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Abstract

In the application of instrumental variable analysis that conducts causal inference in the
presence of unmeasured confounding, invalid instrumental variables and weak instrumental
variables often exist which complicate the analysis. In this paper, we propose a model-
free dimension reduction procedure to select the invalid instrumental variables and refine
them into lower-dimensional linear combinations. The procedure also combines the weak
instrumental variables into a few stronger instrumental variables that best condense their
information. We then introduce the personalized dose-response function that incorporates
the subject’s personal characteristics into the conventional dose-response function, and use
the reduced data from dimension reduction to propose a novel and easily implementable
nonparametric estimator of this function. The proposed approach is suitable for both
discrete and continuous treatment variables, and is robust to the dimensionality of data.
Its effectiveness is illustrated by the simulation studies and the data analysis of ADNI-DoD
study, where the causal relationship between depression and dementia is investigated.
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1. Introduction

In observational studies, often the research interest is to estimate the causal effect of a
treatment variable on a response variable. When the treatment variable is binary or multi-
valued, the causal effect is often characterized by the average causal effect between two
specific treatment arms (Rubin, 1974; Holland, 1986). When the treatment variable is
continuous, the causal effect is often characterized by the dose-response function (Imai and
Van Dyk, 2004; Zhu et al., 2015). In the causal inference literature, a variety of methods
have been proposed to estimate the causal effect, such as propensity score based matching
and regression adjustment (Schafer and Kang, 2008). These methods commonly require the
ignorability assumption (Rosenbaum and Rubin, 1983) that the researchers have collected
all the confounders for establishing the causal relationship; otherwise, they will lead to
biased results.

Under the concern of potential unmeasured confounding, analysis of instrumental vari-
ables (IV) has become a popular alternative in many applications of causal inference, such
as economics and epidemiology, etc. (Angrist et al., 1996; Greenland, 2000). An instru-
mental variable, or briefly called an instrument, is a random variable that is associated
with the treatment variable but is not associated with any unmeasured confounders. In
addition, an instrumental variable must affect the response variable only through the treat-
ment variable; otherwise, it is called an invalid instrumental variable. In other words, an
invalid instrumental variable is directly associated with the outcome in the presence of the
treatment. Generally, the spirit of IV analysis is to incorporate the instrumental variables,
and sometimes the invalid instrumental variables, into the joint modeling of the treatment
and response variables appropriately, so that the causal effect can be embedded into the
joint model and recovered from the corresponding results; see a detailed example below.

In the literature, a major application scenario of IV analysis is epidemiological research,
where the interest is often to investigate the causal effect of an exposure variable on a
certain disease. Since a genetic variant, such as a single-nucleotide polymorphism (SNP), is
determined at conception, it is not related to any environmental factors or other unmeasured
confounders. Thus, a genetic variant is a good instrument if it is closely linked to the
exposure but has no direct effect on the disease (Didelez and Sheehan, 2007). The study
of genetic variants as candidate instrumental variables, commonly known as Mendelian
randomization, has been discussed extensively (Lawlor et al., 2008; Burgess et al., 2017).

In Mendelian randomization, researchers often find two phenomena that complicate
IV analysis. First, a number of genetic variants can serve as valid instruments, but each
of them only has a somewhat weak bond with the exposure variable. In the literature,
the weak bond is commonly revealed by a small R2 or equivalently a small F statistic
under the linear model assumptions (Staiger and Stock, 1997; Sheehan and Didelez, 2011;
Burgess et al., 2017), although only a heuristic cutoff of the F statistic, usually 10, has
been widely used to define the “weak instrument” (Lee et al., 2021). The existence of weak
instruments makes the causal effect estimator unstable and biased in the presence of even
minor unmeasured confounding (Pierce et al., 2011), which harms the reliability of the causal
conclusion (Staiger and Stock, 1997; Burgess et al., 2017; Lee et al., 2021). Pierce et al.
(2011) proposed a remedy that linearly combines the weak instruments into a stronger
one and studied its empirical consistency, which however requires either adequate prior
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knowledge about the effect of each individual weak instrument or a naive assumption on
the equality of these effects. Second, datasets may contain a small set of genetic variants that
are directly associated with the disease, which, as mentioned above, are invalid instruments.
Such genetic variants would jeopardize the consistency of IV analysis if not distinguished
from the rest. These two phenomena are also observed in other applications of IV analysis.

Let Y be the response variable, T be the treatment variable, and X be a p-dimensional
vector consisting of candidate instruments, all with zero mean without loss of generality.
Again, in Mendelian randomization, these variables correspond to certain measurements of a
specific disease, the exposure variable, and the subject’s characteristics including the genetic
variants, respectively. The existence of a few invalid instruments in X naturally suggests
estimating the causal effect by regressing Y on (X,T ) with the aid of the variable selection
technique. This was proposed in Kang et al. (2016), with the linear model assumption

Y = a0T + γT
0X + ε, (1)

and the causal effect specified as the linear dose-response function a0T . The error term ε
is potentially associated with T as it may include the effect of unmeasured confounders,
but it can be safely assumed to be independent of X in Mendelian randomization, as X
carries the personal characteristics determined at conception and cannot be contaminated
by any unmeasured confounder. Because a component of X that corresponds to a nonzero
component of γ0 must affect Y in the presence of T , it is by definition an invalid instrument.
Thus, the set of nonzero components of γ0 exactly indexes the set of invalid instruments,
and it is assumed to be sparse following the observations above.

Under the independence assumption between ε and X, Model (1) implies

E{(Y − a0T − γT
0X)XT} = 0. (2)

Because (2) holds for any element in {(a0 + b, γ0− bΣ−1
X E(XT )) : b ∈ R}, where ΣX denotes

the covariance matrix of X, additional assumptions must be adopted to make (a0, γ0) iden-
tifiable. For this purpose, Kang et al. (2016) strengthened the sparsity assumption on γ0

to that γ0 is the uniquely sparsest among all that solve (2), i.e. with the least number of
nonzero components. Accordingly, they estimated a0 and γ0 by minimizing

En{(Y − aT − γTX)XT}En{(Y − aT − γTX)XT}+
∑p

i=1
φλ(|γi|) (3)

over a ∈ R and γ ∈ Rp, where En(·) denotes the sample mean, φλ(·) is a penalty function
with tuning parameter λ, and γi denotes the ith component of γ. When φλ(·) is appropri-
ately chosen, (3) delivers a consistent and sparse estimator of γ0, as well as a consistent
estimator of the causal effect a0T .

The linear model (1) in Kang et al. (2016) can be regarded as a set of two assumptions:
first, it imposes a low-dimensional structure in the data that X must affect Y through a
linear combination of X in the presence of T ; second, the joint effect of T and this linear
combination of X on Y must convey a linear pattern. The former is violated if multiple
linear combinations of X are uniquely informative to Y in the presence of T . The latter,
which adopts a parametric model on Y |(T,X), is violated if the effect of T or the effect of
X on Y is nonlinear or if these two effects interact. In view of these concerns, we generalize
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Kang et al.’s work into a multi-index and model-free manner by assuming

Y = g(T, γT
0X) + ε, (4)

where γ0 is a p×d-dimensional matrix with only a few rows being nonzero, and the functional
form of g(·, ·) is completely unspecified. Similarly to (1), a nonzero row of γ0 corresponds
to a component of X that affects Y in the presence of T , which by definition is an invalid
instrument. Thus, the model allows the invalid instruments to affect the response through
multiple linear combinations, and these invalid instruments can be selected by recovering
the sparsity of γ0. By allowing full freedom on g(·, ·), (4) can handle the potentially complex
effect of (T, γT

0X) on Y , particularly any form of interaction between T and γT
0X that implies

a heterogeneous causal effect varying with subject’s characteristics. A semiparametric causal
effect estimator has also been proposed in Li and Guo (2020), which we will compare in
detail later. Same as in (1), we allow the error term ε in (4) to be associated with T , and
we slightly relax the independence assumption between ε and X to

E(ε | X) = 0, (5)

which permits the variance of ε to vary with X. Referring to (2), this assumption catches
the essence of using instrumental variables.

Before conducting effective estimation, two issues need to be addressed due to the po-
tential dependence between ε and T and the possible presence of weak instruments. First,
similar to (1), neither γ0 nor g(T, γT

0X) in Model (4) are identifiable: for any matrix β of
p rows and any measurable function f(T, βTX) with E{f(T, βTX)|X} = 0, this model can
always be rewritten as

Y = {g(T, γT
0X) + f(T, βTX)}+ {ε− f(T, βTX)} ≡ g∗(T, (γ0, β)TX) + ε

∗
,

where ε∗ also satisfies (5). The issue of identifiability is further complicated by the free form
of g(·, ·), as one can always rewrite g(T, γT

0X) as g[T,A−1{(γ0A
T)TX}] for any d-dimensional

invertible matrix A, making γ0A
T a valid substitute of γ0. Second, even if g(T, γT

0X) is
uniquely defined, its estimation induced from a natural generalization of (2) will suffer from
the presence of weak instruments. Namely, without appropriate procedures that handle the
weak instruments a priori, any function φ(X) that characterizes g(T, γT

0X) as the unique
solution to

En[{Y − g(T, γT
0X)}φ(X)} = 0 (6)

would inevitably include functions of X that are weakly bonded with T , whose correspond-
ing estimating equations in (6) would contribute little to the estimation of g(T, γT

0X) but
generate more bias. The same phenomenon persists in the linear model (1) in Kang et al.
(2016). A remedy that is robust to weak instruments under (1) has been proposed in
Kang et al. (2022), but focuses on testing whether a0 equals a prefixed value rather than
estimating the causal effect a0T .

To address the issue of identifiability, we will reparametrize γ0 with the aid of sufficient
dimension reduction (SDR), a mainstream of model-free dimension reduction techniques
in the statistical literature, as well as an appropriate strengthening of sparsity of γ0 that
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resembles Kang et al.’s spirit. In light of the empirical findings in Pierce et al. (2011), SDR
will also be adopted on T |X to merge all the instruments appropriately into a few stronger
ones, so as to alleviate the issue of weak instruments. Using the reduced predictor, i.e. the
estimates of both the strengthened instruments and the strengthened invalid instruments
γT
0X (subject to certain equivalence classes due to the reparametrization of γ0), we then

develop an innovative nonparametric estimator of g(T, γT
0X) that complies with the exis-

tence of unmeasured confounding and meanwhile avoids futile estimating equations. This
two-step nonparametric estimation procedure is robust against the number of instruments,
especially the weak instruments, which is another advantage over Kang et al.’s method in
addition to the modeling flexibility.

Throughout the article, we follow the literature (Rosenbaum and Rubin, 1983; Luo et al.,
2017) to adopt the common support condition for γT

0X:

Ω(γT
0X | T = t) ≡ Ω(γT

0X) for all t ∈ Ω(T ), (7)

where Ω(·) denotes the support of a distribution. This condition permits averaging g(t, γT
0X)

over the marginal distribution of γT
0X for any fixed outcome t of T . The result E{g(t, γT

0X)}
averages the causal effect of T on Y over the population and thus is the aforementioned
dose-response function. In particular, it reduces to the linear dose-response function a0T
in Kang et al. (2016) when g(·, ·) is linear. Because g(t, γT

0x) identifies the causal effect
specific for the subject’s characteristics, we call it the personalized dose-response function.
For clarity, we call the conventional dose-response function, i.e. E{g(t, γT

0X)}, the marginal
dose-response function. We will estimate both functions in this paper.

As mentioned above, Li and Guo (2020) also proposed a semi-parametric estimator of
essentially the personalized dose-response function, in the presence of invalid instruments.
They assumed that, given the unmeasured confounders, (T,X) affect Y through a single
index a0T + γT

0X in a model-free manner, which however precludes any interaction effect of
T and X. To address the issue of unmeasured confounders, Li and Guo (2020) also assumed
the sparsity of γ0 to make the causal effect identifiable and employed SDR to facilitate the
estimation, and they additionally adopted a linear model on T |X with an independent
error. The latter is crucial to Li and Guo’s method as the error term therein serves as a
control variable and eases the causal effect estimation. Because Kang et al. (2016) imposed
a linear model on Y |(T,X) but is model-free on T |X, Li and Guo’s method can be regarded
as a conjugate to Kang et al.’s method. By contrast, using natural SDR regulations and
innovative nonparametric techniques, our method is model-free on both Y |(T,X) and T |X.
Therefore, it is uniquely applicable if both Y |(T,X) and T |X convey nonlinear patterns, or
if T and X interact in affecting Y , or if X affects Y through a multi-index manner, in the
presence of unmeasured confounders.

The rest of the paper is organized as follows. We briefly review the literature of SDR
in Section 2, using which we re-parameterize γ0 and refine the instruments in Section 3.
A sparse estimator of γ0, which additionally selects the set of invalid instruments, is pro-
posed in Section 4. Based on the reduced data, Section 5 regulates the identifiability of
g(T, γT

0X) under a general assumption related to the instrument strength, and Section 6
introduces the new nonparametric estimators of both the personalized and the marginal
dose-response functions, as well as a diagnosis procedure for the assumption in Section
5. Simulation studies and a real data application are presented in Section 7 and Section
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8, respectively. Throughout the theoretical development of the paper, we assume that X
consists of continuous random variables and that both Y and T are univariate.

2. A Review of SDR

As mentioned above, SDR is a widely applied family of model-free dimension reduction
methods. For predictorX and a general response variableW , SDR assumes a low-dimensional
structure on W |X such that X affects W only through a low-dimensional linear combination
βT
WX, that is,

W ⊥⊥ X | βT
WX (8)

where ⊥⊥ denotes the independence between two random elements. As no parametric as-
sumptions are adopted on W |βT

WX, βT
WX can serve as the working predictor in the subse-

quent analysis that permits full freedom of modeling. Such analysis will be both reliable
and accurate, due to the sufficiency and the low dimensionality of βT

WX.
As (8) holds under an arbitrary invertible column transformation of βW , it is a charac-

terization of S(βW ), the column space of βW . For identifiable parametrization, Cook (1998)
introduced the central subspace SW |X as the uniquely smallest subspace of Rp that satisfies
(8) and is meanwhile included in any other space that also satisfies (8). The existence of the
central subspace requires fairly general conditions on X regardless of the nature of W , so
we assume it throughout the article. For simplicity, we still use βW to denote an arbitrary
basis matrix of SW |X . The reduced predictor of SDR is then βT

WX or any of its invertible
linear transformation.

Although SW |X is the SDR parameter of interest, its non-Euclidean nature urges the
necessity of introducing an intermediate Euclidean parameter for ease of estimation. Nat-
urally, this intermediate parameter is βW , or, better yet, a uniquely defined matrix ΓW
whose column space S(ΓW ) coincides with SW |X . For a major family of SDR methods,
which include the popularly used sliced inverse regression (SIR; Li, 1991), sliced average
variance estimation (SAVE; Cook and Weisberg, 1991), and directional regression (Li and
Wang, 2007), etc., such ΓW (denoted by M in these papers) is commonly constructed using
the moments of X|W , and the coincidence between S(ΓW ) and SW |X is guaranteed by mild

conditions on X and general regularity conditions on W |X. Given an estimator Γ̂W , which
is typically n1/2-consistent, SW |X is commonly estimated by the linear span of the leading

left singular vectors of Γ̂W . The number of these vectors, which is the same as the dimension
of SW |X , can be determined by the Bayesian information criterion (BIC; Zhu et al., 2006),
the ladle estimator (Luo and Li, 2016), and the predictor augmentation estimator (PAE;
Luo and Li, 2021), etc.

When the research interest is specified to regression, i.e. estimating E(W |X), SDR can
be adjusted to only detect the low-dimensional structure of E(W |X); that is, it instead
assumes the existence of a low-dimensional βT

WX such that

E(W | X) = E(W | βT
WX), (9)

where we abuse the notation βW in (8) if no ambiguity is caused. Similar to SW |X above,
the identifiable parameter for (9) is the central mean subspace SE(W |X) (Cook and Li, 2002)
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that satisfies (9) with minimal dimension, and the existing estimators of SE(W |X) typically
construct a uniquely defined matrix-valued intermediate parameter ΓW that spans SE(W |X);
see, for example, the principal Hessian directions (pHd; Li, 1992) and the minimum average
variance estimation (MAVE; Xia et al., 2002). Because any matrix β that satisfies (8) must
also satisfy (9), SE(W |X) is always a subspace of SW |X .

In some applications, a part of the predictor is prefixed to be used in the regression
and does not participate in the SDR procedure. This is the case in our setting, where T
must be included in fitting the personalized dose-response function. Accordingly, SDR for
regression is adjusted to partial SDR, which assumes

E(W | T,X) = E(W | T, βT
WX). (10)

Here, we still use the general response W for consistency of notations. Similarly to the
above, the identifiable parameter for (10) is called the partial central mean subspace and
denoted by S(T )

E(W |X) (Chiaromonte et al., 2002), and is commonly regarded as S(ΓW ) for
some uniquely defined matrix-valued intermediate parameter ΓW . The existing estimators
of S(T )

E(W |X) are omitted here as they are inapplicable in our setting due to the unmeasured
confounding in the data; see more details in Section 3.

Generally, an estimator of the central SDR subspace (i.e. SW |X , SE(W |X), or S(T )

E(W |X))
has non-sparse basis matrices. This limits both the estimation consistency and the in-
terpretability of the SDR result, especially when p is relatively large compared with the
sample size. To address this issue, SDR can be adjusted to sparse SDR, where only a few
components of X are assumed informative to W . Because X affects W through βT

WX, an
informative component of X must correspond to a nonzero row of βW or a nonzero row
of the aforementioned unique matrix ΓW . The equivalence between the latter two can be
easily seen from the fact that any matrices with the identical column space must also share
the same index of nonzero rows. Hence, sparse SDR implies the row-wise sparsity of ΓW ,
and the level of sparsity of the central SDR subspace can be quantified by the number of
zero rows of ΓW . This resembles the transition from the sparsity of invalid instruments to
the row-wise sparsity of γ0 discussed below (4) in the Introduction, and will be revisited in
the next section. The existing sparse SDR estimators, which truly select all the nonzero
rows of ΓW , include the coordinate independent sparse estimator (CISE; Chen et al., 2010)
and lasso SIR (Lin et al., 2019), etc.

3. Regulation of Dimension Reduction

Using SDR, we now give an identifiable re-parametrization of γ0 in (4) that simultaneously
permits effective subsequent IV analysis. Given a specific g(·, ·), the arbitrariness of γ0 men-
tioned in the Introduction can be readily addressed by the partial SDR theory, if we regard
g(T, γT

0X) as W in (10) and use the corresponding S(T )

E(W |X) as the parameter of interest. To
guarantee the identifiability of this parametrization under potential arbitrariness of g(·, ·),
we next follow the discussion below (4) to seek for effective additional regulations with the
aid of the sparsity of invalid instruments, i.e. the row-wise sparsity of γ0. Again, as reviewed
in Kang et al. (2016), this sparsity is commonly observed in Mendelian randomization in
practice. For ease of presentation, we introduce the notation SPDRF for the resulting iden-
tifiable S(T )

E(W |X) before giving its formal definition; the subscript refers to the personalized
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dose-response function. We also use γ0 to denote an arbitrary basis matrix of SPDRF and
use J0 to denote the index set of its zero rows. As reviewed at the end of Section 2 above,
J0 is invariant of the arbitrariness of γ0 and thus is uniquely defined; similar arguments will
be omitted from the rest of the article.

To formulate the sparsity of SPDRF, we additionally adopt the SDR assumption (8) on
T |X, with ST |X being dT -dimensional for some dT < p and spanned by some βT . Referring to
the empirical study in Pierce et al. (2011) mentioned in the Introduction, this also addresses
the issue of weak instruments. Namely, let L0 be the index set of nonzero rows of βT , which
is {1, . . . , p} if ST |X is non-sparse. By the definition of ST |X , L0 must index the components
of X that are uniquely informative to T , which includes all the instruments and possibly
some invalid instruments. Together with the interpretation of γ0 above, L0 ∩ J0 indexes
the set of instruments in X, and the part of βT

TX formed by these instruments, denoted by
βT
T,L0∩J0XL0∩J0 , is their optimal linear combination in terms of preserving and condensing

their signal in explaining T in the presence of invalid instruments. As seen later, this linear
combination will be estimated in a nonparametric manner without assuming equal effect
of instruments or requiring prior knowledge, for which it is advantageous compared with
those discussed in Pierce et al. (2011). To avoid the extreme case that X is independent of
T , which would preclude any link of the effect of X on Y to the causal effect of T on Y , we
assume

dT ≥ 1. (11)

Referring to the interpretation of ST |X above, this can also be regarded as a prerequisite for
the existence of instruments.

Since E(Y |X) is equal to E{g(T, γT
0X)|X} under (5), it is measurable with respect to

(βT , γ0)
TX. This implies a low-dimensional SE(Y |X), whose arbitrary basis matrix βY satisfies

(9) if Y serves as W in the latter. By definition, we have

SE(Y |X) ⊆ S(ST |X ,SPDRF), (12)

where S(·, ·) denotes the space spanned by the union of two spaces. Because IV analysis
hinges on (5), no hypothetical direction in SPDRF that falls outside of S(ST |X ,SE(Y |X)) can
be detected. Thus, we strengthen (12) to assume

SPDRF ∈ G ≡ {S(γ) ⊂ Rp
: S(ST |X , γ) = S(ST |X ,SE(Y |X))}. (13)

We next build the identifiability of SPDRF among all in G, using its aforementioned sparsity.
Recall that L0 indexes the nonzero rows of βT and J0 indexes the zero rows of γ0. Let q

be the minimal number of nonzero entries for any nonzero vector in ST |X . By simple algebra,
q must be less than or equal to the cardinality of L0. Let L0\J0 be the set of elements in
L0 that are not in J0, which by definition indexes the invalid instruments that are as well
uniquely informative to T . Similar to Corollary 1 in Kang et al. (2016), we regulate the
sparsity of SPDRF by

Assumption 1 The cardinality of L0\J0 is less than q/2.

Under Assumption 1, the cardinality of L0 ∩ J0 must be greater than q/2, or equivalently
that there are more than q/2 instruments. If ST |X is not sparse, that is, if every invalid
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instrument contributes to the modeling of T , then Assumption 1 can be read as there are less
than q/2 invalid instruments. Together, these require that more instruments than invalid
instruments exist in the data, which is more restrictive than the existence of instruments
conventionally adopted in IV analysis. The same has been assumed in Li and Guo (2020).
This is the price we pay for allowing the existence of invalid instruments and allowing
free form of their effects. Note that Assumption 1 does not impose any restriction on the
components of X that fall out of L0, which include those who are uninformative to (Y, T )
as well as those invalid instruments who are additionally uninformative to T .

To illustrate how Assumption 1 identifies SPDRF, consider a special case where X affects
T through X1+X2+X3 and it affects Y through 2X1+X2+X3, Xi being the ith component
of X for i = 1, . . . , p. Then βT is (1, 1, 1, 0, . . . , 0)T and βY is (2, 1, 1, 0, . . . , 0)T, both up to
multiplicative scalars. Under Assumption 1, any basis vector of SPDRF must have at most
one nonzero entry among its first three entries, so S{(1, 0, . . . , 0)T} is the only choice for
SPDRF among all in G. The next theorem justifies this identifiability in general.

Theorem 1 Under Assumption 1, SPDRF spanned by γ0 is the uniquely sparsest space in G
and has the smallest possible dimension; that is, any other space S(γ) ∈ G must have an
equal or larger dimension, and γ must have more nonzero rows than γ0.

Proof We first show that any S(γ) ∈ G must have an equal or larger dimension compared
with S(γ0). Since S(βT , γ0) = S(βT , γ), γ must fall in S(βT , γ0); that is, there exist matrices
A and B such that

γ = βTA+ γ0B. (14)

If S(γ) is lower-dimensional than S(γ0), then there must exist some β ∈ S(γ0) that is
orthogonal to γ. Similarly to (14), we have β = βTC + γD. The orthogonality between
β and γ then implies D = 0, which means that β = βTC. However, this contradicts
Assumption 1, which means that S(γ) must have at least equal dimension as S(γ0).

Now suppose S(γ) differs from S(γ0), which means that A is nonzero in (14). We next
show that γ must have more nonzero rows than γ0. Let Q(βT ) = Ip − βT (βT

TβT )−1βT , i.e.
the projection matrix onto the orthogonal complement of S(βT ). Since S(γ0),S(γ) ∈ G, we
must have

S(Q(βT )γ) = S(Q(βT )γ0). (15)

For any i ∈ {1, . . . , p}, let γi, βT,i, and γ0,i be the ith row of γ, βT , and γ0, respectively. If
i 6∈ L0, then since βT,i = 0, the ith row of Q(βT ) must coincide with the ith row of Ip, which
implies the identity between the ith row of Q(βT )γ and γi, as well as the identity between
the ith row of Q(βT )γ0 and γ0,i. Thus, (15) implies that γi and γ0,i must be either both
zero or both nonzero, or equivalently that the sparsity of γ and γ0 may differ only in their
rows indexed by L0. Since any direction in S(βT,L0

) must have at least q nonzero entries
and any direction in S(γ0,L0

) must have less than q/2 nonzero entries, a nonzero A means
that any direction in S(βT,L0

A + γ0,L0
B) or equivalently S(γL0

) must have more than q/2
nonzero entries. This completes the proof. �
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By Theorem 1, SPDRF is the uniquely sparsest as well as lowest dimensional among all
in G. This again conforms to the nature of sparsity of invalid instruments, and it also
delivers maximal dimension reduction. An interesting question raised by a Referee is that
how SPDRF will change if one removes an invalid instrument from X. This roughly depends
on the complexity of data, and will be addressed in Appendix C. Let d be the dimension
of SPDRF, and let dY be the dimension of SE(Y |X). By (13), there exists coefficient matrices
A0 ∈ RdT×dY and B0 ∈ Rd×dY such that

βY = βTA0 + γ0B0. (16)

The minimality of d further implies the full row rank of B0, unless SPDRF is trivially zero-
dimensional.

In view of (16), the proposed regulation of SPDRF can be regarded as a semi-parametric
generalization of Kang et al.’s work. Suppose both ST |X and SE(Y |X) are one-dimensional.
Then, without assuming linear models on T |X or Y |X, Li and Duan (1989) showed that
Σ−1
X E(XT ) equals aβT and Σ−1

X E(XY ) equals cβY for some scalars a and c, under some
mild condition on X. The former equates (2) with

E[{Y − (aβT + γ0)
TX}XT] = 0; (17)

the latter means E{(Y − cβT
YX)XT} = 0, which further equates (17) with (16) for A0 = a/c

and B0 = 1/c if c is nonzero. Thus, (16) includes (2) as a special case without assuming any
parametric model on Y |(T,X). Again, the generality of our work at the dimension reduction
stage is two-fold: first, we allow for multiple linear combinations of invalid instruments to
affect Y in the presence of T ; second and more importantly, we do not adopt any modeling
assumptions when reducing data, permitting full freedom in the subsequent estimation of
the personalized and the marginal dose-response functions.

4. Estimation of SPDRF

By applying the existing SDR methods, both SE(Y |X) and ST |X can be consistently estimated.
Using these estimates, the unknown terms in (16) are A0, B0, and γ0. Thus, to estimate
SPDRF, it is natural to introduce an objective function based on (16).

As mentioned in Section 3, the coefficient matrix B0 has full row rank, which means
that γ0B0 must also span SPDRF. Because our parameter of interest is SPDRF rather than its
basis matrix γ0, we regard γ0B0, denoted by Γ0 ∈ Rp×dY , as the intermediate parameter in
(16). This complies with the literature of SDR methods that introduces a matrix-valued
intermediate parameter ΓW that spans the central SDR subspace (see Section 2), and, more
importantly, it simplifies (16) to the linear constraint

βY = βTA0 + Γ0, (18)

which facilitates the downstream implementation. To ease the theoretical development,
we further impose the uniqueness of Γ0 by requiring so for both βY and βT , for which we
restrict both the first dY nonzero rows of βY and the first dT nonzero rows of βT to form the
identity matrix. Given an estimator of Γ0, denoted by Γ̂, SPDRF can be estimated by the
linear span of the leading left singular vectors of Γ̂. The uniqueness of Γ0 is not essential:
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the consistency results below will still hold in general if we build them directly for SPDRF

rather than for Γ0.
Let β̂Y and β̂T be the unique basis matrices of the consistent estimators of SE(Y |X) and

ST |X , respectively, under the regulation above that their first few significantly nonzero rows
must form the identity matrix. To tackle the sparsity of SPDRF under Assumption 1, we also
incorporate a penalty function of certain rows of Γ. These together lead to the objective
function

ŝ(A,Γ) = tr{(β̂Y − β̂TA− Γ)T(β̂Y − β̂TA− Γ)}+
∑

i∈I φλ(‖Γi‖2), (19)

where tr(·) denotes the trace of a square matrix, φλ(·) is the penalty function introduced
in (3), and Γi denotes the ith row of Γ for i = 1, . . . , p. As an illustration, we set φλ(·)
as the smooth clapped absolute distance penalty (SCAD, Fan and Li, 2001) in this article.
The index set I is {1, . . . , p} in general, but it can be reduced to exclude rows of Γ0 that
are surely nonzero or equivalently indicate the invalid instruments. In practice, these rows
can be either presumed a priori or, if both ST |X and SE(Y |X) are sparse, detected by the

intersection of zero rows of ŜT |X and nonzero rows of ŜE(Y |X) under (18). The overall gain
in the latter case, however, is questionable, as sparse estimators of ST |X and SE(Y |X) are
usually derived by penalized estimation and thus are also more biased; see the end of the
section for some relative discussion.

Borrowing from the rich literature of penalized least square estimation, ŝ(A,Γ) can be
readily minimized by an iterative algorithm that updates A and Γ alternatively. Namely,
at each iteration, we first regard Γ as fixed, by which ŝ(A,Γ) is a quadratic function of A
and can be easily minimized to update A; we then regard A as fixed, by which ŝ(A,Γ) is
a penalized quadratic function of Γ and again can be easily minimized to update Γ. The
iteration stops when a prefixed threshold is met. The details of this algorithm are presented
in the following. Following Fan and Li (2001), a in Step 1 is fixed at 3.7, and λ is tuned
by a five-fold cross validation. To set an initial value of the algorithm, we use the lasso
penalty (Tibshirani, 1996) in (19), as for which ŝ(·, ·) is a convex function and can be easily
minimized. By the theory of lasso regression, such initial value will also approximate to
(A0,Γ0) subject to appropriate tuning procedure, which speeds up the algorithm.

Algorithm 1 Algorithm for the estimation of SPDRF

Step 0. Calculate the initial value of Ã using the lasso penalty in (19).
Step 1. Given Ã, calculate Γ̌ = β̂Y − β̂T Ã. Let Γ̃ = Γ̌, but, for each i ∈ I, modify Γ̃i to be

Γ̃i =


(Γ̌i/‖Γ̌i‖2) max{‖Γ̌i‖2 − λ, 0} if 0 < ‖Γ̌i‖2 ≤ 2λ

(Γ̌i/‖Γ̌i‖2) [{(a− 1)‖Γ̌i‖2 − aλ}/(a− 2)] if 2λ < ‖Γ̌i‖2 ≤ aλ
Γ̌i if ‖Γ̌i‖2 > aλ or ‖Γ̌i‖2 = 0

Step 2. Given Γ̃, calculate Ã = (β̂T
T β̂T )−1β̂T

T (β̂Y − Γ̃).
Step 3. Iterate between Step 1 and Step 2 until a convergence threshold is met. The most
updated results are Γ̂ and Â, respectively.

Denote the minimizer of (19) by (Â, Γ̂). Referring to the discussion below (18), to
consistently estimate SPDRF from Γ̂, we must consistently estimate the unknown dimension
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d of SPDRF first. Nonetheless, for the continuity of the presentation, we tentatively assume
d to be known a priori, under which we estimate SPDRF by the linear span of the leading
d left singular vectors of Γ̂, denoted by ŜPDRF. As justified in Lemma 1 in Appendix A,
this simplification does not change any downstream asymptotic results and thus is valid. A
consistent estimator d̂ of d, which is used to implement ŜPDRF in practice and can be readily
derived by the existing methods based on Γ̂, is deferred to the end of the section.

In an oracle situation where the set of invalid instruments is known, one can estimate Γ0

by minimizing the first term of ŝ(·, ·) over {Γ ∈ Rp×dY : Γi = 0 for all i ∈ J0}. Denote this
minimizer by (Âora, Γ̂ora). The linear span of the leading d left singular vectors of Γ̂ora is
clearly the benchmark for all the sparse estimators of SPDRF. The following theorem shows
that the proposed ŜPDRF is not only asymptotically consistent, but also enjoys the strong
oracle property that it tends to exactly coincide with this benchmark.

Theorem 2 Suppose S(β̂T ) is a ns-consistent estimator of ST |X and S(β̂Y ) is a nv-consistent

estimator of SE(Y |X). If λ→ 0 and nmin{s,v}λ→∞, then Γ̂ satisfies ‖Γ̂−Γ0‖2 = OP (n−min{s,v}),

P (Γ̂i = 0)→ 1 for all i ∈ J0, and P (Γ̂ = Γ̂ora)→ 1.

Proof We use the notations in the iterative algorithm mentioned above, but we denote Γ̌
by Γ̌(A) and denote Γ̃ by Γ̃(A) to clarify the dependence of these terms on A. Let H0 be the
index set of nonzero rows of γ0, i.e. the complement of J0 with respect to {1, . . . , p}. Denote
the submatrices of βT and βY consisting of rows indexed by J0 by βT,J0 and βY,J0 , respectively.
By simple algebra, Assumption 1 implies that βT,J0 must have full column rank (otherwise,
there would exist a zero column of βT,J0 after appropriate column transformation, making

q not more than the cardinality of L0\J0), and (Âora, Γ̂ora) has the closed form

Â
ora

= (β̂T
T,J0

β̂T,J0)−1β̂T
T,J0

β̂Y,J0 , Γ̂
ora

i = β̂Y,i − β̂T,iÂora
for all i ∈ H0. (20)

Since β̂Y = βY +OP (n−v) and β̂T = βT +OP (n−s), we have Âora = A+OP (n−min{s,v}), which
means ‖Γ̌(Âora)− Γ0‖ = OP (n−min{s,v}) = oP (λ). By the definition of Γ̃(A) in Algorithm 1,
we have, with probability tending to one, ‖Γ̃i(Âora) − Γi‖ = OP (n−min{s,v}) for all i ∈ H0,
Γ̃i(Â

ora) = 0 for all i ∈ J0, and Γ̃(Âora) = Γ̂ora. For simplicity of notations, we denote Âora

by Ā and Γ̂ora by Γ̄, and do not distinguish between Γ̄ and Γ̃(Ā). The proof will be complete
if we can show that (Ā, Γ̄) minimizes ŝ(A,Γ) with probability converging to one.

By simple algebra, for any fixed A, Γ̃(A) minimizes ŝ(A,Γ). Thus, let s̃(A) denote
ŝ(A, Γ̃(A)). We only need to show that Ā minimizes s̃(A) with probability converging to
one. By construction, we have

s̃(A) =
∑p

i=1
{‖β̂Y,i − β̂T,iA− Γ̃i(A)‖2 + φλ(‖Γ̃i(A)‖)}

=
∑p

i=1
{‖Γ̌i(A)− Γ̃i(A)‖2 + φλ(‖Γ̃i(A)‖)} ≡

∑p

i=1
s̃i(A).

For each i = 1, . . . , p, if ‖Γ̌i(A)‖ < 2λ, then we have

s̃i(A) = {Γ̌i(A)− Γ̃i(A)}2 + λ‖Γ̃i(A)‖
= ‖Γ̌i(A)‖2I(‖Γ̌i(A)‖ ≤ λ) + [λ

2
+ λ{‖Γ̌i(A)‖ − λ}]I(‖Γ̌i(A)‖ > λ). (21)

In this case, the minimum value of s̃i(A) is reached only when ‖Γ̌i(A)‖ ≤ λ. If ‖Γ̌i(A)‖ ∈
[2λ, aλ), then we have

12
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s̃i(A) = {‖Γ̌i(A)‖ − aλ}2/(a− 2)
2 − {‖Γ̃i(A)‖ − aλ}2/{2(a− 1)}+ (a+ 1)λ

2
/2

= (3− a){‖Γ̌i(A)‖ − aλ}2/{2(a− 2)
2}+ (a+ 1)λ

2
/2, (22)

which has minimum value min{2, (a+ 1)/2}λ2. If ‖Γ̌i(A)‖ ≥ aλ, then we have

s̃i(A) = {Γ̌i(A)− Γ̌i(A)}2 + (a+ 1)λ
2
/2 = (a+ 1)λ

2
/2. (23)

Let r be the number of nonzero rows of Γ0, i.e. the cardinality of H0. By (21), (22), (23),
λ→ 0, n−min{s,t}λ→∞, and the consistency of Γ̄, we have

s̃(Ā) = r(a+ 1)λ
2
/2 +

∑
i∈J0
‖β̂Y,i − β̂T,iĀ‖2 = r(a+ 1)λ2/2 + oP (λ2). (24)

For any A ∈ RdT×dY , let Hλ(A) = {i = 1, . . . , p : ‖Γ̌i(A)‖ > aλ} be the index set of
rows of Γ̌(A) whose norms are greater than aλ, and let Nλ(A) be its cardinality. Let
Aλ = {A ∈ RdT×dY : Nλ(A) > r}, we have, for any A ∈ Aλ, s̃(A) ≥ (r + 1)(a+ 1)λ2/2. By
(24), we have P (minA∈A s̃(A) > s̃(Ā)) → 1 as λ → 0, which means that, without loss of
generality, we can minimize s̃(A) within Acλ ≡ {A ∈ RdT×dY : Nλ(A) ≤ r}.

We next show that for all small λ, Acλ = {A ∈ RdT×dY : Hλ(A) = H0}, denoted by
Bλ. Let Gλ = (‖β̂T − βT‖ < C1λ) ∩ (‖β̂Y − βY ‖ < C1λ) for a positive constant C1. Since
β̂T = βT +oP (λ) and β̂Y = βY +oP (λ), we have P (Gλ)→ 1 as λ→ 0. For i = 1, . . . , p, given
Gλ, ‖Γ̌i(A)‖ < aλ implies ‖βY,i − βT,iA‖ < C2λ for some constant C2 > 0. Thus, given Gλ,
Nλ(A) ≤ r implies #{i = 1, . . . p : ‖βY,i − βT,iA‖ < C2λ} ≥ q − r. By Theorem 1, for all
small λ, the only set that satisfies the latter is J0. Thus, for all small λ, we have Bλ = Acλ
with probability tending to one.

Hence, without loss of generality, we can minimize s̃(A) within Bλ. By (21), (22), and
(23), for any A ∈ Bλ, we have

s̃(A) ≥ r(a+ 1)λ
2
/2 +

∑
i∈J0
{‖Γ̌i(A)‖2I(‖Γ̌i(A)‖ < λ) + λ2I(‖Γ̌i(A)‖ ≥ λ)},

which is clearly minimized at A = Ā. This completes the proof. �

Typically, S(β̂T ) and S(β̂Y ) are n1/2-consistent. In this case, Theorem 2 justifies the
n1/2-consistency of ŜPDRF in estimating SPDRF. The corresponding requirements for the
tuning parameter λ in the SCAD penalty are λ→ 0 and n1/2λ→∞, which conform to the
results in Fan and Li (2001). Theorem 2 also applies when ST |X and SE(Y |X) are estimated
by SDR methods with slower convergence rate, e.g. MAVE as mentioned in Section 2, in
which case the range of appropriate λ needs to be adjusted accordingly.

In practice, the consistency of S(β̂T ) can be compromised and subsequently harm the
consistency of ŜPDRF, if βT

TX has a weak effect on T . Referring to the literature review
in the Introduction, this complies with the common concern about the inconsistency of
IV analysis in the presence of weak instruments. However, it should be less worrisome
due to, first, the use of strengthened instruments βT

T,L0∩J0
XL0∩J0 rather than the individual

instruments in βT
TX (see the discussion above (11)), second, the nonparametric nature of

SDR that allows a nonlinear effect of βT
TX on T , and, third, the potential presence of invalid

instruments in βT
TX that intensifies this effect. A detailed discussion is deferred to Section

5 later. To assess the consistency of ŜPDRF in practice, one can use the bootstrap method to
approximate its variation, say measured by E{‖Π(ŜPDRF)−Π(SPDRF)‖2} where Π(·) denotes
the usual projection matrix of a linear space, details omitted.
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When the research interest is extended to detect all the instruments, ŜPDRF can also serve
the purpose in conjunction with a consistent sparse estimator of ST |X , the latter achievable
by the existing sparse SDR methods, e.g. lasso SIR mentioned in Section 2. In details,
recall that the set of instruments is indexed by L0 ∩ J0, where L0 is the set of nonzero rows
of βT and J0 is the set of zero rows of γ0; the consistent selection of L0 ∩ J0 immediately
follows that of J0 by ŜPDRF and that of L0 by the sparse estimation of ST |X .

To determine d, the dimension of SPDRF, multiple existing methods mentioned in Section
2 can be used. For example, if the estimators of SE(Y |X) and ST |X are asymptotically normal,
which, by Delta method and the strong oracle property in Theorem 2, imply the asymptotic
normality of the nonzero rows of Γ̂, then the ladle estimator (Luo and Li, 2016) is applicable.
We also recommend using BIC (Zhu et al., 2006) and PAE (Luo and Li, 2021) if asymptotic
normality is not guaranteed in the estimation of SE(Y |X) or ST |X .

5. Regulation of the personalized dose-response function

Given the well-defined reduced predictor γT
0X, it is now eligible to regulate the personalized

dose-response function g(t, γT
0x) towards identifiability with the aid of additional assump-

tions. Recall that we have assumed the existence of instruments in Assumption 1, which
means that γT

0X does not carry all the information in X about modeling T . Thus, it is
fairly general to adopt

Assumption 2 For any non-degenerate f(T, γT
0X) in L2(T, γ

T
0X), E{f(T, γT

0X)|X} is also
non-degenerate.

That is, there is a one-to-one correspondence between each candidate f(T, γT
0X) and its

conditional mean given X. Under this assumption, g(T, γT
0X) is clearly the unique function

of (T, γT
0X) that satisfies (4) and (5). A similar assumption can be found in Newey and

Powell (2003) (see their Proposition 2.1), which served the same purpose of identification.
Because any E{f(T, γT

0X)|X} reduces to E{f(T, γT
0X)|βT

TX, γ
T
0X} with the aid of SDR on

T |X, (5) can be rewritten as

E{Y − g(T, γT
0X) | βT

TX, γ
T
0X} = 0, (25)

and, under Assumption 2, g(T, γT
0X) can be estimated nonparametrically by solving this

inverse problem without triggering the “curse of dimensionality”.
Despite its theoretical generality, however, the effectiveness of Assumption 2 in practice

hinges on how much βT
TX, particularly the strengthened instrument βT

T,L0∩J0XL0∩J0 , is
associated with T . If this effect is weak, then there will exist some non-degenerate f(T, γT

0X)
such that E{f(T, γT

0X)|X} is practically negligible, which adds noise to (25) and delivers
biased and unstable estimation of g(T, γT

0X). In this sense, Assumption 2 is a nonparametric
analog, as well as a relaxation, of the common requirement on the instrument strength in
the conventional linear IV analysis (Sheehan and Didelez, 2011; Burgess et al., 2017). The
relaxation is three-fold. First, instead of the individual instruments, Assumption 2 is only
associated with their optimal linear combination βT

T,L0∩J0XL0∩J0 . Second, with the aid of the
invalid instruments, the effect of βT

TX on T can still be strong if the effect of βT
T,L0∩J0

XL0∩J0
is weak. Third, as no parametric models are specified on T |βT

TX, βT
TX is allowed to have a

weak linear effect as long as it has an otherwise, e.g. symmetric, strong effect on T .
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Based on these relaxations, we speculate that Assumption 2 regulates the instrument
strength in the most general way; that is, no consistent estimation of g(T, γT

0X) will be
feasible if it fails. As seen in Section 6 later, the effectiveness of Assumption 2 also plays
a central role in the reliability of the estimation of g(T, γT

0X), which urges the necessity to
develop a corresponding diagnosis procedure.

Recall from (12) that SE(Y |X) is always a subspace of S(ST |X ,SPDRF), which implies that
βT
YX is a linear combination of (βT

TX, γ
T
0X), and that E{Y |βT

TX, γ
T
0X} in (25) is identical

to E{Y |βT
YX}. When βT

YX is lower dimensional than (βT
TX, γ

T
0X), (25) can be refined to

E{Y − g(T, γT
0X) | βT

YX} = 0, (26)

which has a reduced dimensionality that benefits the corresponding estimation of g(T, γT
0X).

However, the uniqueness of g(T, γT
0X) as the solution to (26) requires strengthening As-

sumption 2 to the one-to-one correspondence between each non-degenerate f(T, γT
0X) and

E{f(T, γT
0X)|βT

YX}, which subtly restricts the effect of βT
TX on T in addition to its overall

strength and can be easily violated in practice. For example, as easily seen from (18), it fails
in the simple case that both T |X and Y |(T,X) convey a homoscedastic linear regression
model. Under this concern, we choose to estimate g(T, γT

0X) based on (25) rather than
(26) for the widest applicability of the proposed IV analysis, although with the price of
compromised estimation efficiency in certain cases.

6. Estimation of the personalized dose-response function

Let γ̂ be an arbitrary orthonormal basis matrix of ŜPDRF derived in Section 4. Using the
reduced predictor γ̂TX, we now estimate g(T, γT

0X) based on (25) under Assumption 2. Due
to the potential confounding between T and ε in (4), it is generally infeasible to develop a
simple nonparametric estimator of g(T, γT

0X) that resembles the local polynomial regression,
e.g. the NW estimator, with well-developed asymptotic properties. As mentioned before,
one choice is to construct a proxy for the unmeasured confounders based on a homoscedastic
linear model on T |X (Li and Guo, 2020), which however introduces additional modeling risk.
Another choice is to impose a parametric model for g(T, γT

0X) whose flexibility grows with
the sample size, under which a generalization of the conventional two-stage least squares
estimator can be developed; see, for example, Newey (1990) and Newey and Powell (2003).
However, the inevitable use of multiple regulation terms (Newey and Powell, 2003) in such
estimation would complicate both the theoretical development and the implementation.
For these reasons, we will estimate g(T, γT

0X) following the spirit of the reproducing kernel
Hilbert space (RKHS)-based methods.

The RKHS-based methods have a wide application in nonparametric statistics and ma-
chine learning research. The essence of these methods is to first approximate the functional
parameter by an element in an appropriate functional linear space, commonly known as the
kernel trick, and then estimate this element using essentially the (functional) least squares
method. We refer to Fukumizu’s seminal work (Fukumizu et al., 2007, 2008; Sriperumbudur
et al., 2010) for a detailed review of the relative literature.

Let K : R 7→ R+ be a kernel density function satisfying Condition (C.1) in Appendix B.
For any random element R and its sample copies (R[1], . . . , R[n]), let Kh(R) = K(‖R/h‖2)
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with bandwidth h and

Kh,i(R) = Kh(R−R[i]
)/

∑n

k=1
Kh(R−R[k]), i = 1, . . . , n.

Let Kh be the linear space spanned by Kh,1(T, γ̂
TX), . . . ,Kh,n(T, γ̂TX), and let Hb be that

spanned by Kb,1(β̂
T
TX, γ̂

TX), . . . ,Kb,n(β̂T
TX, γ̂

TX) for some other bandwidth b, where β̂T
spans a consistent estimator of ST |X as mentioned in Section 4 above. When R is square
integrable, we approximate E(R | T, γT

0X), i.e. the projection of R onto L2(T, γ
T
0X), by

the projection of R onto Kh. Similarly, we approximate E(R | βT
YX) by the projection of

R onto Hb. Because g(T, γT
0X) falls in L2(T, γ

T
0X) and satisfies (5), it can be naturally

characterized as, first, it must approximate to its projection onto Kh; second, by (25), its
projection onto Hb must approximate to the projection of Y onto Hb.

Generally, the projection of any random element onto an RKHS is derived by applying
Pythagorean theorem with the aid of a ridge regularity term. To ease the calculation,
here we approximate the projection of any R onto Kh by the simple Nadaraya-Watson
(NW) estimator

∑n

i=1
Kh,i(T, γ̂

TX)R[i], and likewise approximate the projection of R onto

Hb by
∑n

i=1
Kb,i(β̂

T
TX, γ̂

TX)R[i]. The consistency of these approximations, which is based
on the well-developed asymptotic properties of the NW estimator (Fan and Gijbels, 2018),
is justified in Theorem 3 later. Let Kh and Hb be matrices in Rn×n whose (i, j)th entries are
Kh,j(T

[i], γ̂TX [i]) and Kb,j(β̂
T
TX

[i], γ̂TX [i]), respectively, and let Y = (Y [1], . . . , Y [n])T. Using
the characterization of g(T, γT

0X) in the previous paragraph, we estimate the sample copies
of g(T, γT

0X), denoted as Vn = {g(T [1], γT
0X

[1]), . . . , g(T [n], γT
0X

[n])}T, by minimizing

Ψ̂(v) = ‖Hbv −HbY‖22 + τ‖Khv − v‖22 (27)

over v ∈ Rn. Here, τ is a prefixed positive constant that balances the two losses. De-
pending on the nature of data, other loss functions can be used for the two terms of
Ψ̂(·). For example, if (T, γT

0X) and (βT
TX, γ

T
0X) have a tight support so that the bound-

ary effect is not worrisome in the nonparametric estimation, then the L∞ loss defined as
‖(v1, . . . , vn)T‖∞ = maxi=1,...,n |vi| can be used; by contrast, if these random elements have
heavily tailed distributions, then the L1 loss should be considered under the concern of
robustness. The loss functions for the two terms of Ψ̂(·) can also differ from each other.

Benefited from the use of L2 losses, the minimizer of Ψ̂(·) has an analytic form; that is,
subject to that (I−Kh,Hb) has full row rank, which is implied by Assumption 2 as justified
later, Ψ̂(·) has the unique minimizer

V̂n = W−1
τ HT

bHbY, (28)

where Wτ = τ(I − Kh)
T(I − Kh) + HT

bHb. The consistency of V̂n is readily implied by the
construction of Ψ̂(·). It can also be intuitively explained as, first, since Ψ̂(·) is always non-
negative and Ψ̂(Vn) is negligible, Ψ̂(V̂n) must also be negligible by definition and thus is
close to Ψ̂(Vn); then, as long as all the eigenvalues of the Hessian matrix of Ψ̂(·), i.e. Wτ ,
are non-negligible, V̂n must be close to Vn.

Given V̂n, we follow the formulations above to estimate g(T, γT
0X) by a smoothing pro-

cedure; that is, for any (t, x) ∈ ΩT,X , we use the NW estimator

ĝ(t, γT
0x) =

∑n

i=1
Kh,1(t, γ̂

Tx)V̂ [i]

n , (29)
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where V̂ [i]

n denotes the ith component of V̂n. By its nature, we call this estimator the semi-
parametric personalized instrumental variable estimator (SPIVE). Its consistency, which
naturally follows the arguments above, is formulated in the following theorem. The proof
is deferred to Appendix A. Let λmin(Wτ) be the smallest eigenvalue of Wτ . Because Wτ is
always positive semi-definite, the desired non-negligibility of Wτ above can be expressed as
1/λmin(Wτ) = OP (1).

Theorem 3 Under the assumptions in Theorem 2, Assumption 2, and the regularity con-
ditions (C.1-C.4) in Appendix B, we have 1/λmin(Wτ) = OP (1), and

n
−1/2‖V̂n − Vn‖2 = OP{rn(h, d+ 1) + rn(b, d+ dT ) + n

−min{s,v}}.

where rn(a, c) = a2 + n−1/2a−c/2 for any scalars a, c > 0. In addition, for an independently
generated copy of (X,T ), denoted by (X̃, T̃ ), we have

ĝ(T̃ , γT
0 X̃)− g(T̃ , γT

0 X̃) = OP{rn(h, d+ 1) + rn(b, d+ dT ) + n
−min{s,v}}. (30)

Referring to the results in Theorem 2, the term n−min{s,v} in Theorem 3 represents the
cost of estimating SPDRF and SE(Y |X) from the SDR stage. When the bandwidths h and b
are proportional to n−1/(d+5) and n−1/(d+dT+4), respectively, ĝ(T, γT

0X) reaches its optimal
convergence rate n−min{2/(d+dT+4),s,t}, which is reasonably fast as long as both SPDRF and
ST |X are low-dimensional and the SDR estimations are sharp enough. Here, we measure the

estimation accuracy of V̂n by the popularly used mean squared error, which complies with
the nature of Ψ̂(·) in (27) as a L2 loss function and also with the literature of RKHS methods
(Fukumizu et al., 2007; Sriperumbudur et al., 2010; Kim and Scott, 2012; Li and Song, 2017).
For the same reason, the consistency of ĝ(T, γT

0X) is formulated in a probabilistic sense for
a new observation, rather than being pointwise. A pointwise consistent estimator can be
derived if we instead use the aforementioned L∞ loss in Ψ̂(·).

From an omitted simulation study, the performance of SPIVE is robust to the choice of
τ , and can be optimized if the bandwidths h and b fall in appropriate ranges. Thus, we use
τ = 1 in practice for simplicity, and we recommend using a grid point search with five-fold
cross validation to tune h and b. Due to the existence of unmeasured confounding, such
cross validation must not use the conventional mean squared error to evaluate the goodness
of fit in the testing set. Instead, for any estimate R̂ of g(T, γT

0X) derived from the training
set, we recommend using

[1− dCor{R̂, (T, γ̂TX)}] + E{E2
(Y − R̂ | β̂T

TX, γ̂
TX)}/ log(n) (31)

in the testing set, where dCor(·, ·) denotes the distance correlation that measures the de-
pendency between two random elements, and the conditional mean of the residual Y − R̂ is
approximated by the NW estimator conducted solely based on the testing set. As the first
term in (31) is minimized if and only if R̂ is a measurable function of (T, γ̂TX) (Székely
et al., 2007), and the second term is minimized if and only if the residual Y −R̂ has negligible
mean conditional on (βT

TX, γ
T
0X), they together punish any deviation of R̂ from g(T, γT

0X)
under Assumption 2. The weight log(n) is employed to address the issue that the second
term tends to vary more dramatically than the first term in practice.
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To polish the finite-sample performance of SPIVE, another trick is to use a smaller
bandwidth ` than h in (29), which satisfies n−1/2`(1−d)/2 + `2 → 0. The reason is that, with
V̂n being the response instead of Y in the NW estimator (29), the error term ε in (4) that
causes the majority of the variance of the estimator has been smoothed out. Thus, a smaller
bandwidth ` can reduce the bias of the estimator, while bringing little additional variance.
A detailed explanation is attached at the end of the proof of Theorem 3 in Appendix A.
Following this logic, g(T, γT

0X) can also be estimated by the K-nearest neighbors method
given V̂n, details omitted.

Compared with the conventional RKHS-based methods, a clear advantage of SPIVE is
that the matrix inversion in its implementation, i.e. W−1

τ , can be calculated properly without
involving additional regularity terms. The invertibility of Wτ is also crucial to the reliability
of SPIVE: if the smallest eigenvalues of Wτ are practically negligible, then the largest
eigenvalues of W−1

τ will be excessive and unstable, making V̂n biased and vary dramatically
by minor data disturbance. From the proof of Theorem 3 (see Appendix A), this occurs
exactly when Assumption 2 is nearly void, that is, if there exists non-degenerate f(T, γT

0X)
with negligible mean conditional on X. Therefore, λmin(Wτ) delineates the essential role of
Assumption 2 to the consistency of SPIVE, and we use it to diagnose the effectiveness of
this assumption: a smaller value being stronger opposing evidence.

Generally, it is difficult to characterize the null distribution of λmin(Wτ), particularly as
it will be elevated if one uses a larger bandwidth h or a smaller b in Wτ . Fortunately, our
simulation experience shows that, for a wide range of choices of h and b, there is a clear
gap between the supports of λmin(Wτ) when Assumption 2 holds and when it fails. Thus,
we use a rule-of-thumb

λmin(Wτ) > n
−3/4

(32)

to determine whether Assumption 2 holds to a reasonable extent. The usefulness of this
rule is supported by both the simulation studies in Section 7 and a complementary simu-
lation result in Appendix D, which respectively suggest that (32) holds consistently when
Assumption 2 is effective and that it fails consistently when Assumption 2 is ineffective. As
mentioned in Section 5, the effectiveness of Assumption 2 relies on the strength of the effect
of βT

TX on T , so it can also be inferred by evaluating the standard error of ŜPDRF or more
directly the distance correlation between T and βT

TX, etc. These approaches are omitted
here as they are less explicitly related to the consistency of SPIVE than λmin(Wτ).

To estimate the marginal dose-response function, we modify SPIVE to the semipara-
metric marginal instrumental variable estimator (SMIVE)

Ê{g(t, γT
0X)} = En{ĝ(t, γT

0X)}, t ∈ Ω(T ).

The asymptotic consistency of this estimator is readily implied by Theorem 3 under the
common support condition (7). To reduce the boundary effect in the estimation, we suggest
transforming T and γT

0X in the presence of heavy tails, as well as truncating the support of
(T, γT

0X) when the data cloud does not convey a (hyper-)rectangular shape, i.e. approaching
Ω(T ) × Ω(γT

0X). If the truncation is conducted, the interpretation of the fitted marginal
dose-response function must be adjusted accordingly.
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7. Simulation Studies

We now use simulation models to illustrate the effectiveness of the proposed method in
selecting the invalid instrumental variables and in estimating the personalized and the
marginal dose-response functions. For reference, we also record the performance of sisVIVE
proposed by Kang et al. (2016), on both variable selection and estimation of the dose-
response functions.

We generate X from a standard multivariate normal distribution unless otherwise speci-
fied, and generate ε from N(0, (1/3)2). In Appendix D, we also consider another case where
all the components of X are generated independently from the Bernoulli distribution with
mean equal to 0.5, in order to evaluate the effectiveness of the proposed method for discrete
X. The identical ε is used as the error term in generating both Y and T , so there exist
unmeasured confounders in the observed data. Under these settings, we study the following
six models. Let βI, βII ∈ Rp be (0.3, 0.5, 0.7, 0, . . . , 0)T and (0.1, 0.2, 0.3, 0.4, 0.5, 0, . . . , 0)T,
respectively.

Model 1: T = βT
I X + ε, Y = T +X1 + ε.

Model 2: T = 3 sin(βT
I X) + ε, Y = 0.5 + T + 0.25(X1 + 2)2 + 3ε.

Model 3: T = 3 sin(βT
IIX − 0.5) + ε, Y = 2T (0.5X1 + 0.5X2 − 1) + 3ε.

Model 4: T = βT
IIX + 2 + ε, Y = 2 sin(0.5T ) + |0.5X1 + 0.5X2 + 1|+ ε.

Model 5: same as Model 4 but the components of X are generated independently from the
uniform distribution on (−2, 2).

Model 6: T = |βT
I X|+ |0.5X4 + 0.9X5|+ 0.6ε, Y = T + 2|X1|+ ε.

Among all these models, the effect of X on T is linear in Models 1, 4, and 5, and is
symmetric in Model 6; the effect of X on Y is linear in Model 1, and is symmetric in Model
6. The joint effect of T and X on Y is linear in Model 1, which best favors sisVIVE,
and it is nonlinear but still additive in Models 2, 4, 5, and 6, and includes an interaction
term in Model 3. Because X affects T through βT

IIX in Models 3 − 5 and through βT
I X in

Models 1, 2, and 6, the forms of βI and βII indicate a generally weaker effect of the individual
components of X on T in Models 3−5. As Model 4 and Model 5 share the same conditional
distribution (Y, T ) | X, they together can examine the robustness of the proposed method
to the distribution of X. In summary, these models provide a comprehensive overview of
the various situations in practice.

With the sample size n fixed at 500, we first set p = 10, and generate 1000 independent
copies of samples for each model. To implement the proposed method, we set τ = 1 in
(27), and, depending on whether a symmetric data pattern exists in the data, we use SIR
(Li, 1991) or SAVE (Cook and Weisberg, 1991) to estimate ST |X and SE(Y |X). In real data
analysis, such pattern can be detected or excluded in the stage of exploratory data analysis.
For the reliability of the proposed method, we first use (32) to check Assumption 2, where
the bandwidths of Wτ are tuned by the cross-validation procedure mentioned in Section 6.
Based on the 1000 runs, the estimated 1% and 5% quantiles of λmin(Wτ) for each model are
recorded in the first part of Table 1. Because these values are much larger than the cutoff
n−3/4 ≈ .0095 in (32), they suggest the effectiveness of Assumption 2 for Models 1-6, which
meets our theoretical anticipation.

With a safe adoption of Assumption 2, we now evaluate the performance of the proposed
method in selecting invalid instruments, using sisVIVE as a reference. Such performance is
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Table 1: The extreme sample quantiles of λmin(Wτ) for each model, based on 1000 runs. Of
a/b in each cell, a is the 1% sample quantile of λmin(Wτ), and b is the 5% sample
quantile of λmin(Wτ). For the large p cases, p is set at 200 for Models 1-5 and set
at 120 for Model 6.

p Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

10 .148/.243 .219/.294 .229/.406 .071/.100 .100/.129 .036/.051

large .063/.110 .140/.218 .247/.304 .022/.057 .054/.087 .025/.043

Table 2: Performance of the methods in variable selection, based on 1000 runs. Of a/b in
each cell, a stands for the average number of misspecified invalid instruments, and
b stands for the average number of misspecified instruments. For the large p cases,
p is set at 200 for Models 1-5 and set at 120 for Model 6.

p Method Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

10
Proposed .012/0 .002/0 0/.005 0/0 0/0 .107/0
sisVIVE .119/0 .082/0 .151/0 .139/0 .160/0 .024/.982

large
Proposed 0/0 0/0 0/.026 0/0 0/.001 .391/.002
sisVIVE 23.3/0 7.06/0 .028/.013 .498/0 .120/0 0/1

measured by both the average number of misspecified invalid instruments and the average
number of misspecified instruments. The results based on the 1000 runs are summarized in
the first part of Table 2.

Clearly, compared with sisVIVE, the proposed method is less likely to misspecify the
instruments to be invalid instruments in most models. In particular, this applies to Model 1
where the linear model assumption that sisVIVE adopts is exactly satisfied. This is plausi-
bly due to the use of the lasso penalty in the objective function (3) of sisVIVE in contrast to
the SCAD penalty in (19): the estimation bias caused by lasso triggers a tradeoff between
optimal variable selection consistency and optimal model fitting, so a tuning parameter
selection criterion based on the latter would inevitably cause more bias in variable selec-
tion. In general, both methods consistently truly specify the invalid instruments. The only
exception is that sisVIVE almost always fails to do so in Model 6. This is because sisVIVE
assumes a linear model on the regression of Y on (T,X), whereas X has a symmetric effect
on Y in the presence of T in Model 6.

Next, we evaluate the proposed SPIVE in estimating the personalized dose-response
function, again in comparison of sisVIVE. To measure the consistency of an estimate of the
personalized dose-response function g̃(T, γT

0X), we define

D{g̃(T, γT
0X)} =

E1/2

n {g̃(T, γT
0X)− g(T, γT

0X)}2

E1/2
n [En{g(T, γT

0X)} − g(T, γT
0X)]2

(33)

where the denominator, the sample standard deviation of g(T, γT
0X), serves as the normal-

izing constant. The sample mean and the sample standard deviation of this measure in
each case are recorded in the first part of Table 3. Except for Model 1, SPIVE outperforms
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Table 3: Performance of the methods in estimating the personalized dose-response function,
based on 1000 runs. In each cell, a(b) stands for the sample mean (sample standard
deviation) of D{g̃(T, γT

0X)} defined in (33). For the large p cases, p is set at 200
for Models 1-5 and set at 120 for Model 6.

p Method Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

10
SPIVE .097(.025) .125(.010) .145(.056) .118(.027) .125(.028) .157(.011)

sisVIVE .051(.013) .165(.014) .544(.030) .518(.036) .540(.029) .839(.077)

large
SPIVE .104(.007) .128(.010) .184(.081) .138(.040) .143(.041) .168(.048)

sisVIVE .198(.012) .172(.018) .560(.033) .540(.040) .560(.033) .797(.023)

Table 4: Performance of the methods in estimating the marginal dose-response function,
based on 1000 runs. The meaning of a(b) in each cell resembles that in Table 3.
For the large p cases, p is set at 200 for Models 1-5 and set at 120 for Model 6.

p Method Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

10
SMIVE .079(.081) .107(.021) .116(.024) .239(.028) .124(.024) .119(.029)
sisVIVE .048(.026) .052(.023) .197(.040) .660(.047) .688(.039) .420(.338)

large
SMIVE .084(.021) .095(.017) .134(.029) .238(.030) .126(.026) .129(.034)
sisVIVE .930(.047) .142(.073) .200(.038) .660(.047) .696(.042) .201(.107)

sisVIVE in all the other models, which is no surprise as all these models are equipped with
a nonlinear personalized dose-response function. Compared with Model 2, the advantage
of SPIVE over sisVIVE is more substantial in Models 3 − 5. Referring to the discussion
about the model settings above, we speculate that this is because the weaker effect of the
individual components of X on T harms the consistency of sisVIVE in Models 3−5, whereas
SPIVE is robust against this issue with the aid of SDR on T |X, as discussed in Section 5.

Using a similar measure to (33), we also record the performance of the proposed SMIVE
and sisVIVE in estimating the marginal dose-response function; see the first part of Table 4.
The results generally resemble those for the personalized dose-response function in Table 3,
except that sisVIVE now outperforms SMIVE in Models 1 and 2, where T affects Y in a
linear pattern marginally. Nonetheless, SMIVE is still consistent in these two models.

To simulate the high-dimensional cases, we next raise p to 200 for Models 1 − 5, and
raise it to 120 for Model 6. A smaller p is used in Model 6 because SAVE is used instead of
SIR, which is more demanding on the sample size. The sample size n is still fixed at 500,
and 1000 independent samples are again generated for each model. To check Assumption
2, the 1% and 5% sample quantiles of λmin(Wτ) are recorded in the second part of Table 1.
Since they are well above the cutoff .0095 in (32), they comply with the theory to support
the effectiveness of Assumption 2 for all the six models.

The second part of Table 2 records the performance of the proposed method and sisVIVE
in variable selection. In connection with the case of p = 10, the proposed method is robust
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to the dimensionality of the data. By contrast, sisVIVE now misspecifies a much larger
number of invalid instruments in Models 1 and 2. Referring to the discussion above about
the performance of sisVIVE in Model 1 when p = 10, it is plausible that, as p grows, an
exaggeration occurs to the tradeoff between the optimal variable selection consistency and
the optimal model fitting caused by the lasso penalty.

The second parts of Table 3 and Table 4 record the performance of the methods in
estimating the personalized and the marginal dose-response functions, respectively, in the
high-dimensional cases. Generally, the proposed SPIVE and SMIVE deliver similar results
to those for p = 10, indicating their robustness to the dimensionality to the data. A
notable step-down occurs to the performance of sisVIVE in Model 1, making it suboptimal
to the proposed in all the six models. Again, this illustrates the benefit of using the low-
dimensional structure in T |X, which becomes more crucial in the high-dimensional cases.

8. Real Data Analysis

In this section, we analyze the data set of the ADNI-DoD study (Weiner et al., 2013),
obtained from the Alzheimer’s Disease Neuroimaging Initiative database (https://adni.
loni.usc.edu). The original primary objective of the study is to investigate how the
veterans’ traumatic brain injury and post-traumatic stress disorder are associated with
their symptoms of Alzheimer’s disease while aging. Our interest is instead on the causal
relationship between the geriatric depression and dementia among veterans. While both
diseases commonly occur in this population, dementia is more often recorded in their late
lives, and depression is frequently observed during the early and middle stages of depression
(Muliyala and Varghese, 2010; Byers and Yaffe, 2011). In the literature, some researchers
(Byers and Yaffe, 2011) believed that depression can occur much earlier in veterans’ lives
than dementia, and, as such, the former precedes and potentially causes the latter. We
adopt the same assumption here, under which depression is assigned to be the treatment
variable T and dementia is assigned to be the outcome variable Y . Because this assumption
lacks scientific justification, which hypothetically rules out the possibility of a bi-directional
temporal order of depression and dementia, it is the limitation of our analysis that one must
be aware of.

To quantify the severity of depression, the study uses the total score of Geriatric De-
pression Scale (GDS) (Brink et al., 2008), a self-report scale designed to identify depression
symptoms in the elderly. The scale consists of 15 questions with yes or no answers based
on how they felt over the past week. Each question contributes one point to the GDS total
score. A total score in the range 0− 4 is considered normal; 5− 8 is mild depression; 9− 11
is moderate depression; and 12 − 15 is severe depression. In addition, the development of
dementia is quantified by the Sum of Box score in Clinical Dementia Rating (CDR-SOB)
(O’Bryant et al., 2008). The CDR-SOB is a numeric score ranging from 0 to 18. A higher
CDR-SOB score indicates more severe symptoms of dementia. CDR-SOB score describes
five degrees of impairment in performance on each of six categories of cognitive functioning,
including memory, orientation, judgement and problem solving, community affairs, home
and hobbies, and personal care. When a patient has multiple observations of these scores,
we take their average. In the data set, the GDS total score ranges from 0 to 13, and the
range of CDR-SOB is from 0 to 4.5.
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Figure 1: The fitted personalized dose-response function ĝ(T, γT
0X) versus T and γ̂TX: “◦”

marks the observations and “+” marks ĝ(T, γT
0X) for the observed (T,X).

Using the Illumina HumanOmniExpress BeadChip, 713,014 target SNPs were genotyped
from peripheral blood samples of 204 ADNI-DoD participants (Saykin et al., 2015). Due
to the existence of possible unmeasured confounders in the study, such as the subject’s
underlying disease status (e.g., hypertension), we utilize the SNP data as the potential
instruments. After applying an initial screening procedure, 1903 SNPs are retained that
are possibly associated with either GDS or CDR-SOB score. We also include the subject’s
baseline characteristics, i.e., age, gender and educational level. By reformulating the cate-
gorical variables, i.e. the SNPs and the educational level, into binary indicators based on
the dummy coding, the dimension of X is 3809 in total.

Based on the information above, we aim to estimate the personalized dose-response
function that captures the personalized causal effect of depression on dementia. To address
the high-dimensional nature of the data set, we assume sparsity of the instruments and use
lasso SIR (Lin et al., 2019) to estimate both SE(Y |X) and ST |X . By the ladle estimator, the

resulting estimates of SE(Y |X) and ST |X are one-dimensional, and as is the proposed ŜPDRF.
After appropriate tuning of the bandwidths, λmin(Wτ) is .85, which is well above the cutoff
value 204−0.75 ≈ .02 in (32). Thus, it is sensible to adopt Assumption 2 and apply the
proposed SPIVE to this data set.

Figure 1 illustrates the fitted personalized dose-response function by SPIVE, from two
angles. Clearly, for the main cloud of (X,T ), the fitted surface consists of monotone in-
creasing curves along with the directions of both T and the strengthened invalid instruments
γ̂TX, and the dynamic trend among these curves suggests the existence of an interaction
term in the personalized dose-response function. To diagnose the fit, in the left panel of
Figure 2 we plot the residual Y − ĝ(T, γTX) against the univariate β̂T

YX, which, by the
definition of SE(Y |X), assesses the relationship between ε in Model (4) and X. The fact that
the residuals are randomly scattered around zero in this plot suggests that Assumption (5)
that regulates the error term ε is satisfied.
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Figure 2: The left panel plots the residual versus β̂T
YX; the right panel depicts the fits of

the marginal dose-response function from SMIVE and sisVIVE, and the loess fit
of E(Y |T ), marked by “+”, “◦”, and “4”, respectively.

The right panel of Figure 2 illustrates the fitted marginal dose-response function from
the proposed SMIVE. To avoid extrapolation, it is plotted for the interval between the 2.5%
and 97.5% quantiles of the severity of depression. The fitted curve deviates from the fitted
loess curve of E(Y |T ), which however meets the theoretical anticipation and pinpoints the
motivation of causal analysis: due to the existence of both the unmeasured confounders
and the invalid instruments, a direct model fit of the observed (Y, T ) cannot reveal their
causal relationship. The fitted curve of SMIVE suggests that depression has an overall
positive causal effect on dementia, especially when the depression level increases from zero
to mild. From the discussion in the previous paragraph, this effect also varies with subject’s
characteristics. These conclusions are supported by independent evidence from other studies
(Byers and Yaffe, 2011).

As pointed out by a Referee, the overall increasing pattern of the marginal dose-response
function in Figure 2 suggests that the linear model (1) adopted in sisVIVE may also capture
the causal effect of depression on dementia. To apply sisVIVE, which works only if p < n,
we first use the proposed variable selection method to reduce X ∈ R3809 to 88 variables.
The linear estimate of the marginal dose-response function from sisVIVE is depicted in the
right panel of Figure 2 as well, with a positive slope equal to .104 that again suggests a
positive causal effect of depression on dementia. However, the modification of this effect by
subject’s characteristics, as observed in Figure 1, cannot be captured by sisVIVE due to
the intrinsic limitation of the linear model.
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Appendix A. Complementary proofs

We first give a lemma that justifies the use of d in place of d̂ in the asymptotic studies of
all the relative statistics that involve d̂, e.g. ŜPDRF and ĝ(T, γT

0X).

Lemma 1 Suppose d̂ is an arbitrary consistent estimator of d. For any statistic Rn that
involves d̂, let Sn be the statistic constructed in the same way as Rn but with d̂ replaced by
d. Then we have, for any r > 0, Sn − Rn = oP (n−r); that is, Sn is always asymptotically
equivalent to Rn.

Proof Since the support of d̂ is discrete, i.e. {0, 1, 2, . . .}, the consistency of d̂ means
P (d̂ = d)→ 1 as n→∞. Since Rn = Sn when d̂ = d, we have, for any r > 0 and δ > 0,

P{nr(Rn − Sn) < δ} = P{nr(Rn − Sn) < δ|d̂ = d}P (d̂ = d)

+ P{nr(Rn − Sn) < δ|d̂ 6= d}P (d̂ 6= d)

≥ P (0 < δ|d̂ = d)P (d̂ = d) = P (d̂ = d)→ 1,

which means Rn − Sn = oP (n−r). This completes the proof. �

Next, We prove Theorem 3 from Section 6, before which we present two more lemmas
that will be useful for the proof.
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Lemma 2 Let ‖ · ‖S denote the spectral norm of a matrix. Under Conditions (C.1), (C.3),
and (C.4) in Appendix B, we have ‖Hb‖S = OP (1).

Proof Let G be the symmetric matrix in Rn×n whose (i, j)th entry is Kb((β̂T , γ̂)T(X [j] −
X [i])). Let D be the diagonal matrix in Rn×n whose ith diagonal entry is

∑n

j=1
Kb((β̂T , γ̂)T(X [j]−

X [i])). Here we omit the bandwidth in the subscript if no ambiguity is caused. Clearly,
we have Hb = D−1G. For simplicity, we assume that appropriate regulations, such as those
below (18) in the main text, have been made such that both βT and γ0 are unique, and
‖β̂T − βT‖2 = OP (n−s) and ‖γ̂ − γ0‖2 = OP (n−min{s,v}).

We first show ‖D‖S = OP (n) and ‖D−1‖S = OP (n−1). Under Conditions (C.1), (C.3),
and (C.4), we have, uniformly for i = 1, . . . , n and {β ∈ Rp×(d+dT ) : ‖β − (βT , γ0)‖ <
Cn−min{s,v}},∑n

j=1
Kb(β

TX [j] − βTX [i]) = n{f(βTX [i]) +OP (b2 + n−1/2b−(d+dT )/2)}

= n{f((βT , γ0)
TX

[i]
) +OP (b

2
+ n

−1/2
b−(d+dT )/2 + n

−s
) = n{f((βT , γ0)

TX
[i]

) + oP (1)}.

By Condition (C.1) and ‖β̂T − βT‖2 = OP (n−s) and ‖γ̂ − γ0‖2 = OP (n−min{s,v}), this implies
‖D‖S = OP (n) and ‖D−1‖S = OP (n−1).

Next, we show that D − G is positive semi-definite. For simplicity, denote the (i, j)th
entry of G by Gij for i, j = 1, . . . , n. Since G is symmetric, we have Gij = Gji. For any
square matrices M1 and M2, we write M1 ≥ M2 if M1 −M2 is positive semi-definite. For
any v = (v1, . . . , vn)T, we have

vT(D−G)v =
∑n

i=1
(
∑n

j=1
Gij)v

2

i −
∑

j,k=1,...,n
Gjkvjvk

≥
∑n

i=1
(
∑n

j=1
Gij)v

2

i −
∑

j,k=1,...,n
Gjk(v

2

j + v2

k)/2

=
∑n

i=1
(
∑n

j=1
Gij)v

2

i −
∑n

j=1
(
∑n

k=1
Gjk)v

2

j/2−
∑n

k=1
(
∑n

j=1
Gjk)v

2

k/2

=
∑n

i=1
(
∑n

j=1
Gij)v

2

i −
∑n

j=1
(
∑n

k=1
Gjk)v

2

j/2−
∑n

j=1
(
∑n

k=1
Gkj)v

2

j/2

=
∑n

i=1
(
∑n

j=1
Gij)v

2

i −
∑n

j=1
(
∑n

k=1
Gjk)v

2

j

= 0.

Thus D ≥ G, which further implies D−1 ≥ D−1GD−1. Let {wn : n = 1, . . .} be a sequence of
positive constants that diverge to infinity, and let An = {n2wnI ≥ D2}. Conditional on An,
we have

‖D−1GGD−1‖S = ‖(D−1GD−1)D2
(D−1GD−1)‖S

≤ ‖(D−1GD−1)(n
2
wnI)(D−1GD−1‖S = n

2
wn‖D−1GD−1‖2S

≤ n2
wn‖D−1‖2S = OP (wn),

where the last equality is due to ‖D−1‖S = OP (n−1). Since ‖D‖S = OP (n), we have
P (An) → 1. Hence, marginally we also have ‖D−1GGD−1‖S = OP (wn), which indicates
‖Hb‖S = ‖D−1G‖S = OP (w1/2

n ). By the arbitrariness of wn, we have ‖Hb‖S = OP (1). This
completes the proof. �
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Lemma 3 Suppose the assumptions in Theorem 2, Assumption 2, and Conditions (C.1),
(C.3), (C.4) hold. For any sequence {vn ∈ Rn : n = 1, . . .} such that ‖vn‖2 = 1, if
‖HbKhvn‖2 = OP (n−u) for some u > 0, then ‖Khvn‖2 = OP (rn(h, d + 1) + rn(b, d + dT ) +
n−min{s,v} + n−u).

Proof Without loss of generality, suppose rn(h, d+ 1) + rn(b, d+ dT ) +n−min{s,v} = O(n−r).
For ease of presentation, we follow the proof of Lemma 2 to assume that appropriate column
transformations have been made so that both βT and γ0 are unique, and ‖γ̂ − γ0‖2 =
OP (n−min{s,v}) and ‖β̂T − βT‖2 = OP (n−s). Let Bw = {β ∈ Rp×(d+dT ) : ‖β − (βT , γ0)‖2 ≤
wn−min{s,v}}, Γw = {γ ∈ Rp×d : ‖γ − γ0‖2 ≤ wn−min{s,v}}, and, within the set of twice-
differentiable functions, let Gw = {g(T, γTX) : γ ∈ Γw, E{g(T, γTX)}2 ≤ w}. For each
g(T, γTX) ∈ Gw, denote

Vg,n = (g(T
[1]
, γTX

[1]
), . . . , g(T

[n]
, γTX

[n]
))T.

By simple algebra, we have, under Conditions (C.1), (C.3), and (C.4),∑n

j=1
Kb,i(β

TX [j])g(T [j], γTX [j])/
∑n

j=1
Kb,i(β

TX [j])

= E{g(T, γTX)|βTX = βTX
[i]}+OP (b

2
+ n

−1/2
b−(d+dT )/2)

= E{g(T, γT
0X)|(βT , γ0)

TX = (βT , γ0)
TX

[i]}+OP (b
2

+ n
−1/2

b−(d+dT )/2 + n
−min{s,v}

)

= E{g(T, γT
0X)|(βT , γ0)

TX = (βT , γ0)
TX

[i]}+OP (n
−r

)

uniformly for i = 1, . . . , n, β ∈ Bw, and g(T, γTX) ∈ Gw, which indicates

n
−1/2‖HbVg,n‖2 = E

1/2
[E

2{g(T, γT
0X)|(βT , γ0)

TX}] +OP (n
−r

) (34)

uniformly for β ∈ Bw and g(T, γTX) ∈ Gw. Following the same arguments as in the proof
of Lemma 2, we have ‖Kh‖S = OP (1). Since ‖vn‖2 = 1, this means ‖Khvn‖2 = OP (1), or
equivalently

lim
w→∞

P{n1/2 ∑n

i=1
vn,iK

N

h,i(T, γ̂
TX) ∈ Gw} = 1,

where KN

h,i(T, γ̂
TX) denotes Kh,i(T, γ̂

TX)/
∑n

k=1
Kh,k(T, γ̂

TX), the superscript N for “nor-
malized”. Hence, with w →∞, (34) implies

‖HbKhvn‖2 = E
1/2

[E
2{n1/2 ∑n

i=1
vn,iK

N

h,i(T, γ
T
0X)|(βT , γ0)

TX}] +OP (n−r). (35)

Since ‖HbKhvn‖2 = OP (n−u), (35) implies

E
1/2

[E
2{n1/2 ∑n

i=1
vn,iK

N

h,i(T, γ
T
0X)|(βT , γ0)

TX}] = O(n−min{u,r}). (36)

For any w < min{u, r}, without loss of generality, suppose nw+1/2
∑n

i=1
vn,iK

N

h,i(t, γ
T
0x) con-

verges to φ(t, γT
0x) on Ω(T, γT

0X) and is uniformly bounded by ±Φ(t, γT
0x) which satisfies

E{|Φ(T, γT
0X)|} <∞, both in probability. Then (36) implies E{φ(T, γT

0X)|(βT , γ0)
TX} = 0

almost surely, which, by Assumption 2, indicates φ(T, γT
0X) = 0 almost surely. By letting

w → min{u, r}, we have

E
1/2{n1/2 ∑n

i=1
vn,iK

N

h,i(T, γ
T
0X)}2 = O(n−min{u,r}). (37)
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Following the same arguments as in (34), we then have

‖Khvn‖2 = n
1/2
E

1/2{
∑n

i=1
vn,iK

N

h,i(T, γ
T
0X)}2 +OP (h2 + n−1/2h−(d+1)/2 + n−min{s,v})

= OP (n
−r

+ n
−u

),

where the last equality is derived from (37). This completes the proof. �

Theorem 3 Under the assumptions in Theorem 2, Assumption 2, and the regularity con-
ditions (C.1-C.4) in Appendix B, we have 1/λmin(Wτ) = OP (1), and

n
−1/2‖V̂n − Vn‖2 = OP{rn(h, d+ 1) + rn(b, d+ dT ) + n

−min{s,v}}.

where rn(h, d+1) = h2 +n−1/2h−(d+1)/2 and rn(b, d+dT ) = b2 +n−1/2b−(d+dT )/2. In addition,
for an independently generated copy of (X,T ) denoted by (X̃, T̃ ), we have

ĝ(T̃ , γT
0 X̃)− g(T̃ , γT

0 X̃) = OP{rn(h, d+ 1) + rn(b, d+ dT ) + n
−min{s,v}}.

Proof We first prove the consistency of V̂n. For ease of presentation, denote rn(h, d+ 1) +
rn(b, d+ dT ) + n−min{s,v} by n−r for some r > 0. Suppose the following statements hold:

(a) n−1/2‖{τ(I −Kh)
T(I −Kh) + HT

bHb}Vn −HT
bHbY‖2 = OP (n−r),

(b) min{vT{τ(I −Kh)
T(I −Kh) + HT

bHb}v : v ∈ Rn, vTv = 1} = O+
P (1),

where O+
P (1) denotes a sequence of random variables that are bounded below from zero

(Luo and Li, 2016). Then (b) is equivalent to the statement 1/λmin(Wτ) = OP (1) in this
theorem, and it immediately implies that (I − Kh,Hb) has full row-rank with probability
tending to one, and that

‖{τ(I −Kh)
T(I −Kh) + HT

bHb}−1‖S = OP (1). (38)

By (a) and (25) in the main text, we have

n
−1/2‖{τ(I −Kh)

T(I −Kh) + HT
bHb}(V̂n − Vn)‖2 = OP (n

−r
).

Together with (38), we have

n
−1/2‖V̂n − Vn‖2 ≤ ‖{τ(I −Kh)

T(I −Kh) + HT
bHb}−1‖SOP (n

−r
) = OP (n

−r
).

Hence, it suffices to show (a) and (b).
To show (a), we will show the following stronger statements:

(a.1) n−1/2‖(I −Kh)
T(I −Kh)Vn‖2 = OP (n−r),

(a.2) n−1/2‖HT
bHb(Y− Vn)‖2 = OP (n−r).

For each w > 0, let Γw be the same as defined in the proof of Lemma 3. For each γ ∈ Γw, let
G̃γ be the n-dimensional matrix with (i, j)th entry being Kh(T

[j]−T [i], γTX [j]−γTX [i]), and
let D̃γ be the n-dimensional diagonal matrix with ith diagonal entry being

∑n

j=1
Kh(T

[j] −
T [i], (γTX [j] − γTX [i])). Let Vγ,n = (g(T [1], γTX [1]), . . . , g(T [n], γTX [n]))T. Similarly to the
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proof of Lemma 2, we have ‖D̃γ‖S = OP (n) and ‖D̃−1
γ ‖S = OP (n−1) uniformly on Γw, and

D̃γ − G̃γ ≥ 0. Under Conditions (C.1-C.4), we have

n−1{
∑n

j=1
Kh,i(T

[j], γTX [j])}g(T [i], γTX [i])−
∑n

j=1
{Kh,i(T

[j], γTX [j])g(T [j], γTX [j])}
= OP (h

2
+ n

−1/2
h
−(d+1)/2

)

uniformly for i = 1, . . . , n and γ ∈ Γw, which means

n
−3/2‖(D̃γ − G̃γ)Vγ,n‖2 = OP (h

2
+ n

−1/2
h
−(d+1)/2

). (39)

In addition, since ‖γ̂−γ0‖ = OP (n−min{s,v}), and ‖D̃γ‖S = OP (n) uniformly on Γw, we have,
under Conditions (C.1) and (C.2),

n
−3/2‖(D̃γ − G̃γ)(Vγ,n − Vn)‖2 = OP (n

−min{s,v}
) (40)

uniformly on Γw. (39) and (40) together imply

n
−3/2‖(D̃γ̂ − G̃γ̂)Vn‖2 = OP (h

2
+ n

−1/2
h
−(d+1)/2

+ n
−min{s,v}

) = OP (n
−r

),

which further indicates

‖(I −Kh)
T(I −Kh)Vn‖2 = ‖(D̃γ̂ − G̃γ̂)D̃

−2

γ̂ (D̃γ̂ − G̃γ̂)Vn‖2
≤ ‖D̃γ̂ − G̃γ̂‖S‖D̃−1

γ̂ ‖
2

S‖(D̃− G̃)Vn‖2
≤ 2‖D̃γ̂‖S‖D̃−1

γ̂ ‖
2

S‖(D̃− G̃)Vn‖2
≤ n−1n

3/2
OP (n

−r
) = n

−1/2
OP (n

−r
).

Thus (a.1) holds. Since Y−Vn = (ε[1], . . . , ε[n])T, by similar arguments to (34) in the proof of
Lemma 3, we have n−1/2‖Hb(Y− Vn)‖2 = OP (b2 + n−1/2b−(d+dT )/2 + n−min{s,v}). By Lemma
2, we have ‖Hb‖S = OP (1). These together imply

n
−1/2‖HT

bHb(Y− Vn)‖2 ≤ ‖HT
b‖S{n

−1/2‖Hb(Y− Vn)‖2}
= OP (b

2
+ n

−1/2
b−(d+dT )/2 + n

−min{s,v}
) = OP (n

−r
).

Hence (a.2) holds and consequently (a) holds.
To prove (b), assume there exists {vn :∈ Rn} that satisfies ‖vn‖2 ≡ 1 and ‖(I −

Kh,Hb)v‖2 = OP (n−δ) for some δ ∈ (0, r). Then we have ‖v − Khvn‖2 = OP (n−δ) and
‖Hbvn‖2 = OP (n−δ). By Lemma 2, we have ‖Hb‖S = OP (1). These together imply

‖HbKhvn‖2 ≤ ‖Hbvn‖2 + ‖Hb(vn −Khvn)‖2 ≤ ‖Hbvn‖2 + ‖Hb‖S‖vn −Khvn‖2
= OP (n

−δ
),

which, by Lemma 3, means ‖Khvn‖2 = OP (n−r + n−δ) = OP (n−δ). Thus, we have

‖vn‖2 ≤ ‖Khvn‖2 + ‖vn −Khvn‖2 = OP (n
−δ

),

which contradicts the setting ‖vn‖2 = 1. Hence we have

min{‖(I −Kh,Hb)v‖2 : v ∈ Rn
, vTv = 1} = O+

P (1),
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where, again, the concept of O+
P (1) can be seen in Luo and Li (2016).

We next prove the convergence of ĝ(T̃ , γT
0 X̃). For the most generality, we use ` as the

bandwidth in (29), which, as discussed below Theorem 3, can differ from h for the optimal
sample performance. Again, we assume that appropriate regulations have been made so that
γ0 is unique and, by Theorem 2, ‖γ̂ − γ0‖ = OP (n−min{s,v}). In addition, for i = 1, . . . , n,
let K`,sum(T̃ , γTX̃) = (K`(T̃ − T [1], γTX̃ − γTX [1]), . . . ,K`(T̃ − T [n], γTX − γTX̃ [n])) for any
γ ∈ Rp×d. We first decompose ĝ(T̃ , γT

0 X̃) into two parts,

ĝ(T̃ , γT
0 X̃)− g(T̃ , γT

0 X̃) = K`,sum(T̃ , γ̂TX̃)V̂n/{K`,sum(T̃ , γ̂TX̃)1n} − g(T̃ , γT
0 X̃)

= K`,sum(T̃ , γ̂TX̃)(V̂n − Vn)/{K`,sum(T̃ , γ̂TX̃)1n}

+ [K`,sum(T̃ , γ̂TX̃)Vn/{K`,sum(T̃ , γ̂TX̃)1n} − g(T̃ , γT
0 X̃)]

≡ I + II,

where 1n denotes the n-dimensional vector with all the elements being one. We next show
I = OP (n−r) and II = OP (r(`, d− 1) + n−r) where rn(`, d− 1) = `2 + n−1/2`(1−d)/2.

For any C > 0, under Conditions (C.1), (C.2), and rn(`, d + 1) = OP (1), we have,
uniformly for ‖γ − γ0‖ ≤ Cn−min{s,v}, (t, x) ∈ Ω(T,X), and i = 1, . . . , n,

E{K`(T̃ − T [i]
, γTX̃ − γTX

[i]
)|T [i]

, X
[i]} = f(T

[i]
, γTX

[i]
) +OP (`

2
+ n

−1/2
`
−(d+1)/2

),

n−1K`,sum(t, γTx)1n = f(t, γTx) +OP (`
2

+ n
−1/2

`
−(d+1)/2

). (41)

Together with ‖γ̂ − γ0‖ = OP (n−min{s,v}), this implies, uniformly for i = 1, . . . , n,

E{K`,i(T̃ , γ̂
TX̃)|X,T,Y} = n−1{f(T

[i]
, γ̂TX

[i]
)/E{f(T̃ , γ̂TX̃)}+OP (rn(`, d+ 1))}.

Thus, by Condition (C.1) which regulates the lower and upper bound of f(T,X), we have
maxi=1,...,nE{K`(T̃ − T [i], γ̂TX̃ − γ̂TX [i])|X,T,Y} = OP (n−1), which means

E(|I|) ≤ E{
∑n

i=1
E(K`(T̃ − T [i], γ̂TX̃ − γ̂TX [i])|X,T,Y)|V̂n,i − Vn,i|}

= O{n−1
∑n

i=1
E(|V̂n,i − Vn,i|)} ≤ O{n−1/2E(‖V̂n − Vn‖2)} = O(n−r),

where the last inequality is an application of the Cauchy-Schwarz inequality. By Markov’s
Inequality, this means I = OP (n−r).

For II, we first show that the impact of using K(T, γ̂TX) instead of K(T, γT
0X) is asymp-

totically negligible. Under Conditions (C.1) and (C.3), we have, uniformly for i = 1, . . . , n,

K`(T̃ − T [i]
, γ̂TX̃ − γ̂TX

[i]
) = K`(T̃ − T [i]

, γT
0 X̃ − γT

0X
[i]

) +OP (n
−min{s,v}

). (42)

Since
∑n

i=1
K`(T̃ − T [i], γT

0 X̃ − γT
0X

[i]) = n{f(T̃ , γT
0 X̃) + OP (rn(`, d+ 1))}, which, by (C.1)

and (C.4), is nf(T̃ , γT
0 X̃){1 + oP (1)} and further is O+

P (n), (42) implies

II =
K`,sum(T̃ , γT

0 X̃){Vn − g(T̃ , γT
0 X̃)1n}

nf(T̃ , γT
0 X̃){1 + oP (1)}

+
{K`,sum(T̃ , γ̂TX̃)−K`,sum(T̃ , γT

0 X̃)}Vn
nf(T̃ , γT

0 X̃){1 + oP (1)}

=
K`,sum(T̃ , γT

0 X̃){Vn − g(T̃ , γT
0 X̃)1n}

nf(T̃ , γT
0 X̃){1 + oP (1)}

+OP (n−1n
1/2
n
−min{s,v}‖Vn‖2)

=
K`,sum(T̃ , γT

0 X̃){Vn − g(T̃ , γT
0 X̃)1n}

nf(T̃ , γT
0 X̃){1 + oP (1)}

+OP (n
−min{s,v}

). (43)
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In addition, let R̃ denote g(T̃ , γT
0 X̃) and R[i] denote g(T [i], γT

0X
[i]), we have

E[[K`,sum(T̃ , γT
0 X̃){Vn − R̃1n}]2]

=
∑n

i=1
E[K2

` (T − T
[i], γT

0X − γT
0X

[i]){R[i] −R}2]

+
∑n

i=1

∑
j 6=iE[K`(T̃ − T [i], γT

0 X̃ − γT
0X

[i]){R[i] − R̃}K`(T̃ − T [j], γT
0 X̃ − γT

0X
[j]){R[j] − R̃}]

= OP (n`
−(d+1)

`
2

+ n
2
`
4
),

where the last equality can be easily derived from the conventional nonparametric theory
(Fan and Gijbels, 2018) and the mutual independence between (T̃ , γT

0 X̃), (T [i], γT
0X

[i]), and
(T [j], γT

0X
[j]) for any i 6= j. This means K`,sum(T, γT

0X){Vn −R1n} = OP (n1/2`(1−d)/2 + n`2),
which, together with (43) and Condition (C.1), implies

II = OP{n−1(n
1/2
`
(1−d)/2

+ n`
2
)}{1 + oP (1)}+OP (n

−min{s,v}
) = OP (rn(`, d− 1) + n

−r
).

Together with I = OP (n−r), we have ĝ(T, γT
0X) − g(T, γT

0X) = OP (rn(`, d − 1) + n−r). By
simple algebra, an ` that is proportional to n−1/(d+3) will minimize rn(`, d− 1) and meet the
requirement rn(`, d+ 1) = OP (1) above. This completes the proof. �

Appendix B. The Regularity Conditions

(C.1) (T,X) has is a compact support Ω(T,X), and its distribution is absolutely continuous
with respect to the Lebesgue measure on Rp+1. The density function f(T,X) is bounded
away from infinity and zero, i.e. P (a < f(T,X) < b) = 1 for some a, b > 0, and f(T,X) is
twice differentiable almost surely on Ω(T,X).

(C.2) g(·, ·) is Lipschitz continuous and twice differentiable almost surely on {(t, γTx) :
(t, x) ∈ Ω(T,X), γ ∈ Rp×d, ‖γ − γ0‖2 ≤ ε} for some ε > 0. ε in (1) of the main text satisfies
E(ε4) <∞.

(C.3) The univariate density function K(·) satisfies
∫
RK(x)dx = 1,

∫
R xK(x)dx = 0,∫

R x
2K(x)dx <∞, and has a compact support.

(C.4) The bandwidths satisfy b→ 0, bn1/dY →∞, h→ 0, and hn1/(d+1) →∞.

Appendix C. Change of SPDRF with Removal of Invalid Instruments

An interesting question raised by a Referee is that how SPDRF under the proposed regulation
will change if an invalid instrument is removed from X, assuming for simplicity that the
components of X are mutually independent. In general, this can dramatically change SPDRF,
including both its dimension and the corresponding J0.

To see this, note that an invalid instrument must induce either a nonzero row of βY that
spans SE(Y |X) or a nonzero row of βT that spans ST |X under the proposed regulation of SPDRF:
otherwise, (16) in the main text would imply that the corresponding row of γ0 is zero, which
contradicts the definition of an invalid instrument. Suppose an invalid instrument induces
a nonzero row of βY , which means that it is uniquely informative to Y given the rest of
X, then removing it may fundamentally change the dependence structure between Y and
the rest of X, and thus fundamentally change βY , which subsequently changes SPDRF under
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the proposed regulation. For example, if X = (X1, X2, X3, X4)
T has mutually independent

components with zero mean, and if

T = X1 +X2 +X3 +X4 + ε, Y = T +X1X2 + ε, (44)

where ε is independent of X, then βT is (1, 1, 1, 1)T and βY is (βT , (1, 0, 0, 0)T, (0, 1, 0, 0)T) up
to invertible column transformations. Thus, SPDRF is spanned by ((1, 0, 0, 0)T, (0, 1, 0, 0)T)
under Assumption (13) and Assumption 1 in the main text, which means J0 = {3, 4} and
that both X1 and X2 are invalid instruments. We now remove X1 from X, and denote X1 by
ε1 for clarity. Since Y = T + ε1X2 + ε, we have E(Y |X) = E(T |X) and thus SE(Y |X) = ST |X
for the reduced X. Consequently, SPDRF becomes the trivial origin {(0, 0, 0)T} rather than a
two-dimensional space, and J0 is {2, 3, 4} rather than {3, 4}, again under Assumption (13)
and Assumption 1 in the main text. The same applies if an invalid instrument induces a
nonzero row of βT .

Nonetheless, if an invalid instrument Xi satisfies the following assumption, then re-
moving Xi from X will simply modify SPDRF by removing the ith (nonzero) row of γ0.
Accordingly, J0 will be invariant, and the dimension of SPDRF will be either invariant or
reduced by one. We next prove this statement, and discuss when the following assumption
holds afterwards. Let β−iY be the submatrix of βY with its ith row removed, and let β(−i)

Y be
the new βY after Xi is removed from X. Define β−iT and β(−i)

T likewise. As discussed above,
β(−i)
Y can differ from β−iY and β(−i)

T can differ from β−iT in general.

Assumption 3 Given the mutual independence of the components of X, we have β(−i)
Y =

β−iY and β(−i)
T = β−iT up to invertible column transformations.

Recall from the main text that Γ0 spans SPDRF and satisfies Equation (18) with the
uniquely smallest number of nonzero rows. For i = 1, . . . , p, let βiY , βiT , and Γi0 be the ith
row of βY , βT , and Γ0, respectively, and let Γ−i0 be the rest of Γ0. With an invalid instrument
Xi removed from X, we can resemble (18) to have

β
(−i)
Y = β

(−i)
T A

(−i)
0 + Γ

(−i)
0 (45)

for Γ(−i)
0 that spans SPDRF for the reduced X, where A(−i)

0 is some appropriate matrix. Under
Assumption 3, if we insert βiY −β

i

TA
(−i)
0 into Γ(−i)

0 as its ith row, then the augmented matrix
from Γ(−i)

0 clearly satisfies (18). By the definition of Γ0, the augmented matrix from Γ(−i)
0

must have an equal or larger number of nonzero rows compared with Γ0. Together with
Γi0 6= 0 induced from that Xi is an invalid instrument, Γ(−i)

0 must have an equal or larger
number of nonzero rows compared with Γ−i0 . In addition, under Assumption 3 again, Γ−i0

must satisfy (45) with A(−i)
0 being the rest of A0 with its ith row removed. Hence, Γ−i0

satisfies (45) with an equal or smaller number of nonzero rows compared with Γ(−i)
0 . Since

Γ(−i)
0 by definition satisfies (45) with the uniquely smallest number of nonzero rows, we must

have Γ(−i)
0 = Γ−i0 ; that is, Γ0 is changed simply by its ith row removed after Xi is removed

from X, which implies the same for γ0.
We next show that Assumption 3 holds for all i = 1, . . . , p regardless of whether or not

Xi is an invalid instrument, if both SE(Y |X) and ST |X can be fully recovered by SIR (Li,
1991). Using SE(Y |X) as an example, SIR regards βY as the set of the eigenvectors of

M ≡ Σ−1
X E{E(X|Y )− E(X)}⊗2

Σ−1
X
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associated with nonzero eigenvalues, where v⊗2 denotes vvT for any matrix v. For i =
1, . . . , p, let X(−i) be the rest of X after Xi is removed, and let Σ(−i) be its covariance
matrix. Then M(−i) ≡ (Σ(−i))

−1E{E(X(−i)|Y ) − E(X(−i))}⊗2(Σ(−i))
−1 is M for SIR applied

to (X(−i), Y ), whose eigenvectors associated with nonzero eigenvalues form β(−i)
Y . Since Σ−1

X

is diagonal induced from the mutual independence of the components of X, M(−i) is clearly
equal to the submatrix of M formed by its rows and columns indexed by the complement
of {i}. Therefore, we have β(−i)

Y = β−iY up to invertible column transformations.

In practice, the full recovery of SE(Y |X) by SIR requires an asymmetric effect of X on
Y and that Y has at least dY + 1 possible outcomes if Y is discrete, where dY denotes
the dimension of SE(Y |X). These requirements make SIR ineffective when the data have
a complex structure such as Model (44) above. In these cases, other more complex SDR
methods such as SAVE (Cook and Weisberg, 1991) should be used instead. However,
Assumption 3 no longer holds for these complex SDR methods in general.

To summarize, SPDRF is specific for the working predictor X, and, considering the po-
tential complexity of the underlying distribution of (Y, T,X), it should be considered as a
different space once some invalid instruments are removed from X. An exception is that, if
both SE(Y |X) and ST |X can be fully recovered by SIR and if the components of X are mutu-
ally independent, then removing any invalid instrument will deliver simple modification of
SPDRF. This however requires additional regulations of the underlying data structure.

Appendix D. Additional Simulation Studies

In this subsection, we report some complementary simulation study results. First, we
evaluate the sensitivity of (32) when Assumption 2 is ineffective. Using the same notations
βI and βII and the same distribution of (X, ε) as in Section 7 of the main text, the following
three models are generated, where βT

TX has a weak effect on T . Compared with the model
settings in Section 7 of the main text, these models differ from Model 1, Model 3, and Model
4 there, respectively, only in the conditional distribution T |βT

TX.

Model 1∗: T = 0.05βT
I X + 3ε, Y = T +X1 + ε.

Model 3∗: T = 0.3 sin(βT
IIX − 0.5) + 4ε, Y = 2T (0.5X1 + 0.5X2 − 1) + 3ε.

Model 4∗: T = 0.05βT
IIX + 2 + 4ε, Y = 2 sin(0.5T ) + |0.5X1 + 0.5X2 + 1|+ ε.

Same as in the main text, we set n = 500, and set p = 10 and p = 200 sequentially.
Again, when implementing λmin(Wτ), we set τ at one and tune the bandwidths in Wτ by the
proposed cross-validation procedure. Based on 1000 independent runs, the 99% and 95%
sample quantiles of λmin(Wτ) for each model are recorded in Table 5. Since these values
are mostly well below the cutoff n−0.75 ≈ .0095, with the 99% quantile of λmin(Wτ) for
Model 4∗ being the only exception, (32) suggests the ineffectiveness of Assumption 2 for
these models, which complies with the theory.

We next report the simulation results for the same model settings as in Section 7 of
the main text, except that X is now discrete and generated by a p-tuple of independent
Bernoulli distributions with mean equal to 0.5. Model 4 is the same as Model 5 in this
case. These results suggest the high specificity of the proposed diagnosis procedure (Table
6), the variable selection consistency of the proposed method (Table 7), and the estimation
consistency of SPIVE (Table 8) and SMIVE (Tables 9), when X is discrete in the data.
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Table 5: The extreme sample quantiles of λmin(Wτ) based on 1000 runs. The meanings of
numbers in each cell follow those in Table 1 of the main text.

p Model 1∗ Model 3∗ Model 4∗

10 .005/.004 .004/.004 .012/.006

200 .005/.004 .006/.004 .015/.007

Table 6: The extreme sample quantiles of λmin(Wτ) based on 1000 runs, for discrete X. The
meanings of numbers in each cell follow those in Table 1 of the main text.

p Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

10 .075/.127 .205/.268 .110/.221 .048/.121 .090/.146 .030/.041

large .017/.073 .235/.274 .147/.175 .022/.059 .039/.074 .040/.046

Table 7: Performance of the methods in variable selection for discrete X based on 1000
runs. The meanings of numbers follow those in Table 2 of the main text.

p Method Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

10
Proposed .006/0 .184/0 .003/.006 0/0 0/0 0/0
sisVIVE .130/0 .107/0 .179/.017 .218/0 .218/0 .074/0

large
Proposed 0/0 .008/0 16.4/.473 .393/.017 .393/.017 0/0
sisVIVE 9.82/0 10.8/0 26.0/.381 17.6/0 17.6/0 56.5/0

Table 8: Performance of the methods in estimating the personalized dose-response function
for discrete X based on 1000 runs. The meanings of numbers follow those in Table
3 of the main text.

p Method Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

10
SPIVE .140(.064) .149(.041) .260(.036) .189(.032) .189(.032) .058(.012)

sisVIVE .085(.020) .142(.037) .599(.025) .522(.029) .522(.029) .059(.015)

large
SPIVE .174(.020) .261(.043) .525(.074) .268(.077) .268(.077) .074(.010)

sisVIVE .385(.015) .467(.041) .636(.028) .760(.041) .760(.041) .110(.035)
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Table 9: Performance of the methods in estimating the marginal dose-response function for
discrete X based on 1000 runs. The meanings of numbers in each cell follow those
in Table 4 of the main text.

p Method Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

10
SMIVE .165(.099) .229(.052) .502(.040) .408(.051) .408(.051) .109(.032)
sisVIVE .072(.029) .089(.040) .208(.057) .830(.037) .830(.037) .060(.037)

large
SMIVE .198(.035) .212(.072) .721(.072) .555(.160) .555(.160) .165(.028)
sisVIVE .978(.014) 1.53(.109) .932(.174) 2.51(.213) 2.51(.213) .243(.296)
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