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Abstract
Quantifying spatial and/or temporal associations in multivariate geolocated data of differ-
ent types is achievable via spatial random effects in a Bayesian hierarchical model, but se-
vere computational bottlenecks arise when spatial dependence is encoded as a latent Gaus-
sian process (GP) in the increasingly common large scale data settings on which we focus.
The scenario worsens in non-Gaussian models because the reduced analytical tractabil-
ity leads to additional hurdles to computational efficiency. In this article, we introduce
Bayesian models of spatially referenced data in which the likelihood or the latent process
(or both) are not Gaussian. First, we exploit the advantages of spatial processes built via
directed acyclic graphs, in which case the spatial nodes enter the Bayesian hierarchy and
lead to posterior sampling via routine Markov chain Monte Carlo (MCMC) methods. Sec-
ond, motivated by the possible inefficiencies of popular gradient-based sampling approaches
in the multivariate contexts on which we focus, we introduce the simplified manifold pre-
conditioner adaptation (SiMPA) algorithm which uses second order information about the
target but avoids expensive matrix operations. We demostrate the performance and effi-
ciency improvements of our methods relative to alternatives in extensive synthetic and real
world remote sensing and community ecology applications with large scale data at up to
hundreds of thousands of spatial locations and up to tens of outcomes. Software for the
proposed methods is part of R package meshed, available on CRAN.
Keywords: Multivariate models, Directed acyclic graph, Gaussian process, non-Gaussian
data, Markov chain Monte Carlo, Langevin algorithms.

1. Introduction

Geolocated data are routinely collected in many fields and motivate the development of
geostatistical models based on Gaussian processes (GPs). GPs are appealing due to their
analytical tractability, their flexibility via a multitude of covariance or kernel choices, and
their ability to effectively represent and quantify uncertainty. When Gaussian distribu-
tional assumptions are appropriate, GPs may be used directly as correlation models for the
multivariate response. Otherwise, flexible models of multivariate spatial association can in
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principle be built via assumptions of conditional independence of the outcomes on a latent
GP encoding space- and/or time-variability, regardless of data type. The poor scalability of
naïve implementations of GPs to large scale data is addressed in a growing body of literature.
Sun et al. (2011), Banerjee (2017) and Heaton et al. (2019) review and compare methods for
big data geostatistics. Methods include low-rank approaches (Banerjee et al., 2008; Cressie
and Johannesson, 2008), covariance tapering (Furrer et al., 2006; Kaufman et al., 2008), do-
main partitioning (Sang and Huang, 2012; Stein, 2014), local approximations (Gramacy and
Apley, 2015), and composite likelihood approximations (Stein et al., 2004). In particular, a
popular strategy is to assume sparsity in the Gaussian precision matrix via Gaussian random
Markov fields (GRMF; Rue and Held, 2005) which can be represented as sparse undirected
graphical models. Proper joint densities are a result of using directed acyclic graphs (DAG),
leading to Vecchia’s approximation (Vecchia, 1988), nearest-neighbor GPs (NNGPs; Datta
et al., 2016a), and generalizations (see e.g. Katzfuss, 2017; Katzfuss and Guinness, 2021).
DAGs can be designed by taking a small number of “past” neighbors after choosing an ar-
bitrary ordering of the data. In models of the response and in the conditionally-conjugate
latent Gaussian case, posterior computations rely on sparse-matrix routines for scalability
(Finley et al., 2019; Jurek and Katzfuss, 2020), enabling fast cross-validation (Shirota et al.,
2019; Banerjee, 2020). Alternatives to sparse-matrix algorithms involve Gibbs samplers
whose efficiency improves by prespecifying a DAG defined on domain partitions, resulting
in spatially meshed GPs (MGPs; Peruzzi et al., 2022). These perspectives are reinforced
when considering multivariate outcomes (see e.g. Zhang and Banerjee 2022; Dey et al. 2021;
Peruzzi and Dunson 2022).

The literature on scalable GPs predominantly relies on Gaussian assumptions on the
outcomes, but in many applied contexts these assumptions are restrictive, inflexible, or
inappropriate. For example, vegetation phenologists may wish to characterize the life cycle
of plants in mountainous regions using remotely sensed Leaf Area Index (LAI, a count
variable) and relate it to snow cover during 8 day periods (SC, a discrete variable whose
values range from 0 to 8—see e.g., Figure 1). Similarly, community ecologists are faced with
spatial patterns when considering counts or dichotomous presence/absence data of several
animal species (Figure 2). In this article, we address this key gap in the literature, which
is how to construct arbitrary Bayesian multivariate geostatistical models which (1) may
include non-Gaussian components, (2) lead to efficient computation for massive datasets.

There are considerable challenges in these contexts for efficient Bayesian computation
when avoiding Gaussian distributional assumptions on the outcomes. General purpose
Markov chain Monte Carlo (MCMC) methods can in principle be used to draw samples
from the posterior distribution of the latent process by making local proposals within ac-
cept/reject schemes. However, due to the huge dimensionality of the parameter space, poor
mixing and slow convergence are likely. For instance, random-walk Metropolis proposals are
cheaply computed but lack in efficiency as they overlook the local geometry of the high di-
mensional posterior. Alternatively, one may consider gradient-based MCMC methods such
as the Metropolis-adjusted Langevin algorithm (MALA; Roberts and Stramer 2002), Hamil-
tonian Monte Carlo (HMC; Duane et al. 1987; Neal 2011; Betancourt 2018) and others such
as MALA and HMC on the Riemannian manifold (Girolami and Calderhead, 2011) or the
no-U-turn sampler (NUTS; Hoffman and Gelman, 2014) used in the Stan probabilistic pro-
gramming language (Carpenter et al., 2017). These methods are appealing because they
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Figure 1: Snow cover (left) and Leaf Area Index, as measured by the MODIS-TERRA
satellite. Missing data are in orange. Bottom maps detail the extents of cloud cover and
other phenomena negatively impacting data quality.

modulate proposal step sizes using local gradient and/or higher order information of the
target density. Unfortunately, their performance very rapidly drops with parameter dimen-
sion (Dunson and Johndrow, 2020). Although it is common in other contexts to rely on
subsamples to cheaply approximate gradients, Johndrow et al. (2020) show that such ap-
proximate MCMC algorithms are either slow or have large approximation error. Such issues
can be tackled by considering low-rank models, which facilitate the design of more efficient
proposals as they involve parameters of greatly reduced dimension. Certain low-rank models
endowed with conjugate full conditional distributions (Bradley et al., 2018, 2019) lead to
always-accepted Gibbs proposals. However, excessive dimension reduction—which may be
necessary for acceptable MCMC performance—may lead to oversmoothing of the spatial
surface, overlooking the small-range variability that frequently occurs in big spatial data
(Banerjee et al., 2010). Alternative dimension reduction strategies via divide-and-conquer
methods that combine posterior samples obtained via MCMC from data subsets typically
rely on assumptions of independence that are inappropriate in the highly correlated data
settings in which we are interested (Neiswanger et al., 2014; Wang and Dunson, 2014; Wang
et al., 2015b; Nemeth and Sherlock, 2018; Blomstedt et al., 2019; Mesquita et al., 2020) or
have only considered univariate Gaussian likelihoods (Guhaniyogi and Banerjee, 2018).

The poor practical performance of MCMC in high dimensional settings has motivated
the development of MCMC-free methods for posterior computation that take advantage of
Laplace approximations (Sengupta and Cressie, 2013; Zilber and Katzfuss, 2020). In partic-
ular, the integrated nested Laplace approximation (INLA; Rue et al., 2009) iterates between
Gaussian approximations of the conditional posterior of the latent effects, and numerical
integrations over the hyperparameters. INLAs are accurate because of the non-negligible
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Figure 2: An extract of dichotomized North American Breeding Bird Survey data. Orange
points correspond to locations at which at least 1 individual has been observed.

impact the Gaussian prior on the latent process has on its posterior; they achieve scalabil-
ity to big spatial data by forcing sparsity on the Gaussian precision matrix via a GMRF
assumption (Lindgren et al., 2011). INLAs are reliable alternatives to MCMC methods in
several settings, but may be outperformed by carefully-designed MCMC methods in terms of
accuracy or uncertainty quantification (Taylor and Diggle, 2014). Furthermore, the practical
reliance of INLAs on Matérn covariance models with small dimensional hyperparameters for
fast numerical integration makes them less flexible than MCMC methods in multivariate
contexts or whenever special-purpose parametric covariance functions are required.

In this article, we introduce methodological and computational innovations for scalable
posterior computations for general non-Gaussian spatial models. Our contributions include
a class of Bayesian hierarchical models of multivariate outcomes of possibly different types
based on spatial meshing of a latent multivariate process. In our treatment, outcomes
can be misaligned—i.e., not all measured at all spatial locations—and relatively large in
number, and there is no Gaussian assumption on the latent process. We maintain this
perspective when developing posterior sampling methods. In particular, we develop a new
Langevin algorithm which, based on ideas related to manifold MALA, adaptively builds a
preconditioner but also avoids cubic-cost operations, leading to efficiency improvements in
the contexts in which we focus. Our methods enable computations on data of size 105 or
more. Unlike low-rank methods, we do not require restrictive dimensionality reduction at
the level of the latent process. Unlike INLA, our computational methods are exact (upon
convergence) for a class of valid spatial processes which is not restricted to latent GPs with
Matérn covariances; furthermore, our methods are hit by a smaller computational penalty in
higher-dimensional multivariate settings. Our methods are generally applicable to models of
spatially referenced data, but we highlight the connections between Langevin methods and
the Gibbs sampler available for Gaussian outcomes, and we develop new results for latent
coregionalization models using MGPs. In applications, we consider Student-t processes,
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HMC and NUTS, and other cross-covariance models as methodological and computational
alternatives to latent GPs, Langevin algorithms, and coregionalization models, respectively.
Software for the proposed methods and the related posterior sampling algorithms is available
as part of the meshed package for R, available on CRAN.

The article proceeds as follows. Section 2 outlines our model for spatially-referenced mul-
tivariate outcomes of different types and introduces general purpose methods and algorithms
for scaling computations to high dimensional spatial data. Section 3 outlines Langevin
methods for posterior sampling of the latent process and introduces a novel algorithm for
multivariate spatial models. Section 4 translates the proposed methodologies for the latent
Gaussian model of coregionalization. The remaining sections highlight algorithmic efficiency
in applications on large synthetic and real world datasets motivated by remote sensing and
spatial community ecology. The supplementary material includes alternative constructions
of our proposed methods based on latent grids, Student-t processes, and NUTS for posterior
computations, in addition to proofs, practical guidelines, additional simulations, and a real
world application of our methods in the context of spatial multi-species N-mixture models.

2. Meshed Bayesian multivariate models for non-Gaussian data

We introduce our model for multivariate outcomes of possibly different types (e.g. continuous
and counts) which also allows for misalignment. Let G = {A,E} be a DAG with nodes
A = {a1, . . . , aM} and edges E = {Par(a) : a ∈ A}, where Par(a) ⊂ A is referred to as the
parent set of a. Let D be the input domain and S ⊂ D denote a user-specified set of “knots”
or “reference locations.” We partition S into subsets Si ⊂ S such that Si ∩ Sj = ∅ if i 6= j
and ∪Mi=1Si = S. Then, we set up our hierarchical model for multivariate outcomes as:

yj(`) | ηj(xj(`), wj(`)), γj ∼Fj(ηj(xj(`), wj(`)), γj),
βj , γj ∼ π(βj , γj) θ ∼ π(θ), w(·) ∼ ΠG,θ

(1)

where Fj is the probability distribution of the jth outcome, parametrized by an unknown
constant γj and spatially-varying function ηj(xj(`), wj(`)), which includes a pj-dimensional
vector of covariates specific for the jth outcome, denoted by xj(`), whereas wj(`) is the
jth element of the random vector w(`), for j = 1, . . . , q. A common linear assump-
tion leads to ηj(`) = xj(`)

>βj + wj(`). Given a set of locations L ⊂ D of size nL
we denote wL = (w(`1)

>,w(`2)
>, . . . ,w(`nL)>)>. We assume wL is the finite realiza-

tion at L of an infinite-dimensional latent process w(·), with law ΠG and density πG ,
which characterizes spatial/temporal dependence between outcomes. We construct such
a process by enforcing conditional independence assumptions encoded in G onto the law
Π of a q-variate spatial process (also referred to as the base or parent process). For lo-
cations ` ∈ S, we make the assumption that πG factorizes according to G. This means
πG(wS |θ) =

∏
ai∈A π(wi |w[i],θ), where we denote wi = wSi and w[i] is the vector of

w(·) at locations ` ∈ ∪aj∈Par(ai)Sj – i.e. the set of locations mapped to parents of ai. For
locations ` ∈ U = D\S, we assume conditional independence given a set of parents [`] ⊂ A,
which means πG(wU | wS ,θ) =

∏
`∈U π(w(`) | w[`],θ) where w[`] is a vector collecting

realizations of w(·) at locations S[`] = ∪ai∈[`]Si.
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Figure 3: Directed acyclic graph representing a special case of model (1). For simplicity,
we omit the directed edges from (βj , γj) to each yj(`), ` ∈ T . If yj(`) is unobserved and
therefore ` /∈ Tj , the corresponding node is missing.

2.1 DAG and partition choice

We refer to the method of building spatial processes via sparse DAGs associated to domain
partitioning as spatial meshing. Several options for constructing G and populating and
partitioning S are available, but sparsity assumptions on G are necessary to avoid computa-
tional bottlenecks in using ΠG . Specifically, we restrict our focus on sparse DAGs such that
|mb(a)| ≤ m for all a ∈ A, where mb(a) is the Markov blanket of a, and m is a small number.
The Markov blanket of a node in a DAG is the set mb(a) = Par(a) ∪ Chi(a) ∪ Copar(a)
which enumerates the parents of a along with the set of children of a, Chi(a) = {b ∈ A :
a ∈ Par(b)}, and the set of co-parents of a, Copar(a) = {c ∈ A : c 6= a and {a, c} ⊂
Par(b) for some b ∈ Chi(a)}—this is the set of a’s children’s other parents. We additionally
assume that the undirected moral graph Ḡ obtained by adding pairwise edges between co-
parents has a small number of colors; if node a has color c, then no elements of mb(a) have
the same color. Because our assumptions on the size of the Markov blanket lead to large
scale conditional independence, the spatially meshed process ΠG has a simpler dependence
structure than the parent process Π from which it originates. The “screening” effect (Stein,
2002) makes these assumptions appealing in geostatistical contexts. Furthermore, if the
Markov blanket of nodes in G can be built to cover their spatial neighbors, then ΠG can
provably accurately approximate Π in some settings (Zhu et al., 2022). If Π is a GP, the
i, j entry of the resulting precision matrix is nonzero if the corresponding nodes are in their
respective Markov blankets. In the context of Gibbs-like samplers that visit each node of G,
a small Markov blanket bounds the compute time for each step of the algorithm; we take
advantage of our assumptions on step 4 of Algorithm 1. Refer to Algorithm 3 and Section
D.3 in the supplement for an account of computational complexity in the coregionalized GP
setting.

Figure 3 visualizes (1) when implemented on a “cubic” spatial DAG using row-column
indexing of the nodes resulting in M = Mrow ·Mcol and S = ∪Mrow

i=1 ∪
Mcol
j=1 Sji. Even though
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Figure 4: Visualizing cubic DAG and associated domain partitioning. Left: scatter of S
locations. Right: G overlaid to partitions of the domain with colors matching those of Ḡ.

DAGs are abstract representations of conditional independence assumptions, nodes of the
DAG in Figure 3 conform to a single pattern (i.e., edges from left and bottom nodes, and
to right and top nodes). As a consequence, the moral graph Ḡ only adds undirected edges
between ai+1,j and ai,j+1 for all i = 1, . . . ,Mrow − 1 and j = 1, . . . ,Mcol − 1, leading to
cliques of size 3 and 3 colors, irrespective of input data. We refer to this kind of DAG as a
cubic DAG as it naturally extends to a hypercube structure in d > 2 dimensions.

Once a sparse DAG has been set, one needs to associate each node to a partition Si
of S. With cubic DAGs, the ith node of G can be associated to the ith domain partition
found via axis-parallel tiling, or via Voronoi tessellations using a grid of centroids. These
two partitioning strategies are equivalent when data have no gaps; otherwise, the latter
strategy simplifies the proposal in Peruzzi et al. (2022) and can be used to guarantee that
every domain partition includes observations, see e.g. Figure 4. Suppose Di, i = 1, . . . ,M
is the chosen domain tessellation. Then, the parent set [`] for a location ` ∈ U can be as
simple as letting [`] = Si if ` ∈ Ui = Di \ Si.

This general methodology can be used to construct other processes. For instance, drop-
ping the sparsity assumptions on G, one can recover the base process itself.

Proposition 1 If G is such that for all aij ∈ A, Par(ai) = {a1, . . . , ai−1} then ΠG = Π at
S, i.e. πG(wS) = π(wS). The same result holds if M = 1.

Proof Omitting θ for clarity, πG(wS) =
∏
ai∈A π(wi |w[i]) = π(w1)

∏M
i=2 π(wi |w1, . . . ,wi−1) =

π(w1, . . . ,wM ) = π(wS). If M = 1 then A = {a1} and S = S1, E = {∅}, and the result is
immediate.

Several other spatial process models based on Vecchia’s approximation can be derived sim-
ilarly (Vecchia, 1988; Banerjee et al., 2008; Datta et al., 2016a; Katzfuss, 2017; Katzfuss
and Guinness, 2021; Peruzzi and Dunson, 2022, and others) and any of these can be used
in place of ΠG . For example, a Vecchia approximation can be obtained by partitioning
S = {`1, . . . , `nS} into sets of size 1; the sparse DAG is then generated by finding the m
nearest neighbors of `i from the set {`1, . . . , `i−1}. Heuristic graph coloring algorithms can
be used to ensure a degree of parallelization in Algorithm 1. Unlike in the cubic DAG
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setting, the number of colors cannot be determined in advance because it is bounded be-
low by clique size, which depends on the order of elements in S and their values, and m.
A larger number of colors corresponds to smaller sampling blocks and may correspond to
lower MCMC efficiency when sampling latent surfaces with strong spatial correlations.

DAG and partition choice both relate to the restrictiveness of spatial conditional inde-
pendence assumptions. Relative to the same partition, adding edges to a DAG brings ΠG
closer to Π in a Kullback-Leibler (KL) sense (Peruzzi et al., 2022, Section 2), and similar
reasoning informs placement of knots in recursive treed DAGs (Peruzzi and Dunson, 2022).
Here, we consider a cubic DAG and alternative nested partitions. Proposition 2 shows that
coarser partitions lead to smaller KL divergence of ΠG from the base process Π.

Proposition 2 Consider a 2 × 1 domain partition w = (w>1 ,w
>
2 )> and suppose G1 is a

DAG with nodes A1 = {a1, a2} and the edge a1 → a2. Take a finer 3× 1 partition nested in
the first, i.e. we write w2 = (w>21,w

>
22)
>, and DAG G2 such that A2 = {a1, a21, a22}, edges

a1 → a21 and a21 → a22. Then, KL(π‖πG1) ≤ KL(π‖πG2).

Proof Since πG1 = π(w1)π(w2 |w1) = π(w1)π(w21 |w1)π(w22 |w21,w1), the coarser par-
tition model can be equivalently written in terms of the finer partition using the DAG G∗1
with nodes A∗1 = A2 and the additional edge a1 → a22. Then, G2 is sparser than G∗1 and
therefore KL(π‖πG1) ≤ KL(π‖πG2).

We provide a discussion in the supplement relating to KL comparisons between non-nested
partitioning schemes.

2.2 Posterior distribution and sampling

After introducing the set Tj = {` ∈ T : yj(`) is observed}, we obtain T1 ∪ · · · ∪ Tq = T =
{`1, . . . , `n} as the set of locations at which at least one outcome is observed. Then, we
denote as T = T \ S the set of non-reference locations with at least one observed outcome.
The posterior distribution of (1) is

π({βj , γj}
q
j=1,wS ,wT ,θ |yT ) ∝

π(θ)πG(wS |θ)πG(wT |wSθ)

q∏
j=1

π(βj , γj)
∏
`∈Tj

dFj(yj(`) |wj(`),βj , γj).
(2)

Sampling (2) may proceed via Algorithm 1, where we denote as yi the vector of observed
outcomes at Si and as wmb(i) the vector of latent effects at the Markov blanket of wi, which
includes parents, children, coparents of ai ∈ A, and all locations ` ∈ U such that wi is
part of w[`]. Algorithm 1 has the structure of a Gibbs sampler, as the Bayesian hierarchy
is expanded to include the spatial DAG G: at each step of the MCMC loop, the goal is to
sample from a full conditional distribution of one random component, conditioning on the
most recent value of all the others. Upon convergence, one obtains correlated samples from
the target joint posterior density. The lack of conditional conjugacy at steps 1–5, which is
expected given our avoidance of simplifying assumptions on Fj ’s and the base process Π,
implies that 1–5 will require accept/reject steps in which updating parameter z proceeds
by generating a move to z∗ via a proposal distribution q(· | z) and then accepting such
move with probability min{1, p(z

∗|−)q(z|z∗)
p(z|−)q(z∗|z) } where p(z | −) is the target distribution to be
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sampled from. Steps 1 and 2 are generally not a concern in the setting on which we focus
due to the independence of (βj , γj) on (βi, γi) for i 6= j given the latent process and the fact
that the number of covariates for each outcomes is typically small relative to the data size.

Algorithm 1 Posterior sampling of spatially meshed model (1) and predictions.

Initialize β(0)
j and γ(0)j for j = 1, . . . , q, w(0)

S w
(0)

T , and θ(0)

for t ∈ {1, . . . , T ∗, T ∗ + 1, . . . , T ∗ + T} do . sequential MCMC loop
1: for j = 1, . . . , q, sample β(t)

j |yT ,w
(t−1)
T , γ

(t−1)
j

2: for j = 1, . . . , q, sample γ(t)j |yT ,w
(t−1)
T ,β

(t)
j

3: sample θ(t) |w(t−1)
T ,w

(t−1)
S

for c ∈ Colors(G) do . sequential
for i ∈ {i : Color(ai) = c} do in parallel

4: sample w(t)
i |w

(t)
mb(i),yi,θ

(t), {β(t)
j , γ

(t)
j }

q
j=1 . reference sampling

for ` ∈ T do in parallel
5: sample w(`)(t) |w(t−1)

[`] ,y(`),θ(t), {β(t)
j , γ

(t)
j }

q
j=1 . non-reference sampling

Assuming convergence has been attained after T ∗ iterations:
discard {β(t)

j , γ
(t)
j }

q
j=1,w

(t)
S ,w

(t)

T ,θ
(t) for t = 1, . . . , T ∗

Output: Correlated sample of size T with density

{β(t)
j , γ

(t)
j }

q
j=1,w

(t)
S ,w

(t)

T ,θ
(t) ∼ πG({βj , γj}

q
j=1,w

(t)
S ,w

(t)

T ,θ | yT ).

Predict at `∗ ∈ U : for t = 1, . . . , T and j = 1, . . . , q, sample from π(w
(t)
`∗ |w

(t)
[`∗],θ

(t)), then

from Fj(wj(`
∗)(t),β

(t)
j , γ

(t)
j )

It is also typical in these settings to choose a reference set S which includes all locations
with at least one observed outcome, implying that T = ∅; when this is the case, step 5 is not
performed in Algorithm 1. We consider alternative strategies to restore flexibility in choosing
S in the supplementary material. Our sparsity assumptions encoded in ΠG via G facilitate
computations at steps 3 and 4, which would otherwise be the two major computational
bottlenecks. Specifically, in step 3 and assuming T = ∅, a proposal θ∗ generated from a
distribution q(· | θ) is accepted with probability α

α = min

{
1,
π(θ∗)

∏M
i=1 π(wi |w[i],θ

∗)q(θ | θ∗)
π(θ)

∏M
i=1 π(wi |w[i],θ)q(θ∗ | θ)

}
, (3)

whose computation is likely expensive when wi and w[i] are high dimensional because the
base law Π models pairwise dependence of elements of wi based on their spatial distance.
As an example, a GP assumption on Π leads to π(wi |w[i],θ) = N(wi;H i,Ri) whereH i =

Ci,[i]C
−1
[i] and Ri = Ci−H iC [i],i, whose computation has complexity O(min{n3i q3, n3[i]q

3}).
If ni or the number of parent locations n[i] are large, such density evaluation is computa-
tionally prohibitive. Partitioning of S ensures that ni is small for all i, and the assumed
small Markov blankets of nodes in G ensure that the number of parents, and thus n[i], is
small.

Step 4 updates the latent process at each partition and is performed in two loops. The
outer loop is sequential with a number of sequential steps equalling the number of colors of Ḡ,
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which is small by construction. The inner loop can be performed in parallel or, equivalently,
all partitions of the same color can be updated as a single block. In step 4, the lack of
conditional conjugacy implies that proposals for w∗i for all i = 1, . . . ,M need to be designed
and then accepted with probability αi

αi = min

{
1,
π(w∗i |—)dF (yi |w∗i ,—)q(wi | w∗i )
π(wi |—)dF (yi |wi,—)q(w∗i | wi)

}
, (4)

where we denote the full conditional distribution of wi as π(wi |—) and the outcome den-
sities dF (yi |w∗i ,—) =

∏q
j=1

∏
`i∈Si∩Tj dFj(yj(`i) |wj(`),βj , γj). Here, it is desirable to

increase the size of each wi: in proposition 2 we showed that a coarser partitioning of Si
leads to less restrictive spatial conditional independence assumptions. Furthermore, we may
expect a smaller number of larger blocks to lead to improved sampling efficiency at step
4. However, several roadblocks appear when wi is high dimensional. Firstly, evaluating
π(w∗i |—)/π(wi |—) becomes expensive. Secondly, it is difficult to design an efficient pro-
posal distribution q(· | wi) in high dimensions. A random-walk Metropolis (RWM) proposal
proceeds by letting w∗i = wi + gi where we let gi ∼ N(0,Gi), but the niq × niq matrix Gi

must be specified by the user for all i, making a RWM proposal unlikely to achieve acceptable
performance in practice if ni is large, especially if one were to take Gi as diagonal matrices.
Manual specification of Gi’s can be circumvented via Adaptive Metropolis (AM) methods,
which build Gi dynamically based on past acceptances and rejections (see e.g., Haario et al.,
2001; Andrieu and Thoms, 2008; Vihola, 2012), or via gradient-based schemes such as HMC,
which use local information about the target distribution. However, when the dimension of
wi is large the Markov chain will only make small steps and thus negatively impact overall
efficiency and convergence regardless of the proposal scheme. The above mentioned issues
worsen when q is larger, because spatial meshing via partitioning and a sparse DAG only
operates at the level of the spatial domain.

Finally, while it is easier to specify smaller dimensional proposals, reducing the size
of each wi will lead to more restrictive spatial conditional independence assumptions and
poorer sampling performance due to high posterior correlations in the spatial nodes. There-
fore, proposal mechanisms for updating wi should (1) be inexpensive to compute and allow
for the number of outcomes to increase without overly restrictive spatial conditional inde-
pendence assumptions, and (2) use local target information with minimal or no user input
or tuning.

We begin detailing novel computational approaches in the next section, maintaining a
general perspective. We implement our proposals on Gaussian coregionalized meshed process
models and detail Algorithm 3 with an account of computational cost in terms of flops and
clock time.

3. Gradient-based sampling of spatially meshed models

Algorithm 1 is essentially a Metropolis-within-Gibbs sampler for updating the latent effects
wT in M + |T | small dimensional substeps. The setup and tuning of efficient proposals for
updating wi remains a challenge and we consider several update schemes below. Given our
assumption that T = ∅, we only need to sample all wi’s conditional on their Markov blanket
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(step 4). The target full conditional density, for i = 1, . . . ,M , is

p(wi |—) ∝ π(wi |w[i],θ)
∏

j∈{i→j}

π(wj |wi,w[j]\{i},θ)
∏

j=1,...,q,
`∈Si

yj(`) is observed

dFj(yj(`) |wj(`),βj , γj),

(5)
which takes the form p(wi |—) ∝ [i’s parents] × [i’s children] × [data at i] and where the
last term is a product of one-dimensional densities due to conditional independence of the
outcomes given the latent process. The update of wi proceeds by proposing a move wi →
w∗i using density q(· |wi); then, w∗i is accepted with probability min{1, α} where α =
p(w∗i |—)q(wi |w∗i )
p(wi |—)q(w∗i |wi)

. We consider gradient-based update schemes that are accessible due to the
sparsity of G and the low dimensional terms in (5).

3.1 Langevin methods for meshed models

Updating wS in spatial models via a Metropolis-adjusted Langevin algorithm proceeds in
general by proposing a move to w∗i for each i = 1, . . . ,M via

q(w∗i | wi) = N
(
wi + ε2iM∇wi log p(wi |—)/2, ε2iM

)
,

i.e. w∗i = wi +
ε2i
2
M∇wi log p(wi |—) + εiM

1
2u,

(6)

where u ∼ N(0, Ini), Ini is the identity matrix of dimension ni, ∇wip(wi |—) denotes the
gradient of the full conditional log-density log p(wi | —) with respect to wi, and εi is a
step size specific to node i which can be chosen adaptively via dual averaging (see, e.g., the
discussion in Hoffman and Gelman, 2014). With (5) as the target, let f i be the niq×1 vector
that stacks ni blocks of size q×1; each of the ni blocks has δ

δwj(`)
log dF (yj(`) |wj(`),βj , γj)

as its jth element, for ` ∈ Si, and zeros if yj(`) is unobserved. Then, we obtain

∇wi log p(wi |—) = f i +
δ

δwi
log p(wi |w[i],θ) +

∑
j→{i→j}

δ

δwi
log p(wj |wi,w[j]\{i},θ).

(7)
The matrix M in (6) is a preconditioner also referred to as the mass matrix (Neal, 2011).
In the simplest setting, one setsM = Ini to obtain a MALA update (Roberts and Tweedie,
1996). If we assume that gradients can be computed with linear cost, MALA iterations
run very cheaply in O(qni) flops. However, we may conjecture that taking into account
the geometry of the target beyond its gradient might be advantageous when seeking to
formulate efficient updates. Complex update schemes that achieve this goal may operate
on the Riemannian manifold (Girolami and Calderhead, 2011), but lead to an increase in
the computational burden relative to simpler schemes. A special case of manifold MALA
corresponding to relatively small added complexity uses a position-dependent preconditioner

Mwi = Gwi =
(
−E

[
δ2

δw2
i

log p(wi |—)
])−1

. Let F i be the niq×niq diagonal matrix whose
diagonal diag(F i) is a niq×1 vector that stacks ni blocks of size q×1; each of the ni blocks
has −E

[
δ2

δ2wj(`)
log dF (yj(`) |wj(`),βj , γj)

]
as its jth element, for ` ∈ Si, and zeros if yj(`)
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is unobserved. For a target taking the form of (5) we find

G−1wi = F i −
δ2

δw2
i

log p(wi |w[i],θ)−
∑

j→{i→j}

δ2

δw2
i

log p(wj |wi,w[j]\{i},θ); (8)

this choice leads to an interpretation of (6) as a simplified manifold MALA proposal (SM-
MALA) in which the curvature of the target p(wi |—) is assumed constant. We make a
connection between a modified SM-MALA update and the Gibbs sampler available when
the latent process and all outcomes are Gaussian.

Proposition 3 In the hierarchical model α ∼ Nk(α;mα,V α), x |α, S ∼ Nn(x;Aα, S),
consider the following proposal for updating α |x, S:

α∗ = α+
ε21
2
Gα∇α log p(α |—) + ε2G

1
2
αu,

where u ∼ Nn(0, In), and we set ε1 =
√

2, ε2 = 1. Then, q(α∗ |α) = p(α∗ |x, S), i.e. this
modified SM-MALA proposal leads to always accepted Gibbs updates.

The proof is in the supplement, Section C. A corollary of this proposition in the con-
text of spatially meshed models is that when Fj(yj(`);wj(`),βj , γj) = N(yj(`);wj(`) +

xj(`)
>βj , γ

2
j ) for all j = 1, . . . , q, an algorithm based on the modified SM-MALA proposal

with unequal step sizes for updating wi is a Gibbs sampler. In other words, SM-MALA
updates are related to a generalization of Gibbs samplers that have been shown to scale to
big spatial data analyses (Datta et al., 2016a,b; Finley et al., 2019; Peruzzi et al., 2022; Pe-
ruzzi and Dunson, 2022; Peruzzi et al., 2021). With non-Gaussian outcomes, the probability
of accepting the proposed w∗i depends on the ratio q(wi |w∗i )/q(w∗i |wi). Computing this
ratio requires O(2q3n3i ) floating point operations since the dimension of wi and w∗i is qni
and one needs to compute both G−

1
2

wi and G−
1
2

w∗i
, e.g. via Cholesky or QR factorizations. For

these reasons, SM-MALA proposals may lead to unsatisfactory performance with larger q
due to their steeper compute costs relative to simpler MALA updates. We propose a novel
adaptive algorithm below to overcome these issues.

3.2 Simplified Manifold Preconditioner Adaptation

Using a dense, constant preconditioner M in (6) rather than the identity matrix leads to a
computational cost of O(q2n2i ) per MCMC iteration; this cost is larger than MALA updates,
but “good” choices of M might improve overall efficiency. Relative to position-dependent
SM-MALA updates, a constant M might be convenient if q and/or ni are large, but it
is unclear how M can be fixed from the outset in the context of Algorithm 1. In the
context of model (1), we cannot take M−1 as the expected Fisher information evaluated at
the mode due to the high dimensionality of the latent variables and their dependence on
unknown hyperparameters. Adaptive methods may build a preconditioner (or its inverse)
by starting from an initial guess M (0), then applying smaller and smaller changes to M (m)

at iteration m to get M (m+1). Past values of wi can be used to build a preconditioner:
see, e.g., Haario et al. (2001), Andrieu and Thoms (2008), Marshall and Roberts (2012) for
adaptive Metropolis, and Atchadé (2006) for MALA. These methods are not immediately
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advantageous because adaptation using past acceptances may be slow and lead to poor
performance, especially in the within-Gibbs contexts in which we operate. Because O(q3n3i )
updates must be performed each time M (m) or its inverse are updated due to the need to
compute a matrix square root (e.g., Cholesky), slow adaptation methods become increasingly
unappealing compared to simpler methods, like MALA, or methods that systematically
construct a position-dependent preconditioner, like RM-MALA.

Algorithm 2 The mth iteration of Simplified Manifold Preconditioner Adaptation.
Setup and inputs: d-dimensional random vector X ∈ X ⊆ <d, X ∼ P whose density p(·) > 0
is continuous with respect to the Lebesgue measure, assume K is a compact subset of X , fix
the constants D � 0, κ > 0, 0 < T adapt < ∞, step size 0 < ε < D, denote gx = ∇x log p(x),
g̃x = gx ·min

{
D

maxi{gx[i]}
, 1
}
, G−1x = − δ2

δx2 log p(x), G̃
−1
x = G−1x ·min

{
D

maxi{Gx[i,i]} , 1
}
, let the

sequence (γm,m ∈ N) be such that γm > 0, γm ↓ 0.

function SiMPA:
1: Sample z ∼ U(0, 1), v ∼ U(0, 1), u ∼ N(0, Id).
2: Let µ(new) = x(m−1) + ε2

2 M (m−1)g̃x(m−1)
and propose x(new) = µ(new) + εM

1
2

(m−1)u.

3: Let µ(back) = x(new) + ε2

2 M (m−1)g̃x(new)
.

4: Compute

α =
p(x(new))

p(x(m−1))
·
N(x(m−1);µ(back), ε

2M (m−1))

N(x(new);µ(new), ε
2M (m−1))

.

5: if α < v and ‖x(new) − x(m)‖ < D, . proposal accepted
6: Set x(m) = x(new).
7: else: set x(m) = x(m−1). . proposal rejected

if z < γm and (x(m) ∈ K or m < T adapt): . adapting

8: Set M−1
(m) = M−1

(m−1) + κ(G̃
−1
x(m)
−M−1

(m−1)) and compute M
1
2

(m).
else: . not adapting

9: Set M (m) = M (m−1).

To resolve these issues, we outline our Simplified Manifold Preconditioner Adaptation
(SiMPA) as Algorithm 2. We present SiMPA in general terms as it operates independently
of spatial meshing. The main feature of our algorithm is that it uses the negative Hessian
matrixG−1x to adaptively build a (position-independent) preconditioner. In spatially meshed
models and corresponding within-Gibbs posterior sampling algorithms,Gx can be computed
easily using (8), also see Appendix D.2. Comparatively, an adaptive algorithm similar to
Atchadé (2006), which we label YA-MALA, replaces step 8 in Algorithm 2 with x(m) =
x(m−1) + κ(x(m) −x(m−1)) and M (m) = M (m−1) + κ(Γm −M (m−1)), where Γm = (x(m) −
x(m−1))(x(m)−x(m−1))

>+10−6Id and leaves everything else the same. We show the benefits
of adapting via SiMPA compared to YA-MALA in Section E.3.

In SiMPA, we reduce the number of iterations with O(q3n3i ) complexity by applying fixed
changes toM (m) with probability γm → 0 asm→∞. As a consequence, the (expected) cost
at iteration m is O(q2n2i + γmq

3n3i ) rather than O(q3n3i ). In the context of spatially meshed
models, ni is small, and the quadratic cost on q can be further reduced via coregionalization
(we do so in Section 4). In our applications, we use γm = 1(m≤T ) +1(m>T )(m−T )−a, where
1A is the indicator for the occurrence of A, T <∞ is the number of initial iterations during
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which adaptation always occurs, and a > 0 is the rate at which the probability of adaptation
decays after T . Small values of the parameter κ lead to M (m) having long memory of the
past.

We conservatively choose T = 500, a = 1/3, κ = 1/100 as these values allowed ample
burn-in time for all spatial nodes in all our applications. Preliminary analyses with T = 1000
led to an increase in compute time with no advantage in estimation, prediction, or efficiency.
On the other hand, T = 100 or a = 1/2 resulted in lower compute times at the cost of
overall performance: letting γm decay too quickly may lead to an inability to capture the
appropriate geometry of the target density.

Because its update does not result in any increase in computational complexity, the step
size ε can be changed at each step, for example via dual averaging (DA) as in Algorithms 5
and 6 of Hoffman and Gelman (2014). We use the same DA scheme when comparing SiMPA
to other gradient-based sampling methods. DA involves updates to ε at each iteration
m < T adapt and none afterwards. Because T adapt < ∞, DA has no impact on the eventual
convergence of the chain. Finally, the constant D is used to limit the jump size of the
proposals as well as bound the index set for adaptation. We need D as well as additional
conditions on the algorithmic behavior near the boundary of K to satisfy the containment
or bounded convergence condition (Roberts and Rosenthal, 2007, 2009) that allows SiMPA
to provably converge in total variation distance to the target distribution P even when the
state space is not compact. Intuitively, outside of the compact K we stop adapting after
iteration T adapt, whereas we perform an infinite (diminishing) adaptation inside it, in order
to satisfy the conditions of Theorem 21 of Craiu et al. (2015).

Proposition 4 Suppose π is everywhere non-zero and twice differentiable so that gx and
Gx are well defined. Let ε > 0, K ⊂ <d, D > 0. Additionally assume that if x(m) ∈ K
with dist(x(m),K

c) = u with 0 ≤ u ≤ 1 then the proposal is changed to x(new) ∼ N(x(m) +
ε2

2 M (Tadapt)g̃x(m)
, ε2M (Tadapt)). Then, Algorithm 2 converges in distribution to P .

The proof is in the supplement, Section C. The containment condition would hold without
introducing K and without specifying the behavior of the algorithm near and outside K
by assuming that X itself is compact, which is in principle a restrictive assumption. In
practice, K can be fixed large enough so that the chain essentially never leaves it. The
SiMPA preconditioner will not in general correspond to the negative Hessian computed at
the mode of the target density; rather, by a law of large numbers argument it will converge
to the expectation of the negative Hessian of the target density.

4. Gaussian coregionalization of multi-type outcomes

We have so far outlined general methods and sampling algorithms for big data Bayesian mod-
els on multivariate multi-type outcomes. In this section, we remain agnostic on the outcome
distributions, but specify a Gaussian model of latent dependency based on coregionalization.
GPs are a convenient and common modeling option for characterizing latent cross-variability.
We now assume the base process law Πθ is a q-variate GP, i.e. w(`) ∼ GP (0,Cθ(·, ·)).
The matrix-valued cross-covariance function Cθ(·, ·) is parametrized by θ and is such that
Cθ(·, ·) = [cov{wi(`), wj(`′)}]qi,j=1, the q × q matrix with (i, j)th element given by the
covariance between wi(`) and wj(`

′). Cθ(·, ·) must be such that Cθ(`, `′) = Cθ(`′, `)>
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and
∑n

i=1

∑n
j=1 z

>
i Cθ(`i, `j)zj > 0 for any integer n and any finite collection of points

{`1, `2, . . . , `n} and for all zi ∈ <q \ {0} (see, e.g., Genton and Kleiber, 2015).

4.1 Coregionalized cross-covariance functions

The challenges in constructing valid cross-covariance functions can be overcome by con-
sidering a linear model of coregionalization (LMC; Matheron, 1982; Wackernagel, 2003;
Schmidt and Gelfand, 2003). A stationary LMC builds q-variate processes via linear com-
binations of k univariate processes, i.e. w(`) =

∑k
h=1 λhvh(`) = Λv(`), where Λ =

[λ1, . . . ,λk] is a q × k full (column) rank matrix with (i, j)th entry λij , whose ith row
is denoted λ[i,:], and each vj(`) is a univariate spatial process with correlation function
ρj(`, `

′) = ρ(`, `′;φj), and therefore θ = (vec(Λ)>,Φ>)> where Φ = (φ>1 , . . . ,φ
>
k )>.

Independence across the k ≤ q components of v(`) implies cov{vj(`), vh(`′)} = 0 when-
ever h 6= j, and therefore v(`) is a multivariate process with diagonal cross-correlation
ρ(`, `′; Φ). As a consequence, the q-variate w(·) process cross-covariance is defined as
Cθ(`, `′) = Λρ(`, `′; Φ)Λ> =

∑k
h=1 λhλ

>
h ρ(`, `′,φh). If ‖` − `′‖ = 0, then Cθ(0) =

Λρ(0; Φ)Λ> = ΛΛ> since ρ(0; Φ) = Ik. Therefore, when k = q, Λ is identifiable e.g. as
a lower-triangular matrix with positive diagonal entries corresponding to the Cholesky fac-
torization of Cθ(0) (see e.g., Finley et al., 2008; Zhang and Banerjee, 2022, and references
therein for Bayesian LMC models). When k < q, a coregionalization model is interpretable
as a latent spatial factor model. For a set L = {`1, . . . , `n} of locations, we let ρΦ,L
be the kn × kn block-matrix whose (i, j) block is ρ(`i, `j ,φ)–which has zero off-diagonal
elements–and thus Cθ,L = (In ⊗Λ)ρΦ,L(In ⊗Λ>). Notice that the qn × 1 vector wL can
be represented by a n × q matrix W whose jth column includes realizations of the jth
margin of the q-variate process. Assuming a GP, we find wL = vec(W>) ∼ N(0,Cθ,L).
We can also equivalently represent process realizations by outcome rather than by location:
if we let w̃L = vec(W ) then w̃L ∼ N(0, QCθ,LQ

>) where Q is a permutation matrix that
appropriately reorders rows of Cθ,L (and thus, Q> reorders its columns). We can write
QCθ,LQ

> = C̃θ,L = (Λ> ⊗ In)ρ̃Φ,L(Λ ⊗ In) = (Λ> ⊗ In)JρΦ,LJ
>(Λ ⊗ In) where J is a

nk × nk permutation matrix that operates similarly to Q but on the k components of the
LMC. Here, ρ̃Φ,L is a block-diagonal matrix whose jth diagonal block is ρj,L, i.e. the jth
LMC component correlation matrix at all locations. This latter representation clarifies that
prior independence (i.e., a block diagonal ρ̃Φ,L) does not translate to independence along
the q outcome margins once the loadings Λ are taken into account (in fact, Cθ,L is dense).

4.2 Latent GP hierarchical model

In practice, LMCs are advantageous in allowing one to represent dependence across q out-
comes via k � q latent spatial factors. We build a multi-type outcome spatially meshed
model by specifying Π in (1) as a latent Gaussian LMC model with MGP factors

yj(`) | ηj(`), γj ∼ Fj(ηj(`), γj),
ηj(`) = xj(`)

>βj + λ[j,:]v(`), vh(·) ∼MGPG(0, ρh(·, ·)), h = 1, . . . , k
(9)
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whose posterior distribution is

π({β(t)
j , γ

(t)
j }

q
j=1,vT ,Φ,Λ |yT ) ∝ π(Φ)

k∏
h=1

M∏
i=1

π(vh,i |vh,[i]φh)·

q∏
j=1

π(βj , γj) ·
∏
`∈Tj

dFj(yj(`) | vj(`),λ[j,:],βj , γj)

 .

(10)
The LMC assumption on w(·) using MGP margins leads to computational simplifications
in evaluating the density of the latent factors. For each of the M partitions, we now have a
product of k independent Gaussian densities of dimension ni rather than a single density of
dimension qni.

4.3 Spatial meshing of Gaussian LMCs

When seeking to achieve scalability of LMCs to large scale data via spatial meshing, it is
unclear whether one should act directly on the q-variate spatial process w(·) obtained via
coregionalization, or independently on each of the k LMC component processes. We now
show that the two routes are equivalent with MGPs if a single DAG and a single domain
partitioning scheme are used.

Algorithm 3 Posterior sampling and prediction of LMC model (1) with MGP priors.

Initialize β(0)
j , Λ(0) and γ(0)j for j = 1, . . . , q, v(0)S , and Φ(0)

for t ∈ {1, . . . , T ∗, T ∗ + 1, . . . , T ∗ + T} do . sequential MCMC loop
for j = 1, . . . , q, do in parallel

1: use SiMPA to update β(t)
j ,λ

(t)
[j,:] |yT ,v

(t−1)
S , γ

(t−1)
j . O(nq(p+ k)2)

for j = 1, . . . , q, do in parallel
2: use Metropolis-Hastings to update γ(t)j |yT ,v

(t−1)
S ,β

(t)
j ,λ

(t)
[j,:] . O(nq)

3: use Metropolis-Hastings to update Φ(t) |v(t−1)S . O(nkd3m2)

for c ∈ Colors(G) do . sequential
for i ∈ {i : Color(ai) = c} do in parallel

4: use SiMPA to update v(t)i |v
(t)
mb(i),yi,Λ

(t),Φ(t), {β(t)
j , γ

(t)
j }

q
j=1 . O(nmk2)

Assuming convergence has been attained after T ∗ iterations:
discard {β(t)

j , γ
(t)
j }

q
j=1,v

(t)
S ,Λ

(t),Φ(t) for t = 1, . . . , T ∗

Output: Correlated sample of size T with density

{β(t)
j , γ

(t)
j }

q
j=1,v

(t)
S ,Λ

(t),Φ(t) ∼ πG({βj , γj}
q
j=1,v

(t)
S ,Λ,Φ, | yT ).

Predict at `∗ ∈ U : for t = 1, . . . , T and j = 1, . . . , q, sample from π(v
(t)
`∗ |v

(t)
[`∗],Φ

(t)), then from

Fj(wj(`
∗)(t),β

(t)
j ,λ

(t)
[j,:], γ

(t)
j )

If the base process Π is a q-variate coregionalized GP, then for i = 1, . . . ,M the
conditional distributions are π(wi |w[i],θ) = N(wi;H iw[i],Ri) where H i = Ci,[i]C

−1
[i] ,

Ri = Ci − H iC [i],i, and C(`, `′) = Λρ(`, `′)Λ> (we omit the θ and Φ subscripts for
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simplicity). When sampling, (5) simplifies to

p(wi |—) ∝N(wi;H iw[i],Ri)
∏

j∈{i→j}

N(wj ;H i→jwi +H [j]\{i}w[j]\{i},Rj)·

·
∏

j=1,...,q,
`∈Si

yj(`) is observed

dFj(yj(`) |wj(`),βj , γj), (11)

where the notation i → j and [j] \ {i} refers to the partitioning of Hj by column into
Hj = [H i→j H [j]\{i}] and thus w[j]\{i} corresponds to blocks of w[j] excluding wi (i.e. the
co-parents of i relative to node j). H i and Ri have dimension qni × qn[i] and qni × qni,
respectively. Their dimension depends on q, and the following proposition uncovers their
structure.

Proposition 5 A q-variate MGP on a fixed DAG G, a domain partition T, and a LMC
cross-covariance function Cθ is equal in distribution to a LMC model built upon k indepen-
dent univariate MGPs, each of which is defined on the same G and T.

The proof proceeds by showing that if wi = (Ini ⊗Λ)vi then π(wi |w[i]) = π(vi |v[i]) and
that for all i = 1, . . . ,M we can write π(vi |v[i]) =

∏k
h=1 π(v

(h)
i | v

(h)
[i] ), concluding that

πG(wS) =
∏M
i=1 π(wi |w[i]) =

∏M
i=1

∏k
h=1 π(v

(h)
i | v

(h)
[i] ) =

∏k
h=1 π

(h)
G (v

(h)
S ) where π(h)G is the

density of the hth independent univariate MGP using G, T, and correlation function ρh(·, ·).
The complete derivation is available in the supplement. A corollary of Proposition 5 is that a
different spatially meshed GP can be constructed via unequal spatial meshing (i.e., different
graphs and partitions) along the k margins; this result intuitively says that an MGP behaves
like a standard GP with respect to the construction of multivariate processes via LMCs and
in other words, there is no loss in flexibility when using MGPs compared to the full GP. The
supplementary material provides details on ∇vi log p(v |—) and Gvi for posterior sampling
of the latent meshed Gaussian LMC models via Algorithm 1.

5. Applications on bivariate non-Gaussian data

We concentrate here on a scenario in which two possibly misaligned non-Gaussian outcomes
are measured at a large number of spatial locations and we aim to jointly model them.
We will consider a larger number of outcomes in Section 6, in the context of community
ecology. In addition to the analysis presented here, the supplement (Section E) includes (1)
a comparison of methods across 750 multivariate synthetic datasets, and (2) performance
assessments of multiple sampling schemes in multivariate multi-type models using latent
coregionalized QMGPs.

5.1 Illustration: bivariate log-Gaussian Cox processes

When modeling spatial point patterns via log-Gaussian Cox processes with the goal of
estimating the intensity surface, one typically proceeds by counting occurrences within cells
in a regular grid of the spatial domain. We simulate this scenario by generating a bivariate
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Figure 5: Latent NNGP process realization and corresponding synthetic count data at
14, 400 spatial locations for correlated spatial outcomes. We omit the plots corresponding
to the unrestricted GP scenario as they are visually indistinguishable.

Poisson outcome at each location of a 120 × 120 regular grid, for a data dimension of
qn = 28800. In model (1), we let Fj be a Poisson distribution with intensity exp{ηj(`)}
at ` ∈ [0, 1]2, where ηj(`) = x(`)>βj + wj(`) is the log-intensity for count outcome j. We
sample 3 correlated covariates at each location independently as x>(`) ∼ N3(0,Σx) where
Σx is a correlation matrix with off-diagonal elements σ12 = 0.9, σ13 = −0.3, σ23 = −0.6,
and we let β1 = (−0.5,−1, 0)>,β2 = (−1,−0.5, 0.5)>. We fix the latent process Π in one
scenario as a coregionalized GP and in another as a coregionalized NNGP. In both cases,
wj(`) = λ[j,:]v(`) and ΛΛ> = (σij)i,j=1,2 where σ11 = 4, σ12 = σ21 = −1.3, σ22 = 1,
which yields a latent cross-correlation between the two outcomes of ρ = −0.65; the two
spatial correlations used in the LMC model are ρh(‖`− `′‖) = exp{−φh‖`− `′‖} and we let
φ1 = 1.5, φ2 = 2.5. We use R package GpGp to generate an NNGP using maxmin ordering
of the spatial locations and 10 neighbors. We depict the latent NNGP process along with
the full data in Figure 5. We introduce missing values at 20% of the spatial locations,
independently for each outcome. As a result, our training data are misaligned.

We investigate the comparative performance of several coregionalized QMGP variants
computed via MALA, SM-MALA, SiMPA and NUTS. We also consider latent multivariate
Student-t processes (Chen et al. 2020; Shah et al. 2014) using an alternative cross-covariance
specification based on Apanasovich and Genton (2010)—in short “AG10”—and previously
used in Peruzzi et al. (2022), which we also implement in the meshed Gaussian case. We
detail the specifics of spatial meshing and gradient-based sampling for Student-t processes
in Section F. To the best of our knowledge, ours is the first implementation of a scalable
Student-t process using DAGs. We also compare with a data transformation method based
on NNGPs: for each outcome, we use y∗ = log(1+y), then fit NNGP models of the response
on each outcome independently. All MCMC-based results are based on chains of length
30,000. All gradient-based methods share the dual averaging setup for adapting the step
size ε and are thus allowed the same burn-in period. Finally, we implement an MCMC-free
stochastic partial differential equations method (SPDE; Lindgren et al., 2011) fit via INLA.
The SiMPA-estimated posterior means for the latent process, predictions across the spatial
domain, as well as the width of 95% CIs about the linear predictors are reported in Figure
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Figure 6: Output from fitting a coregionalized QMGP via SiMPA to simulated data in the
latent NNGP scenario. Top row: estimated posterior mean of the spatial latent process
and predictions for both outcomes. Bottom row: width of posterior credible intervals about
log-intensity, and residual log-intensity.

6, where we also highlight that the lack of visible spatial patterns in the linear predictor
residuals is evidence of the ability of SiMPA to capture the spatial correlation in the data.

A summary of results from all implemented methods is available in Table 1, which reports
root mean square prediction error (RMSPE) and mean absolute error in prediction (MAEP)
when predicting the log-intensity ηj,test and the outcomes yj,test, j = 1, 2 on the test set of
5740 locations, and the empirical coverage of 95% credible intervals (CI) about the log-
intensity, in both scenarios. We observe that SiMPA offers excellent predictive performance
and well calibrated credible intervals at a fraction of the compute cost, relative to state-
of-the-art posterior sampling methods in this context. In the NNGP scenario, there is a
disconnect between the fitted DAG (arising from a QMGP) and the data-generating DAG.
This disconnect may explain why QMGP methods implementing the flexible AG10 cross-
covariance function perform relatively better than in the GP scenario. Even in the NNGP
setting, SiMPA retains excellent performance at a small compute cost.

Because the only difference between SiMPA and YA-MALA is in how the preconditioner
is adapted, the relatively poor performance of YA-MALA can be attributed to it requir-
ing a much longer burn-in period in practice. We attribute the poor performance of the
implemented NNGP methods to the fact that they are unable to capture cross-variable
dependence, as well as their being limited to Gaussian outcomes in R package spNNGP

Figure 7 expands on the analysis of empirical coverage of CIs by reporting the perfor-
mance of all models at additional quantiles, relative to the oracle coverage, i.e., the empirical
coverage of the model in which all unknowns are set to their true value. A value of relative
coverage near 1 implies that the empirical coverage of the Q% CI is close to the coverage of
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Figure 7: Top row: empirical coverage of uncertainty intervals at different quantiles, relative
to the oracle model (values under 1 imply undercoverage of the interval), in the NNGP
scenario. Bottom row: detailed comparison of relative coverage of SiMPA and HMC for the
linear predictor of each outcome.

the true data generating model. From Figure 7 we observe that SiMPA outpeforms other
methods at this task.

Unrestricted GP Nearest-neighbor GP, NN = 10
yj,test(`) ηj,test(`) Time(s)

yj,test(`) ηj,test(`) Time(s)
Spatial
model

Covariance
model

Compute
algorithm j

RMSPE MAEP RMSPE MAEP Covg95% RMSPE MAEP RMSPE MAEP Covg95%

1 3.01 1.39 0.32 0.25 69.48 2.87 1.36 0.32 0.26 69.27SPDE INLA 2 6.14 1.90 0.33 0.26 63.44 333 5.79 1.85 0.32 0.25 65.52 334

1 2.33 1.27 0.21 0.17 99.51 2.26 1.22 0.21 0.17 99.44MALA 2 4.08 1.57 0.20 0.16 94.27 90 3.77 1.53 0.19 0.15 93.58 89

1 7.27 2.56 0.95 0.76 5.42 6.96 2.48 0.93 0.75 5.56YA-MALA 2 18.98 4.92 1.28 1.01 3.92 111 18.85 4.89 1.30 1.03 4.20 108

1 2.18 1.22 0.17 0.14 95.83 2.16 1.19 0.17 0.14 95.21SiMPA 2 4.03 1.57 0.19 0.15 94.55 117 3.60 1.51 0.19 0.15 94.48 116

1 2.19 1.22 0.18 0.15 96.28 2.17 1.20 0.18 0.15 94.93RM-MALA 2 4.20 1.56 0.23 0.18 93.37 187 3.97 1.56 0.23 0.18 92.57 183

1 2.18 1.23 0.17 0.14 95.73 2.16 1.20 0.17 0.14 94.65HMC 2 3.96 1.56 0.19 0.15 94.76 246 3.54 1.51 0.19 0.15 93.82 359

1 2.16 1.22 0.18 0.14 93.89 2.21 1.20 0.18 0.14 92.57

LMC

2 4.07 1.57 0.20 0.16 90.66 620 3.56 1.51 0.19 0.15 90.97 633

1 2.22 1.23 0.18 0.14 92.64 2.13 1.19 0.17 0.14 91.39

QMGP

2 4.01 1.56 0.20 0.16 91.60 501 3.56 1.50 0.19 0.15 92.01 480

1 2.19 1.23 0.18 0.14 91.77 2.16 1.20 0.18 0.14 90.97QMTP
AG10

NUTS

2 4.02 1.57 0.20 0.16 90.21 857 3.50 1.50 0.19 0.15 91.28 841

NNGP Exp Transform &
Response

1 5.71 2.01 1.19 0.98 59.41 5.52 1.96 1.19 0.99 59.10
2 15.55 3.63 1.36 1.12 58.09 166 15.44 3.56 1.34 1.10 58.68 171

Table 1: Summary of out-of-sample results for all implemented models. Bolded values
correspond to best performance.
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Figure 8: Performance of QMGP-SiMPA and SPDE-INLA in the MODIS data application.

5.2 MODIS data: leaf area and snow cover

The dynamics of vegetation greenness are important drivers of ecosystem processes; in alpine
regions, they are influenced by seasonal snow cover. Predictive models for vegetation greenup
and senescence in these settings are crucial for understanding how local biological communi-
ties respond to global change (Walker et al., 1993; Jönsson et al., 2010; Wang et al., 2015a;
Xie et al., 2020). We consider remotely sensed leaf area and snow cover data from the
MODerate resolution Imaging Spectroradiometer (MODIS) on the Terra satellite operated
by NASA (v.6.1) at 122,500 total locations (a 350× 350 grid where each cell covers a 0.25km2

area) over a region spanning northern Italy, Switzerland, and Austria, during the 8-day pe-
riod starting on December 3rd, 2019 (Figure 1). Leaf area index (LAI; number of equivalent
layers of leaves relative to a unit of ground area, available as level 4 product MOD15A2H) is
our primary interest and is stored as a positive integer value but is missing or unavailable at
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38.2% of all spatial locations due to cloud cover or poor measurement quality. Snow cover
(SC; number of days within an 8-day period during which a location is covered by snow,
obtained from level 3 product MOD10A2) is measured with error and missing at 7.3% of
the domain locations.

We create a test set by introducing missingness in LAI at 10,000 spatial locations, of
which 5030 are chosen uniformly at random across the whole domain and 4970 belong
to a contiguous rectangular region as displayed on the bottom left subplot of Figure 8a.
We attempt to explain LAI based on SC by fitting (9) on the bivariate outcome y(`) =
(ySC(`), yLAI(`))

> where we assume a Binomial distribution with 8 trials and logit link for
SC, i.e. E(ySC(`) | µ(`)) = 8µ(`) = 8(1 + exp{−ηSC(`)})−1, and a Poisson or Negative Bi-
nomial distribution for LAI. In both cases, E(yLAI(`) | ηLAI(`)) = µLAI(`) = exp{ηLAI(`)};
for the Poisson model, V ar(yLAI(`) | ηLAI(`)) = µLAI(`), whereas for the Negative Binomial
model V ar(yLAI(`) | ηLAI(`)) = µLAI(`) + τµ2LAI(`) where τ is an unknown scale parameter.
We fit model (9) using latent coregionalized QMGPs with k = 2 on a 50 × 50 axis-parallel
domain partition and run SiMPA for 30,000 iterations, of which 10,000 are discarded as
burn-in and thinning the remaining ones with a 20:1 ratio, leading to a posterior sample of
size 1,000. We compare our approaches in terms of prediction and uncertainty quantification
about yLAI on the test set to a SPDE-INLA approach implemented on a 60×60 mesh which
led to similar compute times. As shown in Table 2, QMGP-SiMPA is competitive with
or outperforms the SPDE-INLA method across all measured quantities. Figure 8b reports
predictive maps of the tested models (prediction values are censored at 100 for visualiza-
tion clarity), along with a visualization of 75% one-sided credible intervals which shows the
SPDE-INLA method exhibiting undesirable spatial patterns, unlike QMGP-SiMPA.

Method FLAI RMSPE MedAE CRPS
CI75 CI95 CI99

Time
(mean) (median) (minutes)

QMGP-SiMPA Poisson 16.543 1.322 3.916 1.199 0.867 0.974 0.989 25.4
Neg. Binom. 11.726 2.155 4.462 2.241 0.809 0.980 0.994 32

SPDE-INLA Poisson 27.839 2.154 4.695 1.214 0.835 0.938 0.961 25.8
Neg. Binom. 27019.470 2.444 54.986 1.720 0.875 0.975 0.987 86.5

Table 2: Root mean square error (RMSPE), median absolute error (MedAE), continuous
ranked probability score (CRPS), and empirical coverage of one-sided intervals (CIq), over
the out-of-sample test set of 6,998 locations.

6. Applications: spatial community ecology

Ecologists seek to jointly model the spatial occurrence of multiple species, while inferring
the impact of phylogeny and environmental covariates (see, e.g., Dorazio and Royle 2005;
Doser et al. 2022). In order to realistically model such a scenario, we consider cases in which
a relatively large number of georeferenced outcomes is observed, with the goal of predicting
their realization at unobserved locations and estimating their latent correlation structure
after accounting for spatial and/or temporal variability. Presence/absence information for
different species is encoded as a multivariate binary outcome. Our model for multivariate
binary outcomes lets Fj(yj(`); ηj(`)) = Bern(µj(`)) where µj(`) = (1 + exp{−ηj(`)})−1
and vh(·) ∼ QMGP (0,ρh(·, ·)), h = 1, . . . , k in model (9), leading to coregionalized k-factor
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QMGPs which we fit via several Langevin methods, all of which use domain partitioning
with blocks of size ≈ 36 and independent standard Gaussian priors on the lower-triangular
elements of the factor loadings Λ, unless otherwise noted.

We compare QMGP methods fit via our proposed Langevin algorithms to joint species
distribution models (JSDM) implemented in R package Hmsc (Tikhonov et al., 2020), a pop-
ular software package for community ecology. Hmsc uses a probit link for binary outcomes,
i.e. µj(`) = Φ(ηj(`)) where Φ(·) is the Gaussian distribution function; then, non-spatial JS-
DMs are implemented by letting vh(`) ∼ N(0, 1) independently for all ` and h = 1, . . . ,K,
whereas NNGP-based JSDMs assume vh(·) ∼ NNGP (0,ρh(·, ·)), h = 1, . . . , k. We set the
number of neighbors as m = 20 in the NNGP specification. Hmsc assumes a cumulative
shrinkage prior on the factor loadings (Bhattacharya and Dunson, 2011), which we set up
with minimal shrinking (a1 = 2, a2 = 2) unless otherwise noted.

Section E.3 in the Supplementary Material compares our methods with alternative pos-
terior sampling algorithm in fitting a multi-species N-mixture model for multi-species abun-
dance data in community ecology.

6.1 Synthetic occupancy data

We generate 30 datasets by sampling q = 10 binary outcomes at n = 900 locations scattered
uniformly in the domain [0, 1]2: after sampling k = 3 independent univariate GPs vj(·) ∼
GP (0, Cϕj ) where Cϕj (`, `

′) = exp{−ϕj‖`−`′‖} is the exponential covariance function with
decay parameter ϕj , we construct a q-variate GP via coregionalization by letting w(`) =
Λv(`) where Λ is a q × k lower-triangular matrix. We then sample the binary outcomes
using a probit link, i.e. yj(`) ∼ Bern(µj(`)) where µj(`) = Φ(x(`)>βj + wj(`)) for each
j = 1, . . . , q and where x(`) is a column vector of p = 2 covariates. For each of the 30
datasets, we randomly set ϕj ∼ U(1/2, 10), j = 1, . . . , k, Λjj ∼ U(3/2, 2) for j = 1, . . . , k,
Λij ∼ U(−2, 2) for i < j, and βj ∼ N(0, I2/5). These choices lead to a wide range of latent
pairwise correlations induced on the outcomes via w(·): letting Ω = (ωij)i,j=1,...,q = ΛΛ>

represent the cross-covariance at zero spatial distance, we find the cross-correlations as
Ωcorr = diag(ω

−1/2
jj )Ωdiag(ω

−1/2
jj ). We realistically model long-range spatial dependence by

choosing small values for ϕj , j = 1, . . . , k. Lastly, we create a test set using 20% of the
locations for each outcome (missing data locations differ for each outcome).

We use the setup of QMGPs and Hmsc outlined above, noting that the link function
used to generate the data is correctly specified for Hmsc but not for our models based on
QMGP due to our current software implementation in R package meshed. MCMC for all
methods was run for 10,000 iterations, of which the first 5,000 is discarded as burn-in. We
compare all models based on the out-of-sample classification performance on each of the 10
outcomes as measured via the area under the receiver operating characteristic curve (AUC).
Since a primary interest in these settings is to estimate latent correlations across outcomes,
we compare models based on ‖Ω̂corr − Ωcorr‖F , i.e. the Frobenius distance between the
Monte Carlo estimate of cross-correlation and its true value. Therefore, smaller values of
‖Ω̂corr −Ωcorr‖F are desirable. Figure 10 shows box-plots summarising the results, whereas
Table 3 reports averages along with compute times. In these settings, the non-spatial model
unsurprisingly performed worst. Langevin methods for the spatial models proposed in this
article – and in particular SiMPA – lead to improved classification performance, smaller
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used to generate them (bottom row). Here, we show 5 (of 10) outcomes in 1 (of 30) simulated
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errors in estimating latent correlations, and a 30-fold reduction in compute time, relative to
the coregionalized NNGP method implemented via MCMC in Hmsc.

Method Hmsc MALA SM-MALA SiMPA
Prior on rand. eff. non-spatial NNGP QMGP

Avg. AUC 0.827 0.885 0.882 0.874 0.885
Min. AUC 0.573 0.608 0.392 0.530 0.609
Max. AUC 0.969 0.983 0.986 0.987 0.984

‖Ω̂corr − Ωcorr‖F 1.66 1.43 1.46 1.91 1.14
Avg. time (minutes) 5.15 17.4 0.44 0.73 0.53

Table 3: Performance in classification, estimation, and compute time, over 30 synthetic
datasets.

6.2 North American breeding bird survey data

The North American Breeding Bird Survey dataset contains avian point count data for
more than 700 North American bird taxa (species, races, and unidentified species group-
ings). These data are collected annually during the breeding season, primarily June, along
thousands of randomly established roadside survey routes in the United States and Canada.

We consider a dataset of n = 4118 locations spanning the continental U.S., and q = 27
bird species. The specific species we consider belong to the passeriforme order and are
observed at a number of locations which is between 40% and 60% of the total number of
available locations – Figure 2 shows a subset of the data. We dichotomize the observed
counts to obtain presence/absence data. The effective data size is nq = 111,186. We
implement Langevin methods using coregionalized QMGPs with k = 2, 4, 6, 8, 10 spatial
factors using exponential correlations with decay φ ∼ U [0.1, 10] a priori. We also test the
sensitivity to the domain partitioning scheme by testing 8×4 (coarse), 16×8 (medium), and
32 × 16 (fine) axis-parallel domain partitioning schemes. Finer partitioning implies more
restrictive spatial conditional independence assumptions. In implementing the shrinkage
prior of Bhattacharya and Dunson (2011), Hmsc dynamically chooses the number of factors
up to a maximum kmax: in the non-spatial Hmsc model, letting kmax = 10 ultimately leads
to 6 or fewer factors being used during MCMC. In the spatial Hmsc models using NNGPs,
we set kmax = 2 or kmax = 5 to restrict run times. Figure 11 reports average classification
performance and run times. QMGP-MALA scales only linearly with the number of factors,
but its performance is strongly negatively impacted by partition size. QMGP-SM-MALA
exhibits large improvements in classification performance, however these improvements come
at a large run time cost. QMGP-SiMPA outperforms all other models while providing large
time savings relative to SM-MALA and being less sensitive to the choice of partition. A
QMGP-SiMPA model on the 32 × 16 partition with k = 4 outperforms a spatial NNGP-
Hmsc model in classifying the 27 bird species with a reduction in run time of over three
orders of magnitude (respectively 4.1 minutes and 70.7 hours). We provide a summary of
the efficiency in sampling the elements of Ωcorr in Table 4, where we make comparisons of
ESS/s relative to the non-spatial Hmsc model. While efficient estimation of Ωcorr remains
challenging, QMGP-SiMPA models show marked improvements relative to a state-of-the-art
alternative.
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species.
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Method Hmsc SiMPA
Prior non-spatial NNGP QMGP

k ≤ 10 5 4 4 10 10
Setting m = 20 32× 16 8× 4 32× 16 8× 4

Avg. AUC 0.9349 0.9293 0.9565 0.9565 0.9728 0.9732
Time (minutes) 87.45 4245.02 4.08 43.10 9.27 187.24
ESS/s for elements of Ωcorr (relative to Hmsc non-spatial)

min 1 10−4 0.57 0.02 0.05 0.01
median 1 0.012 2.12 0.33 0.86 0.05
mean 1 0.015 3.69 0.45 1.20 0.07
max 1 0.102 42.47 3.95 11.15 0.56

Table 4: Out-of-sample performance in classification of the 27 bird species, compute time,
and efficiency in estimation of Ωcorr, relative to a non-spatial JDSM model.

7. Discussion

We have introduced Bayesian hierarchical models based on DAG constructions of latent
spatial processes for large scale non-Gaussian multivariate multi-type data which may be
misaligned, along with computational tools for adaptive posterior sampling. We illustrated
our methods using applications with data sizes in the tens to hundreds of thousands, with
compute times ranging from a few seconds to under 30 minutes in a single workstation. The
compute time for a single SiMPA iteration for a univariate Poisson outcome observed on
gridded coordinates with n = 106 is under 0.2 seconds after burn-in; in other words, our
methods enable running MCMC for hundreds of thousands of iterations on massive spatial
data under a total time budget of 12 hours.

We have applied our methodologies using practical cross-covariance choices such as mod-
els of coregionalization built on independent stationary covariances. However, nonstationary
models are desirable in many applied settings. Recent work (Jin et al., 2021) highlights that
DAG choice must be made carefully when considering explicit models of nonstationary, as
spatial process models based on sparse DAGs induce nonstationarities even when using sta-
tionary covariances. Our work in this article will enable new research into nonstationary
models of large scale non-Gaussian data. Furthermore, our methods can be applied for
posterior sampling of Bayesian hierarchies based on more complex conditional independence
models of multivariate dependence (Dey et al., 2021).

In our work, we have assumed a common DAG and partitioning for all spatial variables.
In some settings, these assumptions may lead to inflexibility in modeling variables with
fundamentally different dependence structures and/or spatial domain constraints (see, e.g.,
Jin et al. 2022). In the multivariate setting, one potentially useful direction towards building
a highly flexible class of models is to infer different DAGs for different factors within a spatial
factor model by extending the methods of Jin et al. (2021). Understanding how to generally
build flexible and scalable spatial factor models using different DAGs and accounting for
unequal domain constraints is an interesting direction for future research.

Our methodologies rely on the ability to embed the assumed spatial DAG within the
larger Bayesian hierarchy and lead to drastic reductions in wall clock time compared to
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models based on unrestricted GPs. Nevertheless, high posterior correlations of high dimen-
sional model parameters may still negatively impact overall sampling efficiency in certain
cases. Motivated by recent progress in improving sampling efficiency of multivariate Gaus-
sian models (Peruzzi et al., 2021), future research will consider generalized strategies for
improving MCMC performance in spatial factor models of highly multivariate non-Gaussian
data. Finally, optimizing DAG choice for MCMC performance is another interesting path,
and recent work on the theory of Bayesian computation for hierarchical models (Zanella
and Roberts, 2021) might motivate further development for spatial process models based on
DAGs.
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Supplementary Material

Appendix A. Spatial meshing with projections

The customary setup of a DAG-based model based on spatial meshing is to let S ∩ T ≈ T
as the resulting large overlap between knots and observed locations avoids sampling at non-
reference locations. However, it is often desirable to allow flexible choices of S; for example,
there are some computational advantages when S is a grid and T are irregularly spaced, or
when the data are observed with particular patterns (Peruzzi et al., 2021). In order to let S
be more flexibly determined while also avoiding sampling w(`) at non-reference locations,
we introduce a linear projection operator H(`) of dimension q × qn[`] and where n[`] is the
number of locations in [`] ⊂ S; after denoting w̃(`) = H(`)w[`], we assume that if ` ∈ S
then H(`) is such that w̃(`) = w(`). Then, we build the outcome model as

yj(`) | ηj(`), γj ∼ Fj(ηj(`), γj), ηj(`) = xj(`)
>βj + w̃j(`),

w(·) ∼ ΠG
(12)

where we have replaced w(`) with w̃(`). Setting H(`) such that w̃(`) = E[w(`) |w[`]]
leads to an interpretation of (12) as a “local” predictive process (Banerjee et al., 2008). The
posterior distribution for this model is:

π({βj , γj}
q
j=1,wS ,θ |yT ) ∝ π(θ)πG(wS |θ)

q∏
j=1

π(βj , γj)
∏
`∈Tj

dFj(yj(`) | w̃j(`),βj(`), γj).

(13)

In this scenario, omitting the residual term e(`) = w(`) − w̃(`) from (12) leads to
advantages in sampling, but possible oversmoothing of the latent spatial surface due to the
fact that var[w̃(`)] < var[w(`)]. In the conditionally conjugate Gaussian setting, such biases
can be partly corrected (Banerjee et al., 2010; Peruzzi et al., 2021). Certain ad-hoc solutions
may be available by allowing spatial variation of γj , i.e. replacing it with γj(`). However,
we may choose to ignore the residual term because (1) it is common to assume smoother
surfaces with non-Gaussian data, (2) we can choose S to be very large, reducing possible
biases, (3) we can revert to model (1) by setting S = T . Posterior sampling for (12) proceeds
via Algorithm 4.
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w11

w̃(`)

y1(`)

...

yq(`)

w12

w̃(`)

y1(`)

...

yq(`)

w22

w̃(`)

y1(`)

...

yq(`)

w21

w̃(`)

y1(`)

...

yq(`)

w13

· · ·

w23

· · ·
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` ∈ T ∩ U21
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` ∈ T ∩ U32

` ∈ T ∩ U31

Figure 13: Directed acyclic graph representing a special case of model (12), for locations at
which at least one outcome is observed. For simplicity, we consider S ∩ T = ∅ and omit the
directed edges from (βj , γj) to each yj(`). If yj(`) is unobserved and therefore ` /∈ Tj , the
corresponding node is missing.

Algorithm 4 Posterior sampling of model (12).

Initialize β(0)
j and γ(0)j for j = 1, . . . , q, w(0)

S , and θ(0)

for t ∈ {1, . . . , T ∗, T ∗ + 1, . . . , T ∗ + T} do . MCMC loop
1: for j = 1, . . . , q, sample β(t)

j |yT , w̃
(t−1)
T , γ

(t−1)
j

2: for j = 1, . . . , q, sample γ(t)j |yT , w̃
(t−1)
T ,β

(t)
j

3: sample θ(t) |yT ,w
(t−1)
S , {β(t)

j , γ
(t)
j }

q
j=1

4: for i = 1, . . . ,M , sample w(t)
i |w

(t)
mb(i),yi,θ

(t), {β(t)
j , γ

(t)
j }

q
j=1 . reference sampling

end for
Assuming convergence has been attained after T ∗ iterations:
discard {β(t)

j , γ
(t)
j }

q
j=1,w

(t)
S ,θ

(t) for t = 1, . . . , T ∗

Output: Correlated sample of size T with density

{β(t)
j , γ

(t)
j }

q
j=1,w

(t)
S ,θ

(t) ∼ π({βj , γj}
q
j=1,w

(t)
S ,θ | yT ).
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Appendix B. Choice of DAG and partition

Partitioning scheme for Π
(1)
θ,G

w1 w2

w3 w4

D

Partitioning scheme for Π
(2)
θ,G

w1

w3

w2,1

w4,1

w2,2

w4,2

D
Figure 14: Illustration of the two partitioning schemes. On the right, we juxtapose the
second partitioning scheme to clarify the changes relative to the scenario on the left.

Spatially meshed models on the same partition of S can be compared in terms of the sparsity
of G. If edges are added to a sparse DAG G1 to obtain G2, the child process ΠG2 is closer
to the parent process Πθ (in a Kullback-Leibler (KL) sense) relative to ΠG1 (Peruzzi et al.,
2022). For treed DAGs and recursive domain partitioning, the KL divergence of ΠG from Π
can be reduced by increasing the block size at the root nodes (Peruzzi and Dunson, 2022).
Here, we analyse the modeling implications different non-nested domain partitions have,
while using the same DAG structure to govern dependence between partition regions. This
scenario occurs e.g. when constructing a cubic MGP model (QMGP).

We consider two partitions of the x-coordinate axis within a 2×2 axis-parallel partitioning
scheme (Figure 14) and construct Π

(i)
G , i = 1, 2 based on each partitioning scheme. According

to the first partitioning scheme, wS (in short, w) is partitioned as w = {w1,w2,w3,w4}
whereas with the alternative we have w = {w∗1,w2,2,w

∗
3,w4,2} where w∗1 = {w1,w2,1} and

w∗3 = {w3,w4,1}. When analysing the relative KL divergence of these two models from Π,
we see

KL(π‖π(2)G )−KL(π‖π(1)G ) =

∫
log

π(w)

π
(2)
G (w)

π(w)dw −
∫

log
π(w)

π
(1)
G (w)

π(w)dw

=

∫
log π

(1)
G (w)π(w)dw −

∫
log π

(2)
G (w)π(w)dw

=

∫ (
log π

(1)
G (w)− log π

(2)
G (w)

)
π(w)dw

Since we fix the same G across partitions, we have

π
(1)
G (wS) = π(w1)π(w2 |w1)π(w3 |w1)π(w4 |w2,w3)

= π(w1)π(w2,1 |w1)p(w2,2 |w1,w2,1)π(w3 |w1)π(w4,1 |w2,1,w2,2,w3) ·
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· π(w4,2 |w2,1,w2,2,w3,w4,1)

π
(2)
G (wS) = π(w∗1)π(w2,2 |w∗1)π(w∗3 |w∗1)π(w4,2 |w2,2,w

∗
3)

= π(w1)π(w2,1 |w1)p(w2,2 |w1,w2,1)π(w3 |w1,w2,1)π(w4,1 |w1,w2,1,w3) ·
· π(w4,2 |w2,2,w3,w4,1),

and therefore the sign of KL(π‖π(2)G )−KL(π‖π(1)G ) depends on

log
π
(1)
G (w)

π
(2)
G (w)

= log

(
π(w3 |w1)

π(w3 |w2,1,w1)

π(w4,1 |w2,2,w2,1,w3)

π(w4,1 |w1,w2,1,w3)

π(w4,2 |w2,1,w2,2,w3,w4,1)

π(w4,2 |w2,2,w3,w4,1)

)
,

where we see that the performance of Π
(1)
G relative to Π

(2)
G in approximating Π is undeter-

mined because there is no ordering between the number of edges in Π
(1)
G and Π

(2)
G . Never-

theless, the above discussion remains useful in practice when the reference set S is chosen at
observed locations. For example, if data are unavailable at (2, 1), then w2,1 has length zero,
and one would then choose Π

(1)
G over Π

(2)
G if uncertainty about w4,1 is reduced by knowledge

of w2,2 more than it is reduced by knowledge of w1.

Appendix C. Gradient-based sampling

We outline proofs for propositions of Section 3.
Proposition 3. In the hierarchical model α ∼ Nk(α;mα,V α), x |α, S ∼ Nn(x;Aα, S),
consider the following proposal for updating α |x, S:

α∗ = α+
ε21
2
Gα∇α log p(α |—) + ε2G

1
2
αu,

where u ∼ Nn(0, In), and we set ε1 =
√

2, ε2 = 1. Then, q(α∗ |α) = p(α∗ |x, S), i.e. this
modified SM-MALA proposal leads to always accepted Gibbs updates.
Proof We compute

∇α log p(α |—) = ∇α log p(x |α, S)π(α) = ∇α log {Nn(x;Aα, S)Nk(α;mα,V α)}

= −1

2
∇α{(α−mα)>V −1α (α−mα) + (x−Aα)>S−1(x−Aα)}

= A>S−1x+ V −1α mα −
(
A>S−1A+ V −1α

)
α

from which we immediately find Gα =
(
A>S−1A+ V −1α

)−1. Then, the update is

α∗ = α+
ε21
2

(
A>S−1A+ V −1α

)−1 (
A>S−1x+ V −1α mα −

(
A>S−1A+ V −1α

)
α
)

+ ũ

=
ε21
2

(
A>S−1A+ V −1α

)−1 (
A>S−1x+ V −1α mα

)
−
(

1− ε21
2

)
α+ ũ,

where ũ ∼ N(0, ε22
(
A>S−1A+ V −1α

)−1
). Setting ε1 =

√
2 and ε2 = 1 leads to the Gibbs

update one obtains from a Gaussian likelihood and a Gaussian conjugate prior. In fact,
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since q(α∗ |α) = p(α∗ |x, S) then the acceptance probability for α∗ is p(α∗ |x,S)q(α |α∗)
p(α |x,S)q(α∗ |α) = 1.

Proposition 4. Suppose π is everywhere non-zero and twice differentiable so that
gx and Gx are well defined. Let ε > 0, K ⊂ <d, D > 0. Additionally assume that if
x(m) ∈ K with dist(x(m),K

c) = u with 0 ≤ u ≤ 1 then the proposal is changed to x(new) ∼
N(x(m) + ε2

2 M (T adapt)g̃x(m)
, ε2M (T adapt)). Then, Algorithm 2 converges in distribution to

P .
Proof We show that SiMPA satisfies the assumptions of Theorem 21 of Craiu et al. (2015).
Algorithm 2 has by construction bounded jumps, no adaptation outside K after iteration
T adapt and the fixed kernel outside K is bounded above by (2π)−d/2|MT adapt |1/2. Because
we bound gx and Gx with D by using g̃x and G̃x, the adaptive proposal kernel inside
K is Qδ(x′,x) where δ ∈ ∆ and ∆ is a compact index set. Because outside K we use a
fixed proposal kernel with continuous densities with respect to Lebesgue measure and we
assumed that the target density p(·) is also continuous, the ε-δ condition holds (eq (6) in
Craiu et al. 2015). Continuity of the target density and the proposal kernels hold by as-
sumption. These assumptions are sufficient for the algorithm to satisfy the containment
condition. The additional requirement to achieve convergence is diminishing adaptation,
which holds by construction given the decreasing sequence {γm}.

Appendix D. Coregionalization of MGPs

D.1 Equivalency result

Proposition 6 A q-variate MGP on a fixed DAG G, a domain partition T, and a LMC
cross-covariance function Cθ is equal in distribution to a LMC model built upon k indepen-
dent univariate MGPs, each of which is defined on the same DAG G and the same domain
partition T.

Proof For i = 1, . . . ,M , we want to show that the conditional densities π(wi | w[i]) =

N(wi;H iw[i],Ri) a q variate MGP based on LMC cross-covariance C(`, `′) = Λρ(`, `)Λ>

(we drop θ and Φ subscripts on C and ρ, respectively, for simplicity) can be obtained
equivalently via a LMC in which the k margins are univariate MGPs

Ci,[i] = (Ini ⊗Λ)ρi,[i](In[i]
⊗Λ>) C−1[i] = (In[i]

⊗ (Λ>)+)ρ−1[i] (In[i]
⊗Λ+)

H iw[i] = Ci,[i]C
−1
[i] w[i]

= (Ini ⊗Λ)ρi,[i](In[i]
⊗Λ>)(In[i]

⊗ (Λ>)+)ρ−1[i] (In[i]
⊗Λ+)(In[i]

⊗Λ)v[i]

= (Ini ⊗Λ)ρi,[i](In[i]
⊗Λ>(Λ>)+)ρ−1[i] (In[i]

⊗Λ+Λ)v[i]

= (Ini ⊗Λ)ρi,[i]ρ
−1
[i] v[i] = (Ini ⊗Λ)Ḧ iv[i],

(14)

where we denoted Ḧ i = ρi,[i]ρ
−1
[i] and Λ+ denotes the Moore-Penrose pseudoinverse Λ+ =

(Λ>Λ)−1 (which exists because Λ is assumed of full column rank), and therefore Λ+Λ =

33



Peruzzi and Dunson

Ik = Λ>(Λ>)+. Similarly,

Ri = Ci −H iC [i],i = (Ini ⊗Λ)ρi(Ini ⊗Λ>)− (Ini ⊗Λ)ρi,[i]ρ
−1
[i] ρ[i],i(Ini ⊗Λ>)

= (Ini ⊗Λ)
(
ρi − ρi,[i]ρ−1[i] ρ[i],i

)
(Ini ⊗Λ>) = (Ini ⊗Λ)R̈i(Ini ⊗Λ>).

(15)

Then

π(wi |w[i]) ∝ |Ri|−
1
2 exp

{
−1

2
(wi −H iw[i])

>Ri(wi −H iw[i])

}
= |(Ini ⊗Λ)R̈i(Ini ⊗Λ>)|−

1
2 ·

· exp

{
−1

2
((Ini ⊗Λ)vi − (Ini ⊗Λ)Ḧ iv[i])

> ·

·
(

(Ini ⊗Λ)R̈i(Ini ⊗Λ>)
)−1

((Ini ⊗Λ)vi − (Ini ⊗Λ)Ḧ iv[i])

}
= |R̈i|−

1
2 exp

{
−1

2
(vi − Ḧ iv[i])

>R̈
−1
i (vi − Ḧ iv[i])

}
= π(vi |v[i]).

(16)
We then proceed by reordering vi, Ḧ i and R̈i by factor index (from h = 1, . . . , k) rather
than by location (see discussion above). After lettingKi denote the appropriate permutation
matrix that applies such reordering and letting v(h)i be the ni× 1 vector whose elements are
realizations of the hth latent factor at the reference subset Si, we can write

Kivi =

v
(1)
i
...

v
(k)
i

 KiḦ ivi =


H̃

(1)
i v

(1)
[i]

...
H̃

(1)
i v

(k)
[i]


KiR̈

−1
i K>i = blockdiag

{
R̃

(1)
i , . . . , R̃

(h)
i

}
,

where H̃(h)
i v

(h)
[i] = ρ

(h)
i,[i]ρ

(h)−1

[i] v
(h)
[i] and R̃

(h)
i = ρ

(h)
i − ρ

(h)
i,[i]ρ

(h)−1

[i] ρ
(h)
[i],i, with ρ

(h)
i,[i] denoting the

correlation function of the hth LMC component evaluated between pairs of Si and S[i] and
the other terms are defined analogously. Since reordering does not affect the joint density
π(vi |v[i]), we obtain

π(Kivi |v[i]) = π(vi |v[i]) =
k∏

h=1

N(v
(h)
i ; H̃

(h)
i , R̃

(h)
i ).

We have shown that the density of (wi |w[i]) is the same as that of (vi |v[i]) and that it can
be written as a product of independent conditional densities. Then, for i = 1, . . . ,M :

πG(wS) =

M∏
i=1

π(wi |w[i]) =

M∏
i=1

π(vi |v[i]) =

M∏
i=1

k∏
h=1

N(v
(h)
i ; H̃

(h)
i , R̃

(h)
i )

=

k∏
h=1

M∏
i=1

N(v
(h)
i ; H̃

(h)
i , R̃

(h)
i ) =

k∏
h=1

π
(h)
G (v

(h)
S ).
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We have shown that the meshed density πG at S is equal to the product of k independent
meshed densities which are defined on the same DAG G and the same partitioning of the
spatial domain (i.e., k independent MGPs).

D.2 Langevin methods for coregionalized MGPs

We now show how Algorithm 1 is specified for the latent MGP model with LMC cross-
covariance using melange when targeting (11). Let Ki be the permutation matrix that
reorders vi by factor, i.e. the hth block of ṽi = Kivi is the ni × 1 vector v(h)i , for h =
1, . . . , k. Then, after letting H i = (Ini ⊗ Λ)Ḧ i and Ri = (Ini ⊗ Λ)R̈i(Ini ⊗ Λ>) and
r
(h)
j = v

(h)
j − H̃

(h)
[j]\{i}v

(h)
[j]\{i}, the gradient ∇vip(vi |—) can be found as we get

∇vip(vi |—) = −R̈i

(
vi − Ḧ iv[i]

)
+ f i

= −K>i


R̃

(1)
i

(
v
(1)
i − H̃

(1)
i v

(1)
[i]

)
+ H̃

(1)>

i→j R̃
(1)−1

j

(
r
(1)
j − H̃

(1)
i→jv

(1)
i

)
...

R̃
(k)
i

(
v
(k)
i − H̃

(k)
i v

(k)
[i]

)
+ H̃

(k)>

i→j R̃
(k)−1

j

(
r
(k)
j − H̃

(k)
i→jv

(k)
i

)
+ f i,

(17)
where, letting Si = {`1, . . . , `ni}, we compute f i = (f>i,`1 , . . . ,f

>
i,`ni

)> as the nik× 1 vector
whose ` block is

f i,` = Λ>

∇v(`)dF1(y1(`) |v(`),λ[1,:],βq, γq)
...

∇v(`)dFq(yq(`) |v(`),λ[q,:],βq, γq)

 .
For SM-MALA and SiMPA (Algorithm 2) we compute

G−1vi = K>i

(
⊕
{
R̃

(h)
i + H̃

(h)>

i→j R̃
(h)−1

j H̃
(h)
i→j

}k
h=1

+KiF iK
>
i

)
Ki, (18)

where ⊕ is the direct sum operator, F i = ⊕{Ai(`)}`∈Si , and after letting xj(`) = λ[j,:]v(`),

we compute Ai(`) = −
∑q

j=1 λ
>
[j,:]λ[j,:]E

[
δ2

δ2xj(`)
log dFj(yj(`) |v(`),λ[j,:], βj , γj)

]
.

D.3 Complexity in fitting coregionalized cubic MGPs

We now consider model (9) and replace the GP prior with an MGP based on LMCs (as in
Section 4.3) using a cubic mesh (Figure 3), whose main feature is that the number of parents
of each reference node is at most d when the dimension of the input space is d (in spatial
settings, d = 2). The resulting coregionalized QMGP is implemented on k factors to model
dependence across q ≥ k outcomes, when at n locations we observe at least one of them.
We assume T = ∅, SiMPA updates at each block and let H refer to the number of available
processors for parallel computations.

In the resulting Algorithm 3, step 1 requires the update of q sets of p covariates plus k
factor loadings. SiMPA can be used here for an expected cost at iteration m of O(γmnq(p+
k)3 + nq(p + k)2) which is approximately O(qn(p + k)2) for large m because γm ↓ 0. The
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compute time is O(γmnq(p + k)3/H + nq(p + k)2/H), respectively, because (βj ,λ[j,:]) ⊥
(βh,λ[h,:]) |yT ,vS . Step 2 costs O(qn) flops assuming a Metropolis update, and the compute
time is O(qn/H). Step 3 involves the evaluation of k independent sets of MGP densities,
each of which is a product of M Gaussian conditional densities. We make the simplifying
assumption that ni ≈ m ≈ n/M and n[i] ≤ dm ≈ dn/M for all i = 1, . . . ,M—we are
taking M partitions of size m and a cubic mesh which attributes at most d parents to
each node in the DAG. The cost for this update is due to computing R̈i for all i, which
is O(kM(dm)3) = O(nkd3m2) flops in O(nkd3m2/H) time. Finally, reference sampling of
vi, i = 1, . . . ,M , whose sizes are mk, is performed via SiMPA in O(γmnm

2k3 + nmk2)
flops and in O(γmnm

2k3/H + nmk2/H) time, respectively, assuming that each color of G
includes at least H nodes. In summary, the cost of a k-factor coregionalized QMGP fit via
SiMPA is linear in n and q, which may be large, quadratic on k and p, which we assume
relatively small, and cubic on the domain dimension d, which is 2 or 3 for the spatial and
spatiotemporal settings on which we focus.

Appendix E. Applications Supplement

In all our applications, all methods are configured to use up to 16 CPU threads in a work-
station with 128GB memory and an AMD Ryzen 9 5950X CPU on the Ubuntu 22.04.2 LTS
operating system and using Intel MKL version 2019.5.28 for BLAS/LAPACK. R package
meshed (v.0.2) allows one to set the number of OpenMP (Dagum and Menon, 1998) threads,
whereas Hmsc takes advantage of parallelization via BLAS when performing expensive op-
erations (e.g., chol(·)). The R-INLA package used to implement SPDE-INLA methods can
similarly take advantage of multithreaded operations.

E.1 Bivariate counts analysis on 750 synthetic datasets

The comparison above is based on a single dataset; we replicate the same analysis on 750
smaller datasets. We generate Poisson data on a 50 × 50 regular grid, for a total of 2500
observations for yj(`) ∼ Pois(exp{ηj(`)}) where η(`) = Λv(`) and v(·) is a bivariate GP
with independent Matérn correlations with νj = 1/2 for j = 1, 2 and φ2 = 2.5. We choose
φ1 ∈ {2.5, 12.5, 25}. We introduce missing values at 1/5 of spatial locations independently
for each outcome. We fix the 2× 2 loading matrix via

Λ =

[
λ11 λ12
λ21 λ22

]
= chol

([
λ1 0
0 1

]
·
[
1 ρ
ρ 1

]
·
[
λ1 0
0 1

])
,

which implies λ11 = λ1, λ12 = 0, and λ21 and λ22 are such the latent correlation between the
first and second margin is exactly ρ. We choose λ1 ∈ {

√
2
2 , 2} and ρ ∈ {−.9,−0.25, 0, 0.65, .9}.

We generate 25 datasets for every combination of values of φ1, λ1 and ρ. We target estima-
tion of the latent correlation ρ = Corr(w1(`), w2(`)) in terms of absolute error and efficiency
(ESS/s), along with the empirical coverage of 95% intervals for the log-intensity for both
outcomes. We compare SiMPA with several other methods – all the coregionalized QMGP
methods use parameter expansion as in Peruzzi et al. (2021). Figure 15 and Table 5 sum-
marize our findings across the 750 datasets: SiMPA has low estimation error, high sampling
efficiency, and excellent uncertainty quantification relative to all other tested methods.
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QMGP−RM−MALA

QMGP−NUTS

QMGP−HMC

QMGP−MALA

QMGP−SiMPA

0 5 10 15ESS/s

Figure 15: Efficiency in terms of ESS/s in the estimation of ρ over 750 simulated datasets.

ρ ηtest(`)Method RMSE RMSPE Covg95%
QMGP-SiMPA 0.08 0.45 0.95
QMGP-MALA 0.09 0.46 0.94
QMGP-HMC 0.09 0.55 0.93
QMGP-NUTS 0.16 0.46 0.93
QMGP-RM-MALA 0.37 0.86 0.87
QMGP-YA-MALA 0.42 1.83 0.07
QMGP(AG10)-NUTS 0.56 0.91 0.94
QMTP(AG10)-NUTS 0.47 0.46 0.92
SPDE-INLA 0.21 0.66 0.67

Table 5: Performance summary across 750 datasets in the estimation of the latent correlation
and the linear predictor on the test sets.

E.2 Latent process sampler efficiency in multi-type data

The analysis in the previous section models both outcomes as Poisson counts. In this sec-
tion, we use the same setup and λ1 ∈ {2.5, 12.5}, but consider the following pairs of outcome
types: {(Gaussian,Poisson), (Neg. Binomial,Binomial), (Neg. Binomial,Poisson)}, for a to-
tal of 1500 datasets, of which 500 include a Binomial or Gaussian outcome and 1000 include
a Poisson or Neg. Binomial outcome. Because we target a comparison of posterior sampling
efficiency in integrating out the latent spatial effects via MCMC, we fix all unknowns (Λ,
φ1, φ2) to their true values except for the latent process. For each dataset, we calculate
ESS/s for samples of w(`i), `i = 1, . . . n. After computing the median ESS/s as a summary
efficiency measure for each dataset, we compute the mean of this measure over all datasets.
Efficiency summary results are reported in Table 6. We also report each method’s RMSPE
and coverage about ηj(`), j = 1, 2 in Table 7. SiMPA is again more efficient than other
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methods in integrating out the spatial effects, while matching or outperforming them in
out-of-sample inference about model parameters.

Method Binomial Gaussian Negative Binomial Poisson
MALA 1.15 8.35 1.31 2.81
NUTS 0.25 2.15 0.32 0.68
SiMPA 4.26 17.65 9.03 8.90
SM-MALA 1.81 7.85 3.45 3.59

Table 6: Efficiency in posterior sampling of w(·), in terms of ESS/s, for different types of
outcomes in the bivariate synthetic data application with multi-type outcomes.

Method RMSPE Covg. 95%
Binomial Gaussian Neg. Bin. Poisson Binomial Gaussian Neg. Bin. Poisson

MALA 0.450 0.332 14.206 1.198 0.897 0.942 0.899 0.930
NUTS 0.449 0.328 13.932 1.195 0.932 0.944 0.934 0.941
SiMPA 0.449 0.327 13.923 1.194 0.944 0.948 0.947 0.947
SM-MALA 0.449 0.327 13.971 1.212 0.943 0.948 0.939 0.940

Table 7: RMSPE in predicting ηj(`) at locations in the test set and empirical coverage of
95% credible intervals about ηj(`), j = 1, 2, for different types of outcomes in the bivariate
synthetic data application with multi-type outcomes.

E.3 Multi-species N-mixture abundance modeling

The total number of individuals of a certain animal species in a region is known as the local
abundance. Community ecologists seek to estimate abundance using spatially replicated
count data of multiple species. At each spatial location, the observed counts correspond
to a portion of the latent abundance of each of q species. The unobserved abundance of
species j can be estimated via a model for count data that accounts for imperfect detection.
See Royle (2004), Mimnagh et al. (2022) and reference therein. In the context of joint
species distribution models of count data, one lets the local abundance depend on covariates
and latent variables accounting for cross-species dependence through a Poisson log-linear
model, with the observed abundance then having a conditional binomial likelihood. Here,
we consider an extension of Mimnagh et al. (2022) to include MGP random effects:

vh(·) ∼MGPG(0, ρh(·, ·;θh)), h = 1, . . . , k

wj(`) = λ[j,:]v(`) j = 1, . . . , q

Nj(`) | βj ,λ[j,:],v(`) ∼ Poisson(µj(`)) µj(`) = exp{xj(`)>βj + wj(`)}

yj(`) | Nj(`), ξj ∼ Binomial (Nj(`), pj(`)) pj(`) =
[
1 + exp{−zj(`)>ξj}

]−1
,

(19)
where we let a set of species-specific covariates xj(`) explain the latent species abundance
and another set zj(`) impact the detection probability and hence the observed counts yj(`).
A latent factor model with k ≤ q spatial random effects is used to characterize dependence
across species in abundances. Applied goals include the estimation of βj and ξj for j =
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Figure 16: Simulated data on multi-species abundance. Top row: all counts observed with
imperfect detection, including the 20% missing from the training data; mid row: unobserved
species abundance; bottom row: realization of wj(`) = λ[j,:]v(`), ` ∈ D.

1, . . . , q, the cross-covariance function Cθ = Λρ(`, `′,Φ)Λ> via the estimation of θ =
(vec(Λ)>,Φ>)>, and the local abundance of species j at `, Nj(`). Posterior computations
for (19) simplify by marginalizing Nj(`) from the model likelihood; the marginal model is
p(yj(`) | —) = Poisson (pj(`)µj(`)). After collecting posterior samples of βj , ξj ,Λ,v, we
estimate Nj(`) using the fact that Nj(`) | Nj(`) > yj(`) = yj(`) + Ñj(`), where Ñj(`) ∼
Poisson([1 − pj(`)]µj(`)). If yj(`) is missing, we proceed by first sampling from π(v(`) |
vS ,Φ), then Nj(`) ∼ Poisson(µj(`)).

We simulate abundance data of q = 4 species at n =14,400 spatial locations on a regular
grid using model (19). We sample k = 2 latent factors from independent unrestricted
GPs with exponential correlation and spatial decays φ1 = φ2 = 4. The factor load-
ings are set to (λ11, λ21, λ31, λ41, λ22, λ32, λ42) = (1.3,−0.65,−0.9,−0.3, 2, 0.35, 0.4); these
values lead to latent spatial cross-species correlations ranging from corr(w3(`), w1(`)) ≈
−0.93 to corr(w4(`), w2(`)) ≈ 0.95. These correlations decrease for increasing spatial
distances as modeled by the underlying exponential covariances. In order to generate
the latent abundance and the observed counts at each location, we sample the covari-
ate vector (x(`), z(`)>)> independently from a Gaussian distribution with correlation ma-
trix Σx whose off-diagonal elements are σx,z1 = 0.8, σx,z2 = −0.3 σz1,z2 = −0.7. We
let (β1, β2, β3, β4) = (−1, 0.5, 0, 0) and ξ1 = (1,−1)>, ξ2 = (−1, 1)>, ξ3 = (0.5,−0.5)>,
ξ4 = (−1,−1)>. Finally, for each of the 4 species, we introduce missingness by indepen-
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dently dropping 20% of the observed count data from the training set uniformly at random;
the counts of at least one species are missing at 8,480 locations. Because not all species are
observed at all spatial locations, the resulting data are misaligned. This scenario mirrors a
situation in which a subset of the total number of individuals of species j are counted at a
subset of all locations. Figure 16 reports the full dataset (including the missing data) along
with the latent variables.

Method j
RMSE MAE CI95 ESS/s RMSE ESS/s Time(s)

Nj(`) wj(`) (β, ξ,λ[j,:])

SiMPA

1 2.156 0.443 0.949 3.16 0.0197 9.09

1392 5.948 0.443 0.951 3.91 0.0289 2.78
3 0.951 0.479 0.950 3.42 0.0569 15.8
4 0.828 0.494 0.959 4.11 0.0156 25.6

MALA

1 2.164 0.447 0.950 0.80 0.0203 1.82

1142 5.954 0.449 0.947 1.64 0.2640 1.02
3 0.950 0.482 0.940 0.90 0.0749 1.86
4 0.828 0.495 0.948 1.36 0.0487 1.71

SM-MALA

1 2.182 0.423 0.929 1.87 0.0473 7.24

1942 9.786 0.410 0.932 2.09 0.4330 1.73
3 0.951 0.488 0.920 2.14 0.0498 9.77
4 0.830 0.488 0.920 2.27 0.0596 19.5

HMC

1 2.148 0.444 0.945 0.92 0.0421 1.97

2142 5.874 0.444 0.950 2.04 0.0370 1.70
3 0.951 0.479 0.944 1.13 0.0606 2.32
4 0.828 0.494 0.952 1.92 0.0140 2.51

NUTS

1 2.158 0.442 0.946 0.17 0.0242 0.93

9072 5.876 0.446 0.941 0.24 0.0534 0.61
3 0.950 0.477 0.944 0.20 0.0563 1.34
4 0.828 0.495 0.949 0.27 0.0107 1.31

YA-MALA

1 2.178 0.424 0.329 0.10 0.1073 0.09

1322 7.437 0.414 0.346 0.08 0.2970 0.20
3 0.954 0.478 0.346 0.10 0.1151 0.08
4 0.829 0.493 0.356 0.09 0.0644 0.10

Ellipt-SS

1 3.204 0.486 0.937 0.79 0.2953 0.15

2642 15.570 0.567 0.821 0.84 0.3609 0.08
3 1.014 0.512 0.852 0.79 0.0906 0.33
4 0.834 0.509 0.874 0.80 0.0582 0.28

Table 8: A comparison of posterior sampling methods for fitting the same model for abun-
dance data with imperfect detection based on latent QMGPs. For the four species, we
compare the root mean squared error (RMSE) as well as the mean absolute error (MAE) in
estimating the latent abundance Nj(`). For wj(`), we report the empirical coverage of 95%
credible intervals (CI95) and the median effective sample size (ESS) per unit time across
spatial locations. We also report the RMSE and median ESS/s in estimating the vector
(β, ξ,λ[j,:]) for each species.

We fit model (19) with a QMGP prior on the latent effects. To build the QMGP prior,
we use axis-parallel partitioning to tessellate the spatial domain into M = 400 blocks each
including 36 spatial locations. We choose this partitioning setup to ensure all sampling
methods proceed swiftly and without making the overly restrictive spatial conditional in-
dependence assumptions that would result from a finer partitioning scheme. We detail the
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Figure 17: Estimation of the latent spatial effects in the multi-species abundance model.
Top row: posterior mean of the species-specific spatial random effects wj(`); bottom row:
width of the 95% pointwise credible interval on wj(`) as computed via SiMPA.

common posterior sampling algorithm used for fitting model (19) in Appendix E.4 as a
minor modification of Algorithm 3.

We compare our proposed SiMPA with MALA, simplified Riemannian manifold MALA
(RM-MALA; Girolami and Calderhead 2011), HMC and NUTS with dual averaging (Al-
gorithms 5 and 6 in Hoffman and Gelman 2014, respectively), the elliptical slice sampler
(Murray et al., 2010), and YA-MALA. All methods perform 20,000 MCMC iterations, of
which we drop the first half as burn-in. All gradient-based methods use dual averaging to
adapt ε for T adapt = 10, 000 iterations. Figure 17 reports the SiMPA-estimated latent effects
along with uncertainty quantification. Table 8 summarises our findings: because all sam-
pling methods target the same posterior distribution, we do not expect major discrepancies
in point estimates. Our SiMPA method is on par with other state-of-the-art gradient-based
methods when estimating unknown model parameters, but outperforms them in terms of
sampling efficiency measured as ESS per unit time. Because the SiMPA 95% intervals on
the latent effects are subjectively better calibrated than those from other methods, it more
robustly quantifies uncertainty about the latent spatial effects. Finally, because SiMPA and
YA-MALA adapt the preconditioner at the same iterations, we conclude that SiMPA is a
much more efficient adaptation scheme for MALA preconditioning in this context.

E.4 Posterior sampling of the multi-species N-mixture model

All the tested sampling methods are used in steps 1 and 3 of Algorithm 5.
Block updating βj , ξj ,λ[j,:] using SiMPA requires second order information about the

target. Because xj(`)>βj + λ[j,:]v(`) = (xj(`)
>,v(`)>)(β>j ,λ[j,:]) = x̃j(`)β̃j , we can pro-

ceed without loss of generality by outlining the block-update for (βj , ξj) in the model without
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Algorithm 5 Posterior sampling and prediction of LMC model (19) with MGP priors.

Initialize β(0)
j , ξ

(0)
j , Λ(0) for j = 1, . . . , q, v(0)S , and Φ(0)

for t ∈ {1, . . . , T ∗, T ∗ + 1, . . . , T ∗ + T} do . sequential MCMC loop
for j = 1, . . . , q, do in parallel

1: Block-update β(t)
j , ξ

(t)
j ,λ

(t)
[j,:] |yT ,v

(t−1)
S

2: use Metropolis-Hastings to update Φ(t) |v(t−1)S
for c ∈ Colors(G) do . sequential

for i ∈ {i : Color(ai) = c} do in parallel
3: Update v(t)i |v

(t)
mb(i),yi,Λ

(t),Φ(t), {β(t)
j , γ

(t)
j }

q
j=1

spatial effects. After letting πj(`) = (1 + exp{−zj(`)>ξj})−1 and αj(`) = exp{xj(`)>βj},
we find

−δ
2P (yj(`) = y)

δ2(βj , ξj)
=

[
g11 g12
g12 g22

]
,

where g11 = αj(`)πj(`)xj(`)xj(`)
>, g12 = αj(`)πj(`)(1−πj(`))xj(`)zj(`)>, g22 = πj(`)(1−

πj(`))(αj(`)(2πj(`)− 1)− y)zj(`)zj(`)
>.

Appendix F. Spatial meshing of Student-t processes

GPs are desirable thanks to their convenient properties; however, a similar construction
based on cross-covariances can be used to model w(·) as a q-variate Student-t process (TP),
in which case we write w(`) ∼ TPν0(0,C(·, ·)) where ν0 > 2 ∈ < is a degrees of free-
dom parameter which controls tail heaviness; similarities with GPs include closedness under
marginalization and analytic forms of conditional densities. Then, for any L, the random
effects have a multivariate Student-t distribution, i.e. wL ∼ MV Tν0(0,CL). In the limit-
ing case ν0 → ∞ one obtains a GP with cross-covariance C(·, ·). Shah et al. (2014) and
Chen et al. (2020) introduce and consider TPs as alternatives to GPs in regression, citing
improved flexibility owing to the ability of a TP to capture more extreme behavior. There
are difficulties associated to using TPs in regression, notably the lack of closedness under
linear combinations. This implies that spatial meshing of multivariate TPs built upon a
LMC does not equate the LMC of spatially meshed univariate TPs.

The TP is closed under marginalization and conditioning, which implies that it is rela-
tively easy to build a spatially meshed TP. Letting wL = w and CL = C for simplicity, the
density of a zero-mean TP evaluated at w, denoted as MV T (ν,0,C), is defined as (Shah
et al., 2014)

p(w | ν0) =
Γ(ν+n2 )

((ν − 2)π)n/2
|C|−

1
2

(
1 +

1

ν − 2
w>C−1w

)− ν+n
2

.

The above density formulation leads to cov(w) = C. Closedness of the TP under marginal-
ization and conditioning leads to the TP conditional densities also being multivariate t’s;
we find

π(wi |w[i]) ∼MV T

(
ν + n[i],H iw[i],

b+ ν − 2

n[i] + ν − 2
Ri

)
,
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where H i and Ri are defined like in the GP, and the new term b = w>[i]C
−1
[i] w[i] deter-

mines how the conditional variance of wi |w[i] also depends on the values of w[i]. In fact,
cov(wi |w[i]) = b+ν−2

n[i]+ν−2
Ri, where the (covariance-weighted) sum of squares b is used to

inform the conditional density about the observed variance in the conditioning set. In fact,
if b/n[i] is large (i.e., the conditioning set has larger spread), then the conditional variance
is also larger. This intuitive behavior is missing from a GP, which we obtain in this context
by letting ν →∞ (or n[i] →∞, which is uninteresting when doing spatial meshing).
Gradient based sampling for MTPs.
When building gradient-based MCMC methods for posterior sampling MTPs, we require
∇wi log p(wi |—) = f i + δ

δwi
log p(wi |w[i],θ) +

∑
j→{i→j}

δ
δwi

log p(wj |wi,w[j]\{i},θ). In
particular, letting ri = wi −H iw[i] we find

δ

δwi
log π(wi |w[i],θ) = −

ν + ni + n[i]

ν − 2 +w[i]C
−1
[i] w[i] + r>i R

−1
i ri

R−1i ri,

and we proceed similarly for ∇wi log π(wj |wi,w[j]\{i},θ), where π(wj |wi,—) is a MVT
density of wj but not of wi because MVT are not closed under linear combinations. We
partition Hj and C−1[j] as

Hj =
[
A B

]
C−1[j] =

[
C D
D> E

]
,

with A and C corresponding to blocks which refer to node ai ∈ [j], whereas B and E refer
to nodes [j]\ai. Let w̃j = wj −Bw[j]\{i}, α =

ν+nj+n[j]

2 , β = ν−2 +w>[j]\{i}E[j]\{i}w[j]\{i},
c1 = w>i Cwi + 2w>i Dw[j]\{i}, c2 = (w̃j −Awi)

>R−1j (w̃j −Awi). Then

∇wi log π(wj |wi,w[j]\{i},θ) =
δ

δwi

{
−α log

(
1 +

(w̃j −Awi)
>R−1j (w̃j −Awi)

w>i Cwi + 2w>i Dw[j]\{i} + β

)}

=
2α

β + c1 + c2

(
A>R−1j (wj −Awi) +

c2(Cwi +Dw[j]\{i})

β + c1

)
.
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