse performances.

In the “unfavorable” case, the conventional UCB worked the best from the viewpoint of
the selection ratio. The performance of spUCB is similar to that of the conventional UCB.
Our algorithms also exhibited good performance, although the ratios were slightly lower
than those of the conventional UCB. The results of ThresholdAscent and RobustUCBMax
were better than those of UCBE. The random search afforded the worst result.
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In the previous three tasks, the MaxSearch[sub-gaussian] algorithm outperformed the
MaxSearch[Gaussian] algorithm. This performance difference is possibly attributable to
different mean estimates in the two algorithms. The Gaussian-based algorithm achieved
higher performance when using the sample mean µ̄ than when using the UCB of the mean
µ̂.

Figure 1: Transition plots of the observed maximum (upper) and ratio of the optimal
arm selection (lower) on (a) the “easy” problem, (b) the “difficult” problem,
and (c) the “unfavorable” problem. The colors represent the results of differ-
ent algorithms: red, MaxSearch[Gaussian]; orange MaxSearch[sub-gaussian]; red-
dish brown, ThresholdAscent; purple, RobustUCBMax; green, spUCB; sky blue,
UCBE; blue, conventional UCB; and gray, random search. The error bars indicate
the standard errors of 100 independent runs. If the differences between the two
methods are more than two times the standard errors, there will be a significant
difference between these methods with a 5 % significance level.

6.2 Molecular discovery using tree search

As a demonstration of the molecular discovery problem, we attempted to optimize the
molecular structure M which maximized either of the properties defined by the following
empirical equations (Joback and Reid, 1987):

Tb(M)[K] = 198.2 +
∑

i∈frag(M)

Tb,i,
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Pc(M)[bar] =

0.113 + 0.0032Na(M) +
∑

i∈frag(M)

Pc,i

−2 ,
η300K(M)[Pa·s] = Mw(M) exp

∑i∈frag(M) ηa,i − 597.82

300
+

∑
i∈frag(M)

ηb,i − 11.202

,
where Tb, Pc, and η300K are the boiling temperature, critical pressure, and liquid dynamic
viscosity at 300 K of molecule M , respectively; frag(M) was a set of atomic fragments of
M , determined by Joback and Raid. The fragments simply determined for each atom type,
such as carbon in methyl group, halogens, and ether oxygen in a ring group, etc. The
functions Na(M) and Mw(M) were the number of atoms in M and molecular weight of M ,
respectively. The empirical parameters, Tb,i, Pc,i, ηa,i, and ηb,i, were optimized to reproduce
the experimental properties. The properties, Tb, Pc, and η300K, depended on the molecular
structure through these parameters. In addition to those three properties, the topological

polar surface area TPSA(M) [Å
2
] (Å = 0.1nm) (Ertl et al., 2000) was maximized. Using

these empirical formulas, we can verify the performance of the search algorithms in a short
time.

During the search process, the candidate molecular structures were generated using the
following context-free grammar (Hopcroft et al., 2001) of the SMILES strings (Weininger,
1988). Using the context-free grammar, we could create a simple maze game (Kikkawa
et al., 2020) systematically. Here, we applied the following rules:

S → C(X)(Y )(Y )(Y ),C(=O)(Y )(Y ),C(Y )C(Y )(=C(Y )C(Y )), or C(=O)(O(Y ))(Y ),

X → [H],F,Cl,Br,C(X)(Y )(Y ),O(Y ),N(Y )(Y ),C(=O)(Y ),

C(Y )(=C(Y )(Y )), or C(=O)(O(Y )),

Y → [H],F,Cl,Br,C(X)(Y )(Y ),C(=O)(Y ),C(Y )(=C(Y )(Y )), or C(=O)(O(Y )),

where S, X, and Y denote the non-terminal variables, and the upright characters denote
the terminals. The start variable is set to S, and a string-generation process is completed
when the string no longer has variables. The following additional rule was applied when
the number of alphabets was greater than 40:

X or Y → [H].

This rule guarantees the termination of the generation process within the moderate molecu-
lar size. This limit is approximately 500 g/mol in molecular weight, and most of the known
molecules in the database2 are within the limit. We employed hydrogen as the termination
atom, which is commonly used in organic chemistry. The alphabets include the explicit
“H”, and exclude the parenthesis and equal symbols. The string “Br” and “Cl” are consid-
ered as two alphabets. The search space of this molecular generator contains significantly
more than 6.248× 1013 molecular species, which is the number of isomers in C40H82 (Yeh,
1995). We did not consider the synthesizability and the target scope of generated molecules;
however, it can be considered by modifying the grammar in practical use.

2. https://www.rsc.org/Merck-Index/
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The context-free language can be projected to a tree graph (Figure 2). Therefore, the
molecular generator can be easily implemented with an MCTS algorithm, as shown in
Algorithm 4. The node selection in each layer continues until a complete molecular string
is created. Subsequently, the chemical property evaluation is performed, after which the
property value is used as the reward. The reward value is recorded in each node passed in the
creation, and it is used to calculate the selection indices in the next creation. The complete
SMILES strings assigned on the different leaves are treated as the different molecules in
this search algorithm even if these molecules have the same molecular symmetries.

Figure 2: Tree image of SMILES generation.

Algorithm 4 MCTS

Input: number of trials T .
1: τ = 0
2: while τ < T do
3: τ ← τ + 1
4: v ← root() {the root node of the search tree.}
5: L← {v}
6: while v is not a leaf node do
7: k ← policy(records)

{policy : Algorithm 1 or the algorithms in Appendix B.
records : statistic data such as K, nk, Rk, R

2
k, and rmax in Algorithm 1.}

8: L← L ∪ k
9: v ← child(k, v) {the k-th child of the node v.}

10: end while
11: r ← reward(L) {the reward of the selected path L.}
12: records.add(L, r) {record the path L and the reward r.}
13: end while

The properties, Tb, Pc, and η300K were calculated using the python thermo module (Bell
and Contributors, 2016), and TPSA was calculated using the RDKit library (Landrum,
2016). When using η300K as the reward, the rules containing one of F, N, and =C were
excluded because their empirical parameters were not available. Additionally, we note that
all of the generated SMILES were valid in the network test of RDKit.
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Using the transition plots of the observed maximum, we compared MaxSearch and other
algorithms in Figure 3. The plots were obtained by averaging over each 100 independent
search runs.

Figure 3: Transition plots of the molecular discovery. (a) Tb, (b) Pc, (c) η300K, and (d)
TPSA. The other notations are the same as those in Figure 1. The colors rep-
resent the results of different algorithms: red, MaxSearch[Gaussian]; orange,
MaxSearch[sub-gussian]; green, spUCB; sky blue, UCBE; blue, conventional UCB;
and gray, random search. The error bars indicate the standard errors of the 100
independent runs . ThresholdAscent and RobustUCBMax cannot be implemented
in MCTS because of the many hyperparameters involved.

In the search of Tb in Figure 3(a), the conventional UCB afforded the highest rewards
at t = 10, 000. This result is expected because the empirical formula of Tb is a simple sum
of the fragment parameters. In such case, the optimal arm is almost equivalent to the arm
with the best expectation reward. This condition corresponds to the “unfavorable” case of
synthetic problems. In fact, the searches for other properties expressed by simple summation
in the Joback method afforded similar results. For t < 2, 500, spUCB demonstrated the
best performance. This result is probably due to setting the exploitative hyperparameter
c = 0.1 recommended in the original article (Schadd et al., 2008). The conventional UCB
with c = 0.1 gave a similar transition plot. Our algorithms are less effective than the
conventional UCB and comparable in performance to the spUCB, but outperform UCBE
and random search.
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In the searches of Pc, η300K, and TPSA, our algorithms outperformed the other algo-
rithms, especially in the late stage. There are some different tendencies in these transition
plots. These differences are probably due to the differences in the population distributions
of rewards. For example, for η300K , there are chemical structures with enormously high
rewards in the search space. Our algorithm can find these structures with a high efficiency
and success rate. In contrast, for TPSA, the population distribution probably has an upper

bound near 290 Å
2
. Our algorithms worked well even if such case. These results evidence

the wide application range of our proposed algorithms.
The chemical structures with the top three rewards of Tb, Pc, η300K, or TPSA in the 100

independent runs are shown in Figure 4. From the high-scoring molecules, we deduce that:

• Carboxyl groups are favorable for high Tb.

• Alcohol, carboxyl, and halogen groups are favorable for high viscosity.

• Polarized oxygen groups are favorable for high TPSA.

These understandings are consistent with chemical knowledge. More complicated and highly
optimized structures can be found in our algorithms than other algorithms.

7. Discussion

The numerical experiments in the previous section show that the UCB of EI is possible as
the selection index for the MKB problem. In this section, we discuss why that is so. Our
discussion would contain non-rigorous arguments. However, we believe that this discussion
will help with future work. We also discuss the incompleteness of our algorithm for mul-
timodal reward distributions. This limitation is due to the sub-gaussian assumption, but
this would not affect the application of MCTS.

7.1 Subtleties of Extreme Regret

For our discussion, we should mention the subtleties of extreme regret, first pointed out by
Nishihara et al. (2016). In this section, we review these subtleties.

The extreme regret was introduced by Carpentier and Valko (2014), defined as follows:

Definition 23 (Carpentier’s regret) In the MKB problem, Carpentier’s regret when k(t),
t ∈ [T ] are selected is defined as follows:

R
k∗(t),k(t)
C (T ) := E

[
max
t∈[T ]

rk∗(t)(t)

]
− E

[
max
t∈[T ]

rk(t)(t)

]
, (42)

where k∗(t), t ∈ [T ] denotes an oracle policy. The asymptotically optimal policy should
satisfy

R
k∗(t),k(t)
C (T ) = o

(
E
[
max
t∈[T ]

rk∗(t)(t)

])
. (43)

A subtlety of Carpentier’s regret is that the regret asymptotically approaches 0 for most
policies in some settings. For example, we consider all reward distributions of the arms
have bounded support. Then, any policy that selects each arm infinitely often achieves an
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Figure 4: Chemical structures with the top three rewards in 100 independent runs.
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asymptotically zero regret, meaning that even the random search is asymptotically optimal
in the setting. To avoid this, Nishihara et al. (2016) defined an alternative regret:

Definition 24 (Nishihara’s regret) In the MKB problem, Nishihara’s regret when k(t),
t ∈ [T ′] are selected is defined as follows:

R
k∗(t),k(t)
N (T ) :=

1

T
min
T ′≥1

{
T ′ : E

[
max
t∈[T ′]

rk(t)(t)

]
≥ E

[
max
t∈[T ]

rk∗(t)(t)

]}
, (44)

where k∗(t), t ∈ [T ] denotes an oracle policy. The asymptotically optimal policy should
satisfy

lim sup
T→∞

R
k∗(t),k(t)
N (T ) ≤ 1. (45)

This regret works even when the reward distributions have bounded supports. However,
Nishihara et al. (2016) showed that there is a set of reward distributions such that

lim sup
T→∞

R
kSA∗ ,k(t)
N (T ) ≥ K

for any policy, where kSA∗ is the selection of single-armed oracle defined in Definition 25.
Namely, no policy is asymptotically optimal under Nishihara’s regret. Because of this, we
only treat reward distributions with unbounded supports in the following discussion.

Another subtlety exists in the definition of the oracle policy. The previous works are
essentially based on the single-armed oracle (Nishihara et al., 2016) as follows:

Definition 25 (Single-armed oracle) In the MKB problem, the single-armed oracle is
the policy that plays the single arm

kSA∗ (T ) := argmaxk∈[K]E
[
max
t∈[T ]

rk(t)

]
(46)

over a time horizon T .

However, this oracle gives different kSA∗ depending on T . This fact can be confirmed by the
following example.

Example 1 Consider the MKB problem with K = 3. Let the reward distributions of each
arm be f1(r) = N (r; 0, 0.01), f2(r) = N (r;−1, 0.25), and f3(r) = N (r;−15, 4). Then, the
single-armed oracle gives kSA∗ = 1 if T ≤ 11, kSA∗ = 2 if 1.4 × 1011 ≤ T ≤ 5.4 × 1013, and
kSA∗ = 3 if T ≥ 3.9× 10202.

Proof The expected maximum reward sampled from the k-th arm over a time horizon T
is bounded by

µk +
1√
π ln 2

σk
√

lnT ≤ E
[
max
t∈[T ]

rk(t)

]
≤ µk +

√
2σk
√

lnT , (47)

where µk and σ2k are the mean and variance of the Gaussian reward distribution, fk(r),
respectively (Kamath, 2015). Then, the example is established.
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The T -dependency of the single-armed oracle means that the best arm cannot be determined
without information on T (Nishihara et al., 2016). This raises a question about the regret
analysis using the infinity limit of T . In Example 1, arm 3 should be selected most often
to achieve the asymptotically zero regret. However, arm 1 or 2 is a more suitable choice
when T < 5.4 × 1013. Because many applications cannot perform such a large number
of trials, the regret analysis result is impractical. The T -dependency of the oracle is also
inconvenient in MCTS applications. In an MCTS algorithm, T is not given except for the
root node. Then, one cannot determine the best arm except for the root node even if the
reward distribution is known.

7.2 T -independent oracles and asymptotics of UCB approach

Nishihara et al. (2016) also proposed an oracle independent of T .

Definition 26 (Nishihara’s greedy oracle) In the MKB problem, Nishihara’s greedy
oracle is the policy that plays the arm with the maximum EI. Namely, this oracle plays

kN∗ (τ) := argmax
k∈[K]

E
[
max {rk(τ), rmax

∗ (τ − 1)} − rmax
∗ (τ − 1)|{rkN∗ (t)(t)}t∈τ−1

]
(48)

at time τ , where rmax
∗ (τ) := maxt∈[τ ] rkN∗ (t).

This oracle uses EI to avoid the dependency on T . Therefore, in terms of Nishihara’s greedy
oracle, it is natural that we employ EI to derive a T -independent MKB algorithm. Although
Nishihara et al. (2016) did not analyze this oracle much, we note that Nishihara’s greedy
oracle gives different kN∗ (τ) depending on the oracle value rmax

∗ (τ) instead of T , as shown
in the following example:

Example 2 Consider the MKB problem with K = 3. Let the reward distributions of each
arm be f1(r) = N (r; 0, 1), f2(r) = N (r;−2, 2), and f3(r) = N (r;−6, 3). Then, Nishihara’s
greedy oracle gives kN∗ (τ) = 1 if rmax

∗ (τ − 1) ≤ 1.3, kN∗ (τ) = 2 if 7.0 ≤ rmax
∗ (τ − 1) ≤ 11.9,

and kN∗ (τ) = 3 if rmax
∗ (τ − 1) ≥ 18.9,

Proof Because of Lemma 14, we should consider the integral of the survival function. The
survival function of fk(r) = N (r;µk, σ

2
k) is expressed as follows:

S(r) :=

∫ ∞
r

fk(u)du =
1

2
erfc

[
r − µk

2σk

]
(49)

The bounds of erfc(x), x > 0 are given by

c exp(−βx2) < erfc(x) < exp(−x2), (50)

where

c =

√
2e

π

√
β − 1

β
, (51)

and β > 1 (Chiani et al., 2003; Chang et al., 2011). Then,

c

2

∫ ∞
y

exp(−βx2)dx < 1

2

∫ ∞
y

erfc(x)dx <
1

2

∫ ∞
y

exp(−x2)dx, (52)
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where y > 0. Using the definition and bounds of erfc(x) again, we obtain

√
πc2

4
√
β

exp(−β2y2) < 1

2

∫ ∞
y

erfc(x)dx <

√
π

4
exp(−y2). (53)

These bounds give the example.

This dependency generates a subtlety in an adaptive case. Consider one obtains rmax(τ) <
11.9 under a selection {k(t)}t∈[τ ] in Example 2. A problem arises when the oracle value
rmax
∗ (τ) > 18.9 at that time. In this case, the next selection of Nishihara’s greedy oracle

differs from the selection with the maximum EI, meaning that a policy simply approaching
Nishihara’s greedy oracle is not always effective in the MKB problem.

The subtlety due to the dependence on the oracle value rmax
∗ (τ) is solved using the

observed value rmax(τ) alternatively. We define this oracle as follows:

Definition 27 (Kikkawa’s greedy oracle) In the MKB problem, let k(t), t ∈ [τ − 1] be
the previous selections. Then, Kikkawa’s greedy oracle plays

kK∗ (τ) := argmax
k∈[K]

E
[
max {rk(τ), rmax(τ − 1)} − rmax(τ − 1)|{rk(t)(t)}t∈τ−1

]
(54)

at time τ , where rmax(τ) := maxt∈[τ ] rk(t)(t).

This oracle is equivalent to Nishihara’s greedy oracle when all selections follow this oracle.
In addition, this oracle gives the arm that has the maximum EI even when the non-oracle
selections exist in k(t), t ∈ [τ − 1]. The following proposition states that Kikkawa’s greedy
oracle asymptotically approaches Nishihara’s greedy oracle in terms of Carpentier’s regret.

Proposition 28 (Asymptotics of Kikkawa’s greedy oracle) Let k(t), t ∈ [T ] contain
o(T ) non-oracle selections and other selections follow Kikkawa’s greedy oracle. Then,

R
kN∗ (t),k(t)
C (T ) = o

(
E
[
max
t∈[T ]

rkN∗ (t)(t)

])
, (55)

when

EI [k, T ;Gmax] = O

(
1

T
E
[
max
t∈[T ]

rkN∗ (t)(t)

])
. (56)

Proof Let nk(T ), k ∈ [K] and nNk (T ), k ∈ [K] be the numbers of the k-th arm selected
in k(t), t ∈ [T ] and kN∗ (t), t ∈ [T ], respectively. Then, δn :=

∣∣nNk (T )− nk(T )
∣∣ = o(T ) is

24



Materials Discovery using Max K-Armed Bandit

expected.3 Therefore,∣∣∣RkN∗ (t),k(t)C (T )
∣∣∣ =

∣∣∣∣∣E
[

max
k∈[K]

max
n∈[nN

k (T )]
rk(n)

]
− E

[
max
k∈[K]

max
n∈[nk(T )]

rk(n)

]∣∣∣∣∣
=

∣∣∣∣E [max
k∈[K]

[
max

{
max

n∈[nmin]
rk(n), max

n∈[δn]
rk(n+ nmin)

}
− max
n∈[nmin]

rk(n)

]]∣∣∣∣
≤
∑
k∈[K]

∣∣∣∣E [max

{
max

n∈[nmin]
rk(n), max

n∈[o(T )]
rk(n+ nmin)

}
− max
n∈[nmin]

rk(n)

]∣∣∣∣
≤
∑
k∈[K]

∣∣o(T )EI
[
k, nmin;Gmax

]∣∣= o

(
E
[
max
t∈[T ]

rkN∗ (t)(t)

])
,

(57)

where nmin := min{nNk (T ), nk(T )}.

The proposition states that o(T ) mistakes are allowed in the asymptotically optimal policy
under the condition related to the maximum value. This condition can be satisfied by
Gaussian distributions at least.

Our concept in Section 4 can be obtained by simply substituting the EI in Kikkawa’s
greedy oracle into its UCB. Therefore, our conceptual algorithm is expected to approach
Kikkawa’s greedy oracle for large T . The number of non-oracle selections in Algorithm 1
can be estimated as follows:

Proposition 29 (Number of non-oracle selections) Consider the MKB problem. Let
EI [k,R(t− 1);Gmax] , t ∈ [T ] be an estimator of EI [k, t;Gmax]. Suppose a confidence
interval of EI [k, t;Gmax] is known as∣∣EI [k, t;Gmax]− EI [k,R(t− 1);Gmax]

∣∣ ≤ C(k, α(t), nk(t)) (58)

with confidence level 1− α(t), where nk(t), k ∈ [K] be the numbers of the k-th arm selected
under Algorithm 1 with this confidence interval. Then, the number of non-oracle selections
becomes o(T ) when α(t) = o(1) and

C(k, α(t), nk(t)) = o

({
min
k′∈κ(t)

∆k′(t)

}{
t

nk(t)

}d)
(59)

where d > 0, κ(t) = [K]/kK∗ (t) and

∆k(t) = EI
[
kK∗ (t), t;Gmax

]
− EI [k, t;Gmax] . (60)

Proof Consider the following events:

AkK∗ (t),t : EI
[
kK∗ (t),R(t− 1);Gmax

]
+ C(kK∗ (t), α(t), nkK∗ (t)) ≥ EI

[
kK∗ (t), t;Gmax

]
, (61)

Aκ(t),t : EI [κ(t),R(t− 1);Gmax] ≤ EI [κ(t), t;Gmax] + C
(
κ(t), α(t), nκ(t)(t)

)
. (62)

3. Pathological conditions may exist. However, we do not consider them.
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Then, the number of complementary cases can easily be counted as follows:

∑
t∈[T ]

E

1
 ⋃
k∈[K]

Ack,t

 ≤ K ∑
t∈[T ]

α(t) = o(T ). (63)

Conversely, in the case of all Ak,t established, the non-oracle arm is selected when

EI [κ(t),R(t− 1);Gmax] + C(κ(t), α(t), nκ(t)(t))

≥ EI
[
kK∗ (t),R(t− 1);Gmax

]
+ C(kK∗ (t), α(t), nkK∗ (t)(t))

(64)

for any κ(t). Then,

EI
[
kK∗ (t), t;Gmax

]
≤ EI

[
kK∗ (t),R(t− 1);Gmax

]
+ C(kK∗ (t), α(t), nkK∗ (t)(t))

≤ EI [κ(t),R(t− 1);Gmax] + C(κ(t), α(t), nκ(t)(t))

≤ EI [κ(t), t;Gmax] + 2C(κ(t), α(t), nκ(t)(t)).

(65)

Equations (61), (64), and (62) are used in the first, second, and third inequalities, respec-
tively. Then, solving for nκ(t)(t) using Equation (59), we obtain nκ(t)(t) = o(t). Then, we
obtain the proposition using Equation (63).

This proposition means that Algorithm 1 asymptotically approaches Kikkawa’s greedy ora-
cle in terms of the number of non-oracle selections if true UCB was used. That is, Algorithm
1 is conceptually also an asymptotically optimal policy in terms of Nishihara’s greedy oracle
and Carpentier’s regret through Proposition 28.

Under Proposition 29, the MaxSearch[Gaussian] algorithm corresponds to the following
case:

EI [k,R(t− 1);Gmax] =

√
σ̄2k
2

ierfc

(
r − µ̄k√

2σ̄k2

)
(66)

and

C(k, α(t), nk(t)) = O

({
ln t

nk(t)

} 1
4

)
. (67)

The derivation is shown in Appendix C. The function C(k, α(t), nk(t)) satisfies the condition
in Proposition 29. The algorithm is then asymptotically optimal if the reward of each arm
follows the Gaussian distribution.

Similarly, MaxSearch[sub-gaussian] corresponds to the case with

EI [k,R(t− 1);Gmax] = I(rmax; m̂k, lim
α→0

ŝ2k) (68)

and

C(k, α(t), nk(t)) = O

({
ln t

nk(t)

} 1
4

)
(69)

as the upper bound. Note that no lower bounds are stated in Theorem 16. Because the
lower bound of EI [k, t;Gmax] is required in Proposition 29, incorrect cases can occur. An
example given below.
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Example 3 Consider the two-armed bandit problem with the reward distributions, f1(r) =
Bernoulli(0.5), r ∈ {0, 1} and f2(r) = N (r; 0, 0.1). Then, I(rmax; m̂1, ŝ

2
1) > I(rmax; m̂2, ŝ

2
2)

in most situations. It means that MaxSearch[sub-gaussian] selects arm 1 mainly. How-
ever, the oracle policy selects arm 2 after obtaining r = 1 once from arm 1 because
EI[1, t;Gmax] = 0 and EI[2, t;Gmax] > 0 in this case. This result is not due to the
bounded support of the Bernoulli distribution. The similar discussion is established even
if the Bernoulli distribution is convolved with N (r; 0, 0.01).

The algorithm failure in this example is due to the poor estimating ability of the sub-
gaussian assumption for the lower bound of EI[1, t;Gmax] in Proposition 29. In our algo-
rithm, the tail distribution should approach the estimator at nk(t) � (ln t)4. The multi-
modal distribution, such as the Bernoulli distribution, can break this condition easily and
has a bad effect for the optimal arm selection. Fortunately, these effects have not impacts
empirically in our materials discovery demonstrations using MCTS. We infer that this is a
feature of MCTS, and its theoretical analysis is an interesting issue for future studies.

Lastly, we note that the proof of Proposition 29 is an analog of the proof for the con-
ventional bandit problem (Auer et al., 2002; Jamieson, 2018) except for the optimal arm
depending on the time t. This treatment can be allowed because the selections by Kikkawa’s
greedy oracle correspond to the arms with the maximum EI for any t. This feature of
Kikkawa’s greedy oracle is valuable. We are sure that several other proofs for the con-
ventional bandit problem establish formally in the MKB problem using Kikkawa’s greedy
oracle.

8. Conclusion

Here, we proposed MKB algorithms and applied them to synthetic problems and
molecular-design demonstrations using MCTS for materials discovery. The proposed algo-
rithms use a single hyperparameter and are easily implemented for MCTS. This feature gives
the proposed algorithms an advantage over other MKB algorithms, and enables their appli-
cation to materials discovery. In fact, to the best of our knowledge, this is the first case where
the MKB algorithms are actually employed for materials discovery. The performances of
the proposed algorithms were examined on the synthetic problems and molecular-structure
optimizations. The experimental results demonstrated that the proposed algorithms found
the maximum reward more efficiently than other algorithms when the optimal arm could
not be determined only based on the expectation reward. In real molecular designs, most
of the molecular properties would have a high complexity; thus, we believe that the MKB
algorithms are useful for these tasks.

In the theoretical aspect, we mainly contribute in two aspects. One is the proof of
the effectiveness of the use of a UCB of EI. The proof result has wide flexibility, and
this can be used to propose other algorithms with other assumptions for distributions,
which will be addressed in future work. Especially, we indicate that our algorithm is weak
for multimodal distributions because it is based on the Gaussian or sub-gaussian reward
assumption. Nonparametric approaches are probably required for the MKB algorithm to
show their true potential. Recent studies on the nonparametric MKB algorithms (Bhatt
et al., 2022; Baudry et al., 2022) probably have a potential to overcome these difficulties.
In another direction, theoretical analyses based on full parametric assumptions would help
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us to thoroughly understand the MKB problem. The other contribution is the proposal of
Kikkawa’s greedy oracle. Using the proposed oracle, we can avoid many of the subtleties
of the MKB problem. We think that several other statements in the conventional bandit
problem can be imported to the MKB problem with the help of this oracle. It may be
possible to apply our theoretical approach to other fields based on the bandit problem.

Heuristics to reduce the required trials are also important for actual use. For this
purpose, the MKB algorithm could combined with other bandit algorithms. Combining
with a supervised learning also holds significant promise.
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Appendix A. Proof of Theorem 20

Let Xi be independent random variables drawn from the same sub-exponential g(X) with
parameter b > 0. Then,

P

{∣∣∣∣∣ 1n
n∑
i=1

Xi − Eg(X) [X]

∣∣∣∣∣ ≥ u
}

= P

{
1

n

n∑
i=1

Xi − Eg(X) ≥ u or Eg(X) − P

{
1

n

n∑
i=1

Xi

}
≥ u

}
,

(70)

where u > 0. Therefore, in the former case,

P

{
1

n

n∑
i=1

Xi − Eg(X) [X] ≥ u

}

= P

{
exp

(
λ

n

n∑
i=1

Xi

)
≥ exp

[
λ(u+ Eg(X) [X])

]}

≤ exp
[
−λ(u+ Eg(X) [X])

]
E

[
exp

(
λ

n

n∑
i=1

Xi

)]
, 〈Markov′s inequality〉

(71)

where λ > 0 is an arbitrary parameter. Since the random variables Xi are independent of
each other, their moment-generating function can be separated. Thus, we obtain

P

{
1

n

n∑
i=1

Xi − Eg(X) [X] ≥ u

}

≤ exp
[
−λ(u+ Eg(X) [X])

]{
Eg(X)

[
exp

(
λX

n

)]}n
= exp

[
−λ(u+ Eg(X) [X])

]1 +
λEg(X) [X]

n
+
∞∑
p=2

λpEg(X) [Xp]

npp!

n

≤ exp

−λu+

∞∑
p=2

λpEg(X) [Xp]

np−1p!

 〈Since 1 + x ≤ expx〉

= exp

−λu+

∞∑
p=2

λp

np−1p!

∫ ∞
0

Pg(X){Xp ≥ u} du

 〈Integral identity〉

= exp

−λu+

∞∑
p=2

λp

np−1p!

∫ ∞
0

Pg(X){X ≥ bv}pbpvp−1 dv

 〈Replace u with bpvp〉

≤ exp

−λu+ 2
∞∑
p=2

λpbp

np−1(p− 1)!

∫ ∞
0

e−vvp−1 dv

. 〈Sub-exponential〉

(72)
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The above integral corresponds to the Gamma function. Therefore,

P

{
1

n

n∑
i=1

Xi − Eg(X) [X] ≥ u

}
≤ exp

−λu+ 2
∞∑
p=2

bpλpΓ(p)

np−1(p− 1)!


= exp

−λu+ 2
∞∑
p=2

bpλp

np−1


= exp

[
−λu+

2b2λ2

n− bλ

]
,

(73)

where |bλ/n| < 1. Replacing n− bλ with ξ+, we obtain

P

{
1

n

n∑
i=1

Xi − Eg(X) [X] ≥ u

}
≤ exp

[(u
b

+ 2
)
ξ+ +

2n2

ξ+
− nu

b
− 4n

]
, (74)

where 0 < ξ+ < 2n. Hence, the optimized ξ+ is

ξ+ =

√
2n2b

2b+ u
. (75)

Then,

P

{
1

n

n∑
i=1

Xi − Eg(X) [X] ≥ u

}
≤ exp

(
2
√

2nw+ − nw2
+ − 2n

)
, (76)

where w+ :=
√
ub−1 + 2 ≥

√
2. Moreover, using the same approach, we obtain

P

{
Eg(X) [X]− 1

n

n∑
i=1

Xi ≥ u

}
≤ exp

[(
−u
b

+ 2
)
ξ− +

2n2

ξ−
+
nu

b
− 4n

]
, (77)

where ξ− := n+ bλ and 0 < ξ− < 2n. Hence, the optimized ξ− is

ξ− =

{ √
2n2b/(2b− u) 0 ≤ u < 3b/2

2n− ε 3b/2 ≤ u, (78)

where ε is an infinitesimal. Then, we obtain

P

{
Eg(X) [X]− 1

n

n∑
i=1

Xi ≥ u

}
≤
{

exp (2
√

2nw− − nw2
− − 2n) 0 ≤ u < 3b/2

exp
[(
−ub−1 + 1

)
n+O(ε)

]
3b/2 ≤ u, (79)

where w− :=
√
−ub−1 + 2 > 1/

√
2. Equations 76 and 79 show that E [X] is bounded at a

confidence level of 1− α > 0 as follows:

1

n

n∑
i=1

Xi − u∗+ ≤ E [X] ≤ 1

n

n∑
i=1

Xi + u∗−, (80)

where
α = exp

[
2
√

2nw∗+ − n(w∗+)2 − 2n
]
, (81)
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when u∗+ ≥ 0, and

α =

{
exp

[
2
√

2nw∗− − n(w∗−)2 − 2n
]

0 ≤ u∗− < 3b/2
exp

[(
−u∗−b−1 + 1

)
n
]

3b/2 ≤ u∗−,
(82)

where w∗± :=
√
±u∗±b−1 + 2 (double sign in the same order). From Eq. 81, we obtain

w∗+ =
√

2 + β, (83)

and
u∗+ = (β2 + 2

√
2β)b, (84)

where β :=
√
− lnα/n. In addition, from Eq. 82,

u∗− =

{
(−β2 + 2

√
2β)b 0 ≤ β < 1/

√
2

(β2 + 1)b 1/
√

2 ≤ β. (85)

The theorem follows from Eqs. 76 and 79.

Appendix B. Compared Algorithms

We compared our algorithm with Algorithms 5-10. We employed the following hyperpa-
rameters and applied some modifications for the implementation. In ThresholdAscent, the
hyperparameters were set to s = 100 and δ = 2 ln ν. We used the reward ranking instead
of the iteration used in the original code (Streeter and Smith, 2006b). In RobustUCBMax,
we set s = 100, u = rs-th, v = (rmax − u)1+ε/

√
ν, and ε = 0.4, according to the original

paper (Achab et al., 2017). Although the original paper employed the robust UCB with
the truncated mean estimator, we used a simple version of the robust UCB (Bubeck et al.,
2013). In spUCB, c = 0.1 and D = 32 are used as the hyperparameters. These values are
recommended in the original paper (Schadd et al., 2008). In UCBE (Audibert et al., 2010)
and the conventional UCB (Auer et al., 2002), we used c = 1 as the hyperparameter. In
some algorithms, we estimated the variance parameter, σ, as the sample variance of the
first P = 10 random searches.
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Algorithm 5 ThresholdAscent

Input: number of arms K, time horizon T , the s-th maximum of observed reward rs-th

number of times the k-th arm is selected nk, the i-th reward from the k-th arm rk,i,
and hyperparameter δ.

Output: selected arm index k̂.
1: for each k ∈ [K] do
2: if nk = 0 or ν < 2 then
3: zk ←∞
4: else
5: Sk =

∑
i∈[nk] 1[rk,i > rs-th]

6: α← ln(2TK/δ)
7: zk ← Sk/nk + (α+

√
α(2Sk + α))/nk

8: end if
9: end for

10: k̂ ← argmax
k∈[K]

zk

11: return k̂

Algorithm 6 RobustUCBMax

Input: number of arms K, number of times the k-th arm is selected nk, the i-th reward
from the k-th arm rk,i, and hyperparameters u, v, and ε.

Output: selected arm index k̂.
1: ν =

∑
k∈[K] nk

2: for each k ∈ [K] do
3: if nk = 0 or ν < 2 then
4: zk ←∞
5: else
6: Sk =

∑
i∈[nk] rk,i1[rk,i > u]

7: zk ← Sk/nk + 4v1/(1+ε)(2 ln ν/nk)
ε/(1+ε)

8: end if
9: end for

10: k̂ ← argmax
k∈[K]

zk

11: return k̂
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Algorithm 7 spUCB

Input: number of arms K, current time τ , number of times the k-th arm is selected nk,
sum of the rewards obtained from the k-th arm Rk, sum of square rewards obtained
from the k-th arm Qk, and sample variance obtained from the first P trials σ.

Output: selected arm index k̂.
1: if τ ≤ P then
2: k̂ ← RandomSearch(K)
3: else
4: ν =

∑
k∈[K] nk

5: for each k ∈ [K] do
6: if nk = 0 or ν < 2 then
7: zk ←∞
8: else
9: mk ← Rk/nk

10: zk ← mk + cσ
√

ln ν/nk +

√
Qk−nkm2

k+D

nk
11: end if
12: end for
13: k̂ ← argmax

k∈[K]
zk

14: end if
15: return k̂

Algorithm 8 UCBE

Input: number of arms K, current time τ , number of times the k-th arm is selected nk,
sum of the rewards obtained from the k-th arm Rk, and sample variance obtained from
the first P trials σ.

Output: selected arm index k̂.
1: if τ ≤ P then
2: k̂ ← RandomSearch(K)
3: else
4: ν =

∑
k∈[K] nk

5: for each k ∈ [K] do
6: if nk = 0 or ν < 2 then
7: zk ←∞
8: else
9: zk ← Rk/nk + cσ

√
ν/nk

10: end if
11: end for
12: k̂ ← argmax

k∈[K]
zk

13: end if
14: return k̂
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Algorithm 9 UCB

Input: number of arms K, current time τ , number of times the k-th arm is selected nk,
sum of the rewards obtained from the k-th arm Rk, and sample variance obtained from
the first P trials σ.

Output: selected arm index k̂.
1: if τ ≤ P then
2: k̂ ← RandomSearch(K)
3: else
4: ν =

∑
k∈[K] nk

5: for each k ∈ [K] do
6: if nk = 0 or ν < 2 then
7: zk ←∞
8: else
9: zk ← Rk/nk + cσ

√
ln ν/nk

10: end if
11: end for
12: k̂ ← argmax

k∈[K]
zk

13: end if
14: return k̂

Algorithm 10 RandomSearch

Input: number of arms K.
Output: selected arm index k̂.
1: k̂ ← random(K) {randomly select any of 1, ...,K.}
2: return k̂
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Appendix C. Order of C(k, α(t), n)

In the Gaussian reward settings, we have

C(k, α(t), n) =

√
σ̂2k
2

ierfc

r − µ̂k√
2σ̂2k

−
√
σ̄2k
2

ierfc

r − µ̄k√
2σ̄2k

 . (86)

The order of the above equation can be derived using some asymptotic equations (Zelen
and Sevelo, 1968). For large n and

∣∣Nα/2∣∣�√
2(n− 1), we can write

µ̂k = µ̄k + tn−1,1−α/2
σ̄k√
n
≈ µ̄k +N1−α/2[1 +O(n−1)]

σ̄k√
n

(87)

σ̂2k =
(n− 1)σ̄2k
χ2
n−1,α/2

≈
2(n− 1)σ̄2k

(Nα/2 +
√

2n− 3)2
≈ σ̄2k −

Nα/2√
2(n− 1)

(88)

N 1
2
± 1−α

2
= Θ(

√
− lnα), (89)

where Np is the p-quantile of the standard normal distribution. Therefore, if α = ν−c
2
,∣∣Nα/2∣∣�√

2(n− 1)⇔ ln ν � n, (90)

N 1
2
± 1−α

2
= Θ(

√
ln ν) (91)

µ̂k − µ̄k = Θ

(√
ln ν

n

)
(92)

σ̂2k − σ̄2k = Θ

(√
ln ν

n

)
. (93)

Because ln ν � n, we can apply the Taylor expansion to C(k, α(t), n) as follows:

C(k, α(t), n) = O(µ̂k − µ̄k) +O(σ̂k − σ̄k) = O

({
ln ν

n

} 1
4

)
. (94)

The order of C(k, α(t), n) under sub-gaussian reward settings can also be derived through
Taylor expansion and the order of ŝ2k in Proposition 16.

C(k, α(t), n) = I(r; m̂k, ŝ
2
k)− I(r; m̄k, s̄

2
k) = O

({
ln ν

n

} 1
4

)
. (95)
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