
Journal of Machine Learning Research 25 (2024) 1-53 Submitted 9/21; Revised 1/24; Published 3/24

Data Summarization via Bilevel Optimization

Zalán Borsos∗ zalan.borsos@gmail.com
Department of Computer Science
ETH Zurich

Mojmír Mutný mojmir.mutny@inf.ethz.ch
Department of Computer Science
ETH Zurich

Marco Tagliasacchi∗ mtagliasacchi@google.com
Google Research

Andreas Krause krausea@ethz.ch
Department of Computer Science
ETH Zurich

Editor: Moritz Hardt

Abstract
The increasing availability of massive data sets poses various challenges for machine learn-
ing. Prominent among these is learning models under hardware or human resource con-
straints. In such resource-constrained settings, a simple yet powerful approach is operating
on small subsets of the data. Coresets are weighted subsets of the data that provide approx-
imation guarantees for the optimization objective. However, existing coreset constructions
are highly model-specific and are limited to simple models such as linear regression, logistic
regression, and k-means. In this work, we propose a generic coreset construction frame-
work that formulates the coreset selection as a cardinality-constrained bilevel optimization
problem. In contrast to existing approaches, our framework does not require model-specific
adaptations and applies to any twice differentiable model, including neural networks. We
show the effectiveness of our framework for a wide range of models in various settings,
including training non-convex models online and batch active learning.
Keywords: data summarization, coresets, bilevel optimization, continual learning, stream-
ing, batch active learning

1. Introduction

Learning models on massive data sets face several challenges. From a computational per-
spective, specific hardware resource constraints must be met: the data is loaded into the
system’s main memory with limited capacity, it is processed by algorithms with usually
superlinear space or time complexity. Moreover, commonly used specialized hardware for
accelerating data processing, such as GPUs, introduces another layer of constraints due to
their limited memory. A simple yet powerful approach for tackling these computational
challenges is to operate on small subsets of the data sampled uniformly at random—this
idea is crucial to the success of stochastic optimization. However, real-world settings often

∗. Now at Google DeepMind

c©2024 Zalán Borsos, Mojmír Mutný, Marco Tagliasacchi and Andreas Krause.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/21-1132.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/21-1132.html

Borsos, Mutný, Tagliasacchi and Krause

involve rare but essential events with a significant impact on the optimization objective
that are unlikely to be represented in a small uniform summary—a drawback that can be
remedied by constructing a more representative summary.

Some settings face human resource constraints. A prominent example of such a setting is
batch active learning, where the human expert provides labels for a selected batch of points
in each round of active learning. The cost and the limited availability of human attention
impose explicit constraints on the number of points that can be labeled, accentuating the
importance of compact and informative summaries.

Coresets are weighted subsets of the data that provide approximation guarantees for
the optimization objective. The strongest guarantees are uniform multiplicative guarantees.
Coresets with uniform approximation guarantees are a versatile tool for obtaining provably
good solutions for optimization problems on massive data sets in batch, distributed, and
streaming settings, but such strong approximation guarantees are hard or even impossible
to obtain for practical coreset sizes for many relevant problems. Consequently, coresets with
uniform approximation guarantees are limited to simple models such as linear regression,
logistic regression, k-means, and Gaussian mixture models.

Similarly, existing coreset construction strategies are either model-specific or require
model-specific derivations for instantiation. For example, the popular framework of Feld-
man and Langberg (2011) for constructing coresets with uniform approximation guarantees
relies on importance sampling based on upper bounds on the sensitivity of data points; the
derivation of non-vacuous sensitivity upper bounds is a difficult model-specific task. While
several alternative coreset definitions have been proposed, no generic coreset construction
approach has been shown to succeed for a wide range of models that also include neural net-
works. Moreover, coresets remain underexplored in practically relevant settings using data
summarization, such as batch active learning, compression, and the training of non-convex
models online, despite coresets being natural candidates for these settings.

In this work, we propose a generic coreset construction framework for twice differen-
tiable models. We show that our method is effective for various models in various resource-
constrained settings. In particular:

• We formulate the coreset selection as a decision problem mathematically equivalent to
a cardinality-constrained bilevel optimization problem that we solve by greedy forward
selection and first-order methods. In contrast to existing coreset constructions, our
framework applies to any twice differentiable model and does not require model-specific
modifications.

• We point out connections to robust statistics and experimental design, discuss theoret-
ical guarantees for our framework, and offer several variants for improved scalability.
We present various extensions, including generating joint coresets for multiple models.

• We demonstrate the advantage of our framework over other data summarization tech-
niques in extensive experimental studies, over a wide range of models and resource-
constrained settings, such as continual learning, streaming and batch active learning
and dictionary selection for compressed sensing.

This work is a significant extension of our original conference publication (Borsos et al.,
2020) that demonstrated the effectiveness of the framework for building coresets of size up to

2

Data Summarization via Bilevel Optimization

a few hundred points for neural networks with proxy models only. We extend the framework
to constructing coresets directly for the target models, without a proxy, and provide several
ways to speed up the construction while maintaining its empirical effectiveness. To establish
connections to prior work, we introduce several variants of the main algorithm. We demon-
strate the effectiveness of our approach for models with millions of parameters, including
wide residual networks, for which we show that we can compress CIFAR-10 by a factor of 2
and SVHN by a factor of 3 with less than 0.05% loss of test accuracy. Furthermore, we offer
several extensions to our framework, including constructing joint coresets for multiple mod-
els and dictionary selection for compressed sensing. The batch active learning application
presented in this work is based on Borsos et al. (2021) with performance improvements.

2. Background and Related Work

In this section, we present relevant works on coresets and other data summarization tech-
niques. The list of presented approaches is by no means exhaustive—we refer to Har-peled
(2011); Phillips (2016); Bachem et al. (2017); Feldman (2020) for surveys about the topic.

Coresets are commonly defined as weighted subsets of the data. The types of theoret-
ical guarantees provided by coresets, however, vary significantly. Consequently, to match
these guarantees, a wide range of coreset-construction algorithms have been proposed, most
of which apply only to a specific model. The most common type of guarantees for core-
sets are uniform multiplicative approximation guarantees: for a given family of nonnega-
tive real functions F on the space X ⊆ Rd, we want to find the coreset C as the sub-
set of the data X = {xi}ni=1 and the associated weights w such that for δ, ε ∈ (0, 1),∣∣∑

x∈C f(x)w(x)−
∑

x∈X f(x)
∣∣ ≤ ε

∑
x∈X f(x) holds with probability 1 − δ uniformly for

all f ∈ F—we refer to coresets with such guarantees as ε-coresets.
Earliest approaches for constructing ε-coresets appear in computational geometry (Agar-

wal et al., 2005) and rely on exponential grids (Har-Peled and Mazumdar, 2004). Feldman
and Langberg (2011) provide a unified ε-coreset-construction framework based on impor-
tance sampling via the data points’ sensitivity (Langberg and Schulman, 2010). The frame-
work has been applied to several models such as k-median (Feldman and Langberg, 2011),
logistic regression (Huggins et al., 2016), and Gaussian mixture models (Lucic et al., 2017),
but its theoretical guarantees are restricted to low-complexity models since the required
coreset size also depends on the pseudo-dimension of the function class F . More impor-
tantly, the framework relies on bounding the sensitivity, a nontrivial model-specific task.
The absence of these bounds renders these methods inexecutable for many relevant prob-
lems. One step towards providing a recipe for calculating the sensitivity for a larger class
of models is provided by Tukan et al. (2020) for near-convex functions that include SVMs,
logistic regression, and `z-regression.

Closely related to our work are coresets that require guarantees only with respect to the
optimal solution on coreset instead of uniform guarantees. The majority of constructions
providing such guarantees are deterministic, in contrast to the sampling-based sensitivity
framework: Badoiu and Clarkson (2003) provide a greedy forward selection of coresets for
the minimum enclosing ball problem of size independent of both n and d; based on the latter,
Tsang et al. (2005) propose the Core Vector Machine, which selects a superset of support
vectors for SVM in linear time, in a forward greedy manner. Clarkson (2010) points out that

3

Borsos, Mutný, Tagliasacchi and Krause

these approaches are instances of the Frank-Wolfe algorithm (Frank and Wolfe, 1956). When
evaluating the optimal solution found on the coreset (in the unweighted case) on the full data,
Wei et al. (2015) show that, in the case of nearest neighbors and naive Bayes, the resulting
set function is submodular, hence greedy selection based on marginal gains guarantees a
1 − 1/e approximation factor to the cost of the solution on the best coreset of a given
size. Like ε-coresets, existing deterministic coreset construction algorithms are also highly
model-specific, and no algorithm has been shown to succeed over a wide range of models.

Other notable approaches to data summarization include Hilbert coresets (Campbell
and Broderick, 2019), which formulates coreset selection as a sparse vector sum approxi-
mation in a Hilbert space with a chosen inner product. The key challenge is choosing an
appropriate Hilbert space such that the resulting coreset is a good summary for the original
problem. Instead of selecting subsets of the data, data set distillation (Wang et al., 2018;
Lorraine et al., 2020; Zhao et al., 2021) synthesizes data points by optimizing the features
to obtain the summary. Whereas data set distillation creates small summaries effectively,
the optimization process is computationally intensive due to the large number of parameters
(number of pixels). Consequently, widely used image classification data sets (e.g., CIFAR-10,
SVHN, ImageNet) cannot be compressed using existing data distillation techniques without
a significant loss in test accuracy compared to training on the full data.

Subset selection has also been formulated as a bilevel optimization problem. This is
implicit in the work of Wei et al. (2015), where the optimization problem can be collapsed
into a single-level problem due to closed-form solutions. Explicit bilevel formulations have
been explored in the context of dictionary selection (Krause and Cevher, 2010). Furthermore,
Tapia et al. (2020) analyze sensor subset selection as a bilevel optimization problem. While
they use a similar strategy to the one developed here, we investigate considerably different
settings of weighted data summarization for a wide range of models and applications.

Techniques related to coresets have also been explored in stochastic optimization. These
works aim to improve convergence by selecting better summaries for minibatches than uni-
form sampling. The challenge here is to design an effective but lightweight selection strategy
with negligible computational cost compared to the optimization. With these considerations,
Mirzasoleiman et al. (2020) propose greedy subset selection based on the submodular fa-
cility location problem. Concurrently to our work, Killamsetty et al. (2021) formulate the
selection of points based on a bilevel optimization problem, the unweighted equivalent of our
proposed method (with the outer objective defined on the validation). We note that their
solution based on Taylor expansion is covered by our framework and is equivalent to our
greedy forward selection with Hessians approximated by the identity matrix in the implicit
gradient (Equation (3)).

3. Coresets via Bilevel Optimization

In this section, we present a generic coreset construction framework that does not rely on
model-specific derivations while—in contrast to other coreset constructions—being effective
for advanced models such as deep neural networks. In the design of our generic framework,
we focus on approximation guarantees related to the solution on the coreset: informally, we
define a “good” coreset for a model to be a weighted subset of the data with fixed cardinality,
such that when the model is trained on the coreset, it will achieve a low loss on the full

4

Data Summarization via Bilevel Optimization

data set. Mathematically, this formulation translates naturally into a bilevel optimization
problem with cardinality constraints.

This section provides an overview of the generic coreset construction framework based
on Borsos et al. (2020) (Sections 3.1-3.4). We then propose several principled relaxations
(Section 3.5) for tackling the resulting combinatorial optimization problem directly for the
target models—in contrast to Borsos et al. (2020), which relied on proxy models—and we
show the empirical effectiveness of the proposed approaches in Section 5 in a variety of novel
coreset settings.

3.1 Problem Setup

Let us consider a supervised setting with data set D = {(xi, yi)}ni=1 and let us introduce
the nonnegative weight vector w = [w1, . . . , wn] ∈ Rn+ for representing the coreset Cw. Here,
(xi, yi, wi) ∈ Cw iff wi > 0, i.e., points with 0 weights are not part of the coreset. Let us
denote the model by h, its parameters by θ, and let ` be the loss function. Furthermore, for
brevity, let `i(θ) := `(hθ(xi), yi).

We can formalize our coreset requirement stated in the introduction: we want to find a
coreset Cŵ of size m such that if we solve the weighted empirical risk minimization (ERM)
problem on the coreset, θ∗ŵ ∈ arg minθ

∑n
i=1 ŵi`i(θ), then θ

∗
ŵ is a good solution for the ERM

problem on the full data set minθ
∑n

i=1 `i(θ). We can write this optimization problem as

ŵ ∈ arg min
w∈Rn+, ||w||0≤m

n∑
i=1

`i(θ
∗(w))

s.t. θ∗(w) ∈ arg min
θ

n∑
i=1

wi`i(θ),

(1)

where the m-sparse vector ŵ indicates the selected points’ indices and weights at nonzero
positions. Although we formulated the problem in the supervised setting, the construction
can be easily adapted to semi-supervised and unsupervised settings, as we will demonstrate
in Section 5. Problem (1) is an instance of bilevel optimization, where we minimize an outer
objective, here

∑n
i=1 `i(θ

∗(w)), which in turn depends on the solution θ∗(w) to an inner op-
timization problem, here arg minθ

∑n
i=1wi`i(θ). Before presenting our proposed algorithm

for solving (1), we discuss some basic background on bilevel optimization.

3.2 Background on Bilevel Optimization

Modeling hierarchical decision-making processes (von Stackelberg and Peacock, 1952; Vi-
cente and Calamai, 1994), bilevel optimization has witnessed increasing popularity in ma-
chine learning. Recently, bilevel optimization has found applications ranging from meta-
learning (Finn et al., 2017; Li et al., 2017), to hyperparameter optimization (Pedregosa,
2016; Franceschi et al., 2018) and neural architecture search (Liu et al., 2019).

Suppose g : Θ× Ω→ R and f : Θ× Ω→ R are continuous functions, then we call

min
w∈Ω

G(w) :=g(θ∗(w), w)

s.t. θ∗(w) ∈ arg min
θ∈Θ

f(θ, w)
(2)

5

Borsos, Mutný, Tagliasacchi and Krause

a bilevel optimization problem with the outer (upper level) objective minwg(θ∗(w), w) and
the inner (lower level) objective θ∗(w)∈arg minθf(θ, w).

Bilevel programming is generally NP-hard even in the linear case (Vicente et al., 1994).
Despite the challenge of non-convexity, first-order methods for solving bilevel optimization
problems are successful in many applications (Finn et al., 2017; Pedregosa, 2016; Liu et al.,
2019). A common simplifying assumption for achieving asymptotic convergence guarantees
is that the inner problem’s solution set in Equation (2) is a singleton for every w ∈ Ω
(Franceschi et al., 2018), fulfilled if f is strongly convex in θ.

First-order bilevel optimization solvers can be further categorized based on how they
evaluate or approximate the implicit gradient, ∇wG(w) for which it is necessary to con-
sider the change of the best response θ∗ as a function of w. The first class of approaches
defines a recurrence relation θt = ϕ(θt−1, w): the recurrence is unrolled, truncated to T
steps, and ∇wG(w) is approximated by differentiation through the unrolled iterations either
by forward- or reverse-mode automatic differentiation (Franceschi et al., 2017). Whereas
choosing a small number of unrolling steps T can potentially introduce bias in the gradient
estimation (Wu et al., 2018), a large T can incur a high computational cost (either in time
or space complexity) when Θ and Ω are high-dimensional.

The second class of first-order bilevel optimization solvers obtains the gradient implicitly:
under the assumption that f is twice differentiable, the constraint θ∗(w) ∈ arg minθ∈Θ f(θ, w)

can be relaxed to ∂f(θ,w)
∂θ

∣∣
θ=θ∗

= 0, which is tight when f is strictly convex. A key result for
obtaining ∇wG(w) is the implicit function theorem applied to ∂f(θ,w)

∂θ

∣∣
θ=θ∗

= 0. Combined
with the total derivative and the chain rule, we get

∂G(w)

∂w
=
∂g

∂w
− ∂g

∂θ

(
∂2f

∂θ∂θ>

)−1
∂2f

∂θ∂w>
, (3)

where the partial derivatives with respect to θ are evaluated at θ∗(w).
In this work, we use the framework of bilevel optimization to generate coresets. We

assume that f is twice differentiable and that the inner solution set is a singleton. Due to
their flexibility and scalability, we use first-order methods based on implicit gradients to
solve our proposed bilevel optimization problems.

3.3 Constructing Coresets via Incremental Subset Selection (BiCo)

In the previous section, we presented different approaches for solving bilevel optimization
problems. However, an additional challenge in our coreset formulation (1) is the cardinality
constraint ||w||0 ≤ m. One approach for this combinatorial problem would be to treat G as
a set function and increment the set of selected points greedily by inspecting marginal gains.
Unfortunately, for general losses, this approach comes at a high cost. At each step, we must
solve the bilevel optimization problem of finding the optimal weights for each candidate
point in the data set we consider adding to the coreset. This makes greedy selection based
on marginal gains impractical for large models and large data sets.

Hence, our problem belongs to a rare class of problems where even the greedy algorithm
is too expensive to run. In order to improve the computational complexity, an efficient
solution summarized in Algorithm 1 is based on cone constrained generalized matching pur-
suit (Locatello et al., 2017). The algorithm uses a continuous relaxation and constructs the

6

Data Summarization via Bilevel Optimization

Algorithm 1 Bilevel Coreset (BiCo)

1: Input: Data D = {(xi, yi)}ni=1, coreset size m
2: Output: weights w encoding the coreset
3: w = [0, . . . , 0]
4: Choose i ∈ [n] randomly, set wi = 1, S1 = {i}
5: for t ∈ [2, ...,m] do
6: Find w∗St−1

∈ Rn+ local min of G(w) s.t. supp(w∗St−1
) = St−1

7: k∗ = arg mink∈[n]∇wkG(w∗St−1
)

8: St = St−1 ∪ {k∗}, wk∗ = 1
9: end for

10: Find w∗Sm local min of G(w) s.t. supp(w∗Sm) = Sm

coresets incrementally. Consider the atom set A corresponding to the n data points to each
we associate one standard basis vector of Rn. Similarly to the Frank-Wolfe algorithm, gen-
eralized matching pursuit proceeds by incrementally increasing the active set of atoms – set
of already included points in the coreset. It performs the increment by selecting the atom
that minimizes the linearization of the objective at the current iteration with the current
active set. Growing the atom set incrementally can be stopped when the desired size m is
reached, and thus the ‖w‖0 ≤ m constraint is active.

To give more details, suppose a set of atoms St−1 ⊂ A of size t − 1 has already been
selected. Our method proceeds in two steps. First, the bilevel optimization problem (1) is
restricted to weights w having support St−1, i.e., w can only have nonzero entries at indices
in St−1. Then we optimize to find the weights w∗St−1

with support restricted to St−1 that
represents a local minimum of G(w) defined in Eq. (2) with g(θ∗(w), w) =

∑n
i=1 `i(θ

∗(w))
and f(θ, w) =

∑n
i=1wi`i(θ)—i.e., we use the algorithm’s corrective variant, where, once

a new atom is added, the weights are reoptimized by gradient descent using the implicit
gradient with projection to nonnegative weights (line 6 in Algorithm 1). Once these weights
are found, the algorithm increments St−1 with the atom that minimizes the linearization of
the outer objective at w∗St−1

,

k∗ = arg min
k∈[n]

e>k∇wG(w∗St−1
), (4)

where ek denotes the k-th standard basis vector of Rn. In other words, the chosen point is
the one with the minimum implicit gradient.

We can gain insight into the selection rule in Equation (4) by expanding∇wG using Equa-
tion (3). For this, we use the inner objective f(θ, w) =

∑n
i=1wi`i(θ) without regularization

for simplicity. Noting that ∂2
∑n
i=1 wi`i(θ)

∂wk∂θ>
= ∇θ`k(θ), we can expand Equation (4) to get

k∗ = argmax
k∈[n]

∇θ`k(θ∗)>
(
∂2
∑n

i=1w
∗
St−1,i

`i(θ
∗)

∂θ∂θ>

)−1

∇θ
n∑
i=1

`i(θ
∗). (5)

7

Borsos, Mutný, Tagliasacchi and Krause

Thus, with the choice g(θ) =
∑n

i=1 `i(θ), the gradient of the selected point gradient has the
largest bilinear similarity with ∇θ

∑n
i=1 `i(θ), where the similarity is parameterized by the

inverse Hessian of the inner problem.
We note that if the measure w would be normalized, the optimization would be over

the convex hull of the atoms. Furthermore, in the rare settings where G(w) is convex, this
approach would be equivalent to the Frank-Wolfe algorithm, already applied in the coreset
literature (Clarkson, 2010).

Computational complexity. The computational cost of Algorithm 1 makes it impracti-
cal for many settings. We illustrate this with an example, where we assume that the inner
optimization in line 6 of Algorithm 1 is performed by gradient descent with tg iterations,
and the weights are updated using implicit gradients tw times. Let us denote the number of
model parameters by d and the complexity of calculating the gradient on a single point by
O (g). Furthermore, we assume additive losses to that the gradient calculation on a batch
of n points takes O (ng).

Suppose we have already selected i coreset points. Solving the inner problem with
gradient descent for given weights w is O (tgig). For obtaining the implicit gradient, calcu-
lating the Hessian can be done using efficient Hessian-vector products (Pearlmutter, 1994) in
O (igd), while inverting it is O

(
d3
)
, and calculating the last term in Eq. 5 is O (ng); hence

the implicit gradient calculation takes O
(
igd+ d3 + ng

)
. Consequently, the complexity of

building a coreset of size m with Algorithm 1 is O
(∑m

i=1

(
tw(tgig + igd+ d3 + ng)

))
=

O
(
mtw(tgmg +mgd+ d3 + ng)

)
. As this computational complexity is clearly prohibitive

for many practical purposes, we propose several practical variants in Sec. 3.5. These prac-
tical variants rely on further approximations. First, by using binary weights for the coreset,
the dependence on tw is eliminated altogether (i.e., tw = 1 in that case). Second, by using ef-
ficient inverse-Hessian-vector products, the dependence on d is reduced. Third, by selecting
multiple coreset points to be added at once (forward selection in batches), the dependence
on m is improved.

3.4 Connections and Guarantees

Before delving into the practical variants of the algorithms, we present a connection of
our approach to other decision theory-based problems arising in statistics such as influence
functions and experimental design. These connections demonstrate that our framework gen-
eralizes certain well-established approaches on simple linear models that study best-subset
selection in classical statistics. On these simple problems, we can derive theoretical guaran-
tees which carry over to our framework.

3.4.1 Connection to Influence Functions

Our approach is closely related to incremental subset selection via influence functions. The
empirical influence function, known from robust statistics (Cook and Weisberg, 1980), de-
notes the effect of a single sample on the estimator. Influence functions have been used
by Koh and Liang (2017) to understand the dependence of neural network predictions on
a single training point and to generate adversarial training examples. To uncover the re-
lationship between our method and influence functions, consider the influence of the k-th
point on the outer objective. Suppose we have already selected the subset S and found the

8

Data Summarization via Bilevel Optimization

corresponding weights w∗S . Then, the influence of point k on the outer objective is

I(k) := −
∂
∑n

i=1 `i(θ
∗)

∂ε

∣∣∣∣
ε=0

, s.t. θ∗ = arg min
θ

n∑
i=1

w∗S,i `i(θ) + ε`k(θ).

Proposition 1 Under twice differentiability and strict convexity of the inner loss, the choice
argmaxk I(k) corresponds to the selection rule in Equation (5).

According to Proposition 1, Algorithm 1 can be interpreted as incremental identification
of influential points. However, as discussed in the previous section, this algorithm is compu-
tationally prohibitive for practically relevant models—we address this issue in Section 3.5.

3.4.2 Connection to Experimental Design

Let us instantiate our approach for the problem of weighted and regularized least squares
regression. In this case, the inner optimization problem θ̂(w) = arg minθ

∑n
i=1wi(x

>
i θ −

yi)
2 + λσ2||θ||22, where weights are assumed to be non-zero. The problem admits a closed-

form solution
θ̂ = (X>D(w)X + λσ2I)−1X>D(w)y, (6)

where D(w) := diag(w). If the weights are assumed to be binary, we can identify this
problem to be equivalent to optimal experimental design (Chaloner and Verdinelli, 1995),
itself being motivated by bilevel optimization problem with closed form inner optimization
problem. In particular, the data summarization with the outer objective defined as g(θ̂) =
1

2nEε,θ
[∑n

i=1(x>i θ̂ − yi)2
]
is closely related to Bayesian V -optimal design, as the following

proposition shows.

Proposition 2 Under the Bayesian linear regression assumptions y = Xθ+ε, ε ∼ N (0, σ2I)

and θ ∼ N (0, λ−1), let gV (θ̂) = 1
2nEε,θ

[∥∥∥Xθ −Xθ̂∥∥∥2

2

]
be the Bayesian V-experimental de-

sign outer objective. For all θ̂S in Eq. (6), we have

lim
n→∞

g(θ̂S)− gV (θ̂S) =
σ2

2
.

Consequently, it can be argued that, in the large data limit, the optimal coreset with binary
weights corresponds to the solution of Bayesian V-experimental design. Further discussion
can be found in Appendix A. By using gV as our outer objective, solving the inner objective
in closed form, we identify the Bayesian V-experimental design objective,

G(w) =
1

2n
Tr

(
X

(
1

σ2
X>D(w)X + λI

)−1

X>

)
.

The literature on Bayesian experimental design suggests relaxing this objective and solving
it using convex optimization methods. In Lemma 10 in Appendix A we show that G(w) is
smooth and convex in w when the integrality is relaxed. As our methodology is equivalent
in the large data limit, our framework enjoys additive approximation guarantees for large n
on models like this as we show next.

9

Borsos, Mutný, Tagliasacchi and Krause

3.4.3 Theoretical Guarantees

Let G(w) be smooth and convex and dependent on the w only, i.e., restricted to lie on the
optimality manifold of the inner problem. If the inner objective has a closed form, as in the
case of experiment design, one can obtain G(w) by substituting the closed form, otherwise,
this objective is only defined implicitly. It can be shown that Algorithm 1, being an instance
of cone-constrained generalized matching pursuit (Locatello et al., 2017), provably converges
at a rate of O(1/t).

Theorem 3 (cf. Theorem 2 of Locatello et al. (2017)) Let G be L-smooth and con-
vex. After t iterations in Algorithm 1 we have,

G(w∗St)−G
∗ ≤ 8L+ 4ε1

t+ 3

where t ≤ m (number of atoms) and ε1 = G(w∗S1
)−G∗ is the suboptimality gap at t = 1.

Corollary 4 Under the conditions of Theorem 3, Algorithm 1 produces a coreset of size
m ∈ O((L+ ε1)ε−1), where ε is the target approximation error.

In the absence of knowledge of L, which could be large, possibly scaling with the number of
model parameters, we can nevertheless show that the suboptimality decreases as 1/t. Even
though, in general, the function G might not be convex for more complex models, variants of
the proposed coreset selection algorithm can be executed nevertheless, and we demonstrate
their effectiveness empirically in such settings in Section 5.

3.5 Practical Bilevel Coreset Construction: Variants

In the previous sections, we presented and analyzed Algorithm 1, our basic algorithm for
coreset selection. However, we have also seen its prohibitive computational complexity. In
this section, we provide approximations that improve the complexity significantly and turn
the algorithm into a practical one, while still being empirically effective.

3.5.1 Binary Weights, IHVP Approximations and Selection in Batches

The three approximations we consider in this section are restricting the coreset weights to
binary, using the Neumann series for efficient inverse-Hessian-vector products, and selection
in batches. These approximations enable us to scale our method even to neural networks
with millions of parameters on large data sets, as demonstrated in Section 5.2.3.

Binary coreset weights. In Algorithm 1, the coreset weights need to be determined for
every selection step, which is itself an iterative procedure. We propose to restrict the coreset
weights to binary (unweighted coreset), which eliminates the coreset weight optimization
step and reduces the number of implicit gradient calculations to the number of forward
selection steps.

Inverse-Hessian-vector product (IHVP) approximations. For obtaining the im-
plicit gradient, the Hessian calculation and inversion in Equation (3) is computationally
intractable for models with a large number of parameters. Efficient inverse-Hessian-vector

10

Data Summarization via Bilevel Optimization

product approximations can be obtained by approximately solving the linear system ∂2f
∂θ∂θ>

x =(
∂g
∂θ

)>
with conjugate gradients (Pedregosa, 2016) or by approximating the inverse Hes-

sian with the Neumann series
(

∂2f
∂θ∂θ>

)−1
= limT→∞

∑T
i=0

(
I − ∂2f

∂θ∂θ>

)i
(Lorraine et al.,

2020). Since Hessian-vector products can be calculated with the complexity of the backward
pass (Pearlmutter, 1994), this approximation enables the scalability of first-order optimiza-
tion methods based on implicit gradients for models with a large number of parameters.

Selection in batches. Since each selection step requires evaluating the implicit gradient,
adding points one by one might be too costly for generating the coreset. We propose forward
selection in batches: start with a small random subset and increase the chosen subset by a
batch of b points with the smallest implicit gradient in each step.

We note that other approaches are also possible, such as exchange in batches, where we
start with a random subset of the desired coreset size, remove b of the chosen points having
the largest implicit gradient, and add b new points having the smallest implicit gradient in
each step; and elimination in batches, where we start with the full data set, remove b of
the chosen points having the largest implicit gradient in each step. We compare the three
approaches (forward selection, exchange, elimination) empirically in Section 5.1.

Similar ideas are prevalent in experimental design, e.g., the “excursion” version of Fe-
dorov’s exchange algorithm (Fedorov, 1972; Mitchell, 1974). The significant difference to
our approach is that, for the experimental design objectives available in closed-form, the
selection algorithm can easily evaluate the exact effect of adding or removing points—in our
case, this is prohibitively expensive, thus we must resort to our proposed heuristic based on
first-order Taylor expansions. Furthermore, we note that we perform the selection of batches
by choosing greedily the b points that have the smallest (largest, in case of elimination) im-
plicit gradient. Exploring approaches that enforce the diversity of the points in the selected
batch is a promising future direction.

Improved computational complexity. We revisit the computational complexity of
O
(
mtw(tgmg +mgd+ d3 + ng)

)
of Algorithm 1 from Section 3.3 after applying the approx-

imations proposed in this section. By using binary weights, the weight update step is elimi-
nated, reducing the complexity by tw. Replacing the Hessian calculation and inversion by the
Neumann series approximation reduces the factor mgd+d3 to thmg, where th is the number
of terms used in the series. Furthermore, forward selection in batches of size b reduces the
complexity by a factor of b, resulting in a final complexity of O

(
mb−1(tgmg + thmg + ng)

)
.

3.5.2 Selection via Proxy

A simple way to generate very small coresets fast is to perform the coreset selection on
a proxy instead of the original model. Our proposed proxy allows for efficient, provably
certifiable convex solvers to be used for the inner problem.

In particular, we study the special case of bilevel coreset construction (Eq. 1) when
the proxy hypothesis class is a reproducing kernel Hilbert space (RKHS). This proxy class
is relevant for a wide range of models, including neural networks due to the connection
between the Neural Tangent Kernel (Jacot et al., 2018) and the training of infinitely wide
neural networks with batch gradient descent.

11

Borsos, Mutný, Tagliasacchi and Krause

Let κ(·, ·) be a positive definite kernel function, and let K denote the Gram matrix
associated with the data. The Nyström method provides a low-rank approximation K̂ to
K by selecting a data-dependent basis as a subset of the training data Q ⊆ [n], |Q| = q
such that K̂ = K[n],QK

+
Q,QKQ,[n]. Given the eigendecomposition of KQ,Q = UDU>, the

q-dimensional Nyström feature map is given by z(·) = D−1/2U>[κ(·, xi), i ∈ Q] , such
that K̂i,j = z(xi)

>z(xj). The problem of selecting the subset Q has attracted significant
interest, where the prominent tool is nonuniform sampling based on leverage scores and
its variants (Mahoney and Drineas, 2009). We use the simplest and computationally most
efficient method of uniform sampling for selecting Q. With the Nyström approximation,
Equation (1) can be rewritten as

min
w∈Rn+, ‖w‖0≤m

n∑
i=1

`(θ∗>z(xi), yi)

s.t. θ∗ = arg min
θ

n∑
i=1

wi`(θ
>z(xi), yi).

(7)

For common loss functions ` (such as cross-entropy or squared loss) the inner optimiza-
tion problem is convex and smooth, which allows us to track the suboptimality gap and use a
plethora of fast and provably accurate optimization algorithms suited for these well-behaved
problems. However, there is a trade-off. While using the simple form of the proxy model
allows us to solve the bilevel optimization problem efficiently, the discrepancy between the
proxy model and the original model can result in coresets that perform poorly for the original
model when the coreset is allowed to be larger than a few tens of points.

3.5.3 Bilevel Coresets via Regularization

When not restricting the coreset weights to binary, one approach for solving the cardinality-
constrained bilevel optimization for coreset selection (Equation (1)) is to transform the ‖w‖0
constraint into a sparsity-inducing regularizer, for example into an L1-penalty in the spirit
of Lasso (Tibshirani, 1996). However, this approach fails for Equation (1), since the solution
of the inner optimization problem is a minimizer also when the weights are rescaled by a
common factor.

We propose the following regularized version of the problem. First, we restrict the
weights to the n-dimensional simplex ∆n, such that

∑n
i=1wi = 1. Now, since ‖w‖1 = 1,

we should use another sparsity-inducing penalty in the outer loss: any Lq =
∑n

i=1w
q
i with

q ∈ (0, 1), where we choose q = 1/2 in this work—Figure 1 shows L1/2 in three dimensions
restricted to the simplex. Thus, our proposed regularized bilevel coreset selection problem
(optional inner regularization is also supported, here exemplified with L2 penalty) is

min
w∈∆n

n∑
i=1

`i(θ
∗) + β

n∑
i=1

√
wi

s.t. θ∗ = arg min
θ

n∑
i=1

wi`i(θ) + λ ‖θ‖22 .
(8)

12

Data Summarization via Bilevel Optimization

Figure 1: L1/2 penalty in three dimensions restricted to the simplex. The value of the
penalty decreases towards the edges of the simplex, inducing sparsity.

Algorithm 2 Bilevel Coreset via Regularization
1: Input: Data D = {(xi, yi)}ni=1, T , regularizers λ, β
2: Output: weights w encoding the coreset
3: w = [1/n, . . . , 1/n], ε = 10−8

4: for it ∈ [1, . . . , T] do
5: Find θ∗ = arg minθ

∑n
i=1wi`i(θ) + λ ‖θ‖22

6: Update w by gradient descent using Equation (9)
7: w̃ = arg minw′∈∆n

‖w′ − w‖2 . Duchi et al. (2008)
8: w = (1− ε)w̃ + ε1n
9: end for

10: w[w < 10−4] = 0

For optimizing the bilevel problem in Equation (8), we apply first-order based on the
implicit gradient

β
∂
∑n

i=1

√
wi

∂w
−
∂
∑n

i=1 `i(θ
∗)

∂θ

(
∂2
∑n

i=1wi`i(θ
∗)

∂θ∂θ>

)−1
∂2
∑n

i=1wi`i(θ
∗)

∂θ∂w>
. (9)

Additionally, since the weights are constrained to ∆n, we project the weights after each
gradient descent step to ∆n using the efficient Euclidean projection step proposed by Duchi
et al. (2008). Furthermore, to ensure numerical stability of derivatives in Equation (9) due
to the L1/2-penalty, we found it useful to mix the projected weight vector with the identity
vector to avoid exactly 0 weights. This extra component is smaller than our final truncation
threshold. Our proposed method is summarized in Algorithm 2.

In practice, to reach a desired coreset sizem, we tune our hyperparameters λ and β as fol-
lows. We first tune λ based on the validation performance by solving the inner optimization
problem with w = [1/n, . . . , 1/n]; after the tuning, λ will be fixed. We set β to small value,
e.g., β = 10−7, start the loop in Algorithm 2, and we monitor the number of selected coreset
points: if the number of the selected coreset points was plateauing in recent iterations, then
we increase the sparsity penalty by doubling β—we use the doubling until the desired coreset

13

Borsos, Mutný, Tagliasacchi and Krause

sizem is reached. Compared to the selection strategies presented in the previous sections op-
erating with binary coreset weights, this approach has the advantage of generating weighted
coresets, that are significantly more compact for some models (Section 5.1). On the other
hand, its computational complexity is increased due to the fact that the implicit gradient
must be calculated at every step—hence this method is only practical for simple models.

4. Extensions and Applications of Bilevel Coresets

Our framework has the advantage of flexibility in handling extensions that can be incorpo-
rated into the outer and inner objectives (Equation (1)) and is thus applicable in a wide
range of settings. We present the framework’s applications in continual learning and stream-
ing based on Borsos et al. (2020), in batch active learning based on Borsos et al. (2021); we
propose new applications for joint coresets construction for multiple models and dictionary
selection in compressed sensing.

4.1 Continual Learning

In contrast to the standard supervised setting, where the learning algorithm has access to an
i.i.d. data set D = {(xi, yi)}ni=1, continual learning assumes that D is the union of T disjoint
subsets D1, . . . ,DT such that each Di contains data drawn from a different i.i.d. distribution.
The goal is to learn a model based on the data that arrives sequentially from different tasks,
such that the model achieves good performance on all tasks. An additional constraint in
the setting is that the model cannot revisit all data from the previous tasks 1, . . . , t − 1
when learning on task t. The challenge is to avoid catastrophic forgetting (McCloskey and
Cohen, 1989; French, 1999), which occurs when the optimization on Dt degrades the model’s
performance significantly on some of D1, . . . ,Dt−1.

Continual learning with neural networks has received increasing interest recently. The
approaches for alleviating catastrophic forgetting fall into three main categories: weight reg-
ularization to restrict deviations from parameters learned on old tasks (Kirkpatrick et al.,
2017; Nguyen et al., 2018); architectural adaptations for different tasks (Rusu et al., 2016);
and replay-based approaches, where samples from old tasks are either reproduced via replay
memory (Lopez-Paz and Ranzato, 2017) or generative models (Shin et al., 2017).

In this work, we focus on the replay-based approach, which provides strong empirical
performance despite its simplicity (Chaudhry et al., 2019). In this setting, coresets are
natural candidates for the summaries of the tasks to be stored in the replay memory, and
we can readily use our coreset construction for the selection.

For continual learning with replay memory, we employ the following protocol. The
learning algorithm receives data D1, . . . ,DT arriving in order from T different tasks. At
time t, the learner receives Dt but can only access past data through a small number of
samples from the replay memory of size m. We assume that equal memory is allocated for
each task in the buffer and that the summaries C1, . . . , CT are created per task. Thus, the
optimization objective at time t is

min
θ

1

|Dt|
∑

(x,y)∈Dt

`(hθ(x), y) + β
t−1∑
τ=1

1

|Cτ |
∑

(x,y)∈Cτ

`(hθ(x), y),

14

Data Summarization via Bilevel Optimization

where
∑t−1

τ=1 |Cτ |=m and β is a hyperparameter controlling the regularization strength of
the loss on the samples from the replay memory. After performing the optimization, Dt
is summarized into Ct and added to the buffer, while previous summaries C1, . . . , Ct−1 are
shrunk such that |Cτ | = bm/tc. The shrinkage is performed by running the summarization
algorithms on each C1, . . . , Ct−1 again, which for greedy strategies is equivalent to retaining
the first bm/tc samples from each summary.

4.2 Streaming

We can also apply our coreset construction in the more challenging setting of streaming.
In contrast to continual learning, the streaming setting does not define tasks and does not
assume i.i.d. data in any portion of the stream. Concretely, in this work, we assume that
the learner observes small data batches D1, ...,DT arriving in order, where no i.i.d. and task
boundary assumptions are made.

As in the case of continual learning, one approach for alleviating catastrophic forgetting
in the streaming setting is the retraining on data from the memory replay buffer. Denoting
byMt the replay memory at time t, the optimization objective at time t for learning under
streaming with replay memory is

min
θ

1

|Dt|
∑

(x,y)∈Dt

`(hθ(x), y) +
β

|Mt−1|
∑

(x,y)∈Mt−1

`(hθ(x), y).

Maintaining a coreset of constant size over data streams is a cornerstone of training
nonconvex models in a streaming setting. We offer a principled way to achieve this, naturally
supported by our framework, using the following idea: two coresets can be summarized into
a single one by applying our bilevel construction with the outer objective as the loss on the
union of the two coresets.

Based on this idea, we use a variant of the merge-reduce framework of Chazelle and
Matoušek (1996). For this, we assume that we can store at most m coreset points in a
buffer; we split the buffer into s slots of equal size ms := m/s. We associate values βi with
each of the slots, which will be proportional to the number of points they represent. A new
batch is compressed into a new slot with associated default β, and it is appended to the
buffer, which now might contain an extra slot. The reduction to size m happens as follows:
select the two consecutive slots i and i+1 with smallest i for which βi = βi+1 or, if this does
not exist, choose the last two slots; then join the content of the slots (merge) and create the
coreset of the merged data (reduce). The new coreset replaces the two original slots with
βi + βi+1 associated with it. The pseudocode of the construction is shown in Algorithm 3
in Appendix D together with the illustration of the merge-reduce coreset construction for a
buffer with 3 slots and 7 steps in Figure 13. The coreset produced by our construction for a
two-layer fully connected neural network on the imbalanced video stream created from the
iCub World 1.0 data set (Fanello et al., 2013) can be seen in Figure 2.

4.3 Batch Active Learning

The prominent use cases of our proposed method are scenarios with explicit budget con-
straints for subset selection. These constraints can be due to computational resource con-
straints, as in the case of continual learning and streaming with replay memory, or can relate

15

Borsos, Mutný, Tagliasacchi and Krause

Figure 2: Data summarization on an imbalanced stream of images created from the iCub
World 1.0 data set (Fanello et al., 2013). Row 1: the stream’s composition containing 5
object classes. Row 2: selection by reservoir (uniform) sampling. Row 3: selection by our
method. Reservoir sampling misses classes (pepper) due to imbalance and does not choose
diverse samples, in contrast to our method.

to the cost of involving human interaction. Active learning falls into the latter category and
aims to improve the data efficiency of learning algorithms by interleaving training rounds
with selective query of the labels for informative unlabeled points from human experts.

The active learning setting assumes that, while unlabeled data is available abundantly,
acquiring labels involves the cost of relying on human expertise. In the pool-based setup, each
active learning round consists of training the model using the already labeled data and choos-
ing points from the unlabeled pool for label acquisition. The challenge in this setting is to
select the most informative samples, i.e., the samples with the highest potential of reducing
the model’s generalization error. When the cost of performing a new training round after ev-
ery single acquired label is considered, active learning becomes computationally unattractive.
Batch active learning tackles this issue by acquiring labels for a batch of points in a single
round but faces the additional challenge of ensuring diversity between the chosen points.

Active learning and its batch variant have received significant attention (MacKay, 1992;
Lewis and Gale, 1994; Balcan et al., 2007; Hoi et al., 2006; Guo and Schuurmans, 2008;
Kirsch et al., 2019). Although vastly available unlabeled data is assumed in this setting, most
active learning approaches ignore the unlabeled pool while training the model in a supervised
manner on the labeled pool only. On the other hand, recent advances in semi-supervised
learning (SSL) have shown significant performance improvements of models trained with
only a small number of labeled samples. Prominent SSL methods in the image domain
include Mean Teacher (Tarvainen and Valpola, 2017), MixMatch (Berthelot et al., 2019)
and its improvement, FixMatch (Sohn et al., 2020). These methods achieve the following
CIFAR-10 test accuracies: Mean teacher - 78.5% with 1000 labeled samples; MixMatch -
88.2% with 250 labeled samples; FixMatch - 95% with 250 labeled samples.

The success of semi-supervised methods suggests that using the unlabeled data pool
in active learning for acquisition only is suboptimal. Based on this observation, early ap-
proaches propose to combine active learning with SSL for Gaussian fields (Zhu et al., 2003)
and SVMs (Hoi and Lyu, 2005; Leng et al., 2013). In the context of semi-supervised active
learning with neural networks, Sener and Savarese (2018) investigate SSL training and se-
lecting points for label acquisition that represent the k-centers of the embeddings in the last
layer. Song et al. (2019) show that training in a semi-supervised manner with MixMatch
and selecting the candidates for label query with standard acquisition functions improves
the active learner’s generalization performance compared to uniform sampling. Gao et al.
(2019) propose to train in each acquisition round with MixMatch and query the points that

16

Data Summarization via Bilevel Optimization

produce the most inconsistent predictions when undergoing random data augmentations, as
measured by the sum of per-class variances in the predicted class probabilities. We compare
our proposed acquisition strategy with these methods empirically.

We propose a simple yet highly effective label acquisition strategy based on bilevel coreset
construction that works in the semi-supervised batch active learning setup. The basic idea
is the following: in each round of active learning, we train the semi-supervised learner and
use its predictions to provide labels for the samples in the unlabeled pool; then, using these
“pseudo-labels”, we construct the coreset of the unlabeled pool and query the true labels
for the selected points. This strategy naturally accommodates the selection of batches and
prohibits redundancy in the selected batch by the design of the objective.

Let us formalize our approach in a single round of batch active learning. Denote the
labeled pool by Dtrain = {(xi, yi)}nlabeled

i=1 and the unlabeled pool by Du = {x′i}
nunlabeled
i=1 .

Let h denote the model and θ∗SSL denote the parameters that minimize the semi-supervised
loss—our strategy is oblivious to the choice of the SSL algorithm, it only assumes that the
semi-supervised training outperforms supervised training of the model in terms of the gen-
eralization error. Lastly, let D̂u = {(x, hθ∗SSL

(x)), x ∈ Du} denote the data set of points
from Du together with their soft pseudo-labels provided by the semi-supervised learner.

The goal of batch active learning is to select and query the labels of the most informative
subset of the unlabeled data poolM⊆ D̂u of size m = |M| that would result in a maximal
reduction of the model’s generalization error. We propose to selectM as follows: Dtrain∪M
should be the coreset of Dtrain ∪ D̂u for training h in a supervised manner. Formally,

M := arg min
M⊆D̂u, |M|=m

∑
(x,y)∈Dtrain

`(hθ∗(x), y) +
∑

(x,ŷ)∈D̂u

`(hθ∗(x), ŷ)

s.t. θ∗ = arg min
θ

∑
(x,y)∈Dtrain

`(hθ(x), y) +
∑

(x,ŷ)∈M

`(hθ(x), ŷ),
(10)

where ŷ denote the pseudo-labels. The motivation for the formulation in Equation (10)
is twofold. Firstly, as the coreset of D̂u, M will contain the most essential points of the
unlabeled data pool for supervised training. In case some of these points have been wrongly
pseudo-labeled, we expect that querying the correct labels induces a large model change.
In the other case, acquiring hard labels benefits the semi-supervised learner in label propa-
gation. Secondly, the coreset selection in Equation (10) naturally supports batch selection
while avoiding redundancy among the selected points. We provide empirical support for this
hypothesis in the experiments.

4.4 Joint Coresets

One application of our framework is speeding up model selection and hyperparameter tuning
by performing these on the coreset instead of the full data. For this, we expect the coreset
to be transferable to multiple models, whereas our formulation (Equation (1)) is tied to a
model and a loss function. A simple idea to construct a coreset with better transferability is
to ensure that it is a suitable coreset for multiple models. This is straightforward to achieve
within our framework—for brevity, we present the idea for two models: consider models

17

Borsos, Mutný, Tagliasacchi and Krause

f and g, and denote their parameters by θf and θg. The problem of generating the joint
coreset can be formulated as

min
w∈Rn+, ||w||0≤m

n∑
i=1

(
`(fθ∗f (xi), yi) + λ`(gθ∗g (xi), yi)

)
s.t. (θ∗f , θ

∗
g) ∈ arg min

(θf ,θg)

n∑
i=1

wi
(
`(fθf(xi), yi) + λ`(gθg(xi), yi)

)
.

(11)

For solving this bilevel problem, we can rely on the previously presented techniques. In
practice, if the loss magnitudes are of the same order, we can set λ = 1; an additional
heuristic for solving the problem with (batch) forward selection is to perform the selection
step alternatingly for each model. We verify the validity of this approach in the next sec-
tion, where we demonstrate the improvement in the transferability of the coreset to deep
convolutional networks.

4.5 Dictionary Selection for Compressed Sensing

In signal compression, a collection of signals (data points) needs to be summarized by a
small set of measurements ensuring high-fidelity reconstruction. In this section, we are con-
cerned with selecting low-dimensional projections of the data instead of selecting data points
directly. Despite this difference, due to the generality of bilevel framework, we can demon-
strate our proposed approach for selecting measurements from a set of dictionary elements
in order to improve the compression performance. This problem closely resembles dictionary
learning and can be seen as a special case of it, without the individual sparsity constraints
(Krause and Cevher, 2010). The classical greedy method, which can obey cardinality con-
straints on the measurement set, and thus control the compression ratio, is computationally
very expensive: for each element of the dictionary and at each enlargement, the whole data
set needs to be reconstructed. This increases the computational burden by the size of the
dictionary, which can be prohibitively large.

Classically, the compression is addressed by transforming the data (signal) to a basis
with a known redundancy such as a Fourier transform, and subsequently applying a set of
linear measurements. These are then recovered by imposing a regularization strategy such
as the smallest squared norm (L2). Alternatively, Chen (2005) proposed to use absolute
norm regularization (L1) instead, referred to as basis pursuit or compressed sensing. In
fact, compressed sensing can provably recover s-sparse signals with a much smaller set of
linear measurements than L2 regularization, scaling as O(s log(d)) (Donoho, 2006). The
measurement vectors, however, have to satisfy specific conditions such as restricted isom-
etry property (RIP) (Candes et al., 2006) for this to be guaranteed. Certifying that a
measurement matrix is RIP is known to be NP-hard (Bandeira et al., 2013). Constructing
these matrices randomly is easy albeit the procedure generates them only with a certain
probability (Candes et al., 2006).

Given a representative curated data set sufficiently covering all reasonable signals, a
natural question is whether one can design a tailored measurement set that improves the
compression ratio beyond the randomly generated RIP matrices or other classical measure-

18

Data Summarization via Bilevel Optimization

ments. In fact, when the recovery procedure is formulated as an optimization problem, it
can be captured in the familiar bilevel form:

min
‖w‖0≤k

1

n

n∑
i=1

‖xi − x̂i(w)‖22

s.t. x̂i(w) = arg min
y

m∑
j=1

wj

(
a>j (xi − y)

)2
+ λR(y), ∀i ∈ {1, . . . , n},

(12)

where n is the size of representative data set, aj ∈ Rd is one of the m elements of the dic-
tionary we select from, and R(y) is the regularization term corresponding to R(y) = ‖y‖22
or R(y) = ‖y‖1. The values of wi are restricted to binary in this application. While the
optimization problems might not always be differentiable, in practice, however, using an
element of the sub-differential proves to be a viable strategy. We demonstrate the versatility
of our framework by applying it to solve Equation (12) in Section 5.6.

Bora et al. (2017) and Jalal et al. (2021) have demonstrated that the sparsity-inducing
regularizers can be substituted by the constraint that the data belongs to the support of a
generative model G(z), where z ∈ Rp is the latent space. In this case, the regularization
term becomes an indicator function R(y) = 1∃z | y=G(z), which can be reformulated to get
a simplified inner problem x̂i = G(zi) and zi = arg minz

∑m
j=1wj(a

>
j (xi − G(z)))2. The

measurements are assumed to be linear as in classical compressed sensing, and the recov-
ery guarantees satisfy similar conditions on measurement vectors as with sparse signals in
previous works (Jalal et al., 2021). Naturally, a more informed measurement selection can
further reduce the compression ratio.

5. Experiments

In this section, we demonstrate the flexibility and effectiveness of our framework for a wide
range of models and various settings. We start by evaluating the practical variants of
Algorithm 1 proposed Section 3.5, and we compare our method to model-specific coreset
constructions and other data summarization strategies in Section 5.2. We then study our
approach in the memory-constrained settings of continual learning and streaming in Sections
5.3, 5.4, of dictionary selection in Section 5.6, and the human-resource constrained setting
of batch active learning in Section 5.5. Sections 5.3, 5.4 are based on Borsos et al. (2020),
Section 5.5 is based on Borsos et al. (2021).

5.1 Practical Variants of Algorithm 1

The basic algorithm (Algorithm 1) for bilevel coresets is impractical due to its computational
complexity. Hence, we focus on the variants proposed in Section 3.5. Our target model is
multiclass logistic regression, where the feature space is the q = 2048-dimensional Nyström
feature space of the Convolutional Neural Tangent Kernel (CNTK) proposed by Arora et al.
(2019) with six layers and global average pooling on CIFAR-10. In this case, θ ∈ Rq×c, and

`(θ>z(x), y) = −
∑c

j=1 yj log
exp(θ>·,jz(x))∑c

j′=1 exp(θ>·,j′z(x))
, where y is the one-hot encoded label vector, `

is the cross-entropy loss with softmax, and z(·) is the Nyström feature mapping. In each step,

19

Borsos, Mutný, Tagliasacchi and Krause

0.5% 2.0% 8.0% 32.0% 100.0%
Subset Size

30

40

50

60
Te

st
 A

cc
ur

ac
y

25.0% 50.0% 75.0% 100.0%
Subset Size

60

61

62

63

64

65

66

67

68

Uniform
BiCo Fwd
BiCo Fwd 25
BiCo Elim
BiCo Exch
BiCo Reg
Full Dataset

Figure 3: Bilevel coresets for logistic regression on the Nyström feature space of CIFAR-
10 CNTK. Building unweighted coresets by forward selection in batches achieves the same
performance as one-by-one forward selection after 25% of the points have been selected.
Training on a weighted coreset (“BiCo Reg”) of size 8% of the full data set produced by our
method achieves the same performance as training on the full data set.

we solve the inner optimization problem iteratively up to a tolerance with gradient descent
and approximate the implicit gradient with 100 conjugate gradient steps (Pedregosa, 2016).
We split CIFAR-10 into a train and validation set, where the validation set is a randomly
chosen 10% of the original training set. We instantiate the outer loss as the sum of training
and validation losses, whereas the inner optimization problem is defined on the training set.
Further details about the experimental setup can be found in Appendix C.

We study coresets with binary weights built using one-by-one forward selection, forward
selection in batches of 25, elimination in batches of 200, and exchange with 200 steps (each
step exchanges 1% of the selected points; we found that more steps did not increase the
performance). For constructing weighted coresets, we solve the regularized version of the
bilevel optimization proposed in Section 3.5.3. The results are shown in Figure 3. We can
observe that forward selection in batches initially incurs a performance penalty but performs
similarly to one-by-one forward selection after 25% of the points have been selected. Both
forward selection methods produce coresets of sizes between 33% and 90% on which logistic
regression achieves lower test error compared to when trained on the full data set. We observe
that elimination increases the test accuracy in initial iterations; however, it significantly
underperforms compared to uniform sampling for generating coresets smaller than 90%.
Bilevel coresets via regularization (weighted) of size 8% achieve the same performance as
training on the full data set. We note that the higher test performance for the weighted
coreset with size 20% compared to 90% is due to the higher number of total outer gradient
steps performed.

5.2 Comparison to other Summaries

We compare bilevel coresets to coresets designed for specific models, as well as to other
data summarization methods. In all experiments, we observe that other methods do not
consistently outperform uniform sampling over all subset sizes in contrast to our method.

20

Data Summarization via Bilevel Optimization

All points 20 30 50

Figure 4: Contours of the log-marginal probability log p(x) of the Gaussian mixture models
(GMM) with k = 5 components fitted to different subsets of the data. Left: GMM fitted
to the full data set; right: GMM fitted to uniform sample (upper row) and to the bilevel
coreset (lower row) of sizes indicated by the subscripts. The bilevel coreset provides good
approximate density already with 30 samples.

5.2.1 Gaussian Mixture Models

The first experiment serves as a toy example and proves the versatility of our approach in its
broad applicability. In this experiment, we illustrate coreset construction in the unsupervised
setting of mixture models. We build coresets for Gaussian mixture models with the log
marginal probability

log p(x) = log

(
k∑
i=1

πiN (x|µi,Σi)

)
,

where {πi}ki=1,
∑k

i=1 πi = 1 are the mixture weights and {µi}ki=1 and {Σi}ki=1 are the compo-
nent means and covariances. The loss function is thus the negative marginal log-likelihood
(NLL) −

∑n
i=1wi log p(xi) minimized over the model parameters θ := {πi, µi,Σi}ki=1 for the

data set D = {xi}ni=1, where w ∈ Rn+ are the data weights. We generate a synthetic two-
dimensional data set so that we can visualize and inspect the choices of the coreset selection.
We fit a k = 5-component Gaussian mixture model to the data by minimizing the loss using
the EM algorithm. To generate the coreset, we use the one-by-one forward selection with
binary coreset weights, starting from a random sample of 10, and approximate the inverse
Hessian-vector product via conjugate gradients.

In Figure 4, we plot the contours of the log-marginal probabilities of the mixtures ob-
tained from fitting the GMM to uniform subsamples and coreset summaries. A coreset
of size 30 already provides accurate mean and covariance estimates, with density contours
closely resembling the contours of the model fitted to the full data set. We can observe the
following progression of the coreset selection: first, points are picked to represent the modes,
after which the component covariance and weight estimates are improved.

To quantify the improvement obtained by coresets, we measure the relative errors of the
negative log-likelihood (NLL) obtained for subsets of different sizes compared to the nega-
tive log-likelihood obtained by fitting on the full data set. Furthermore, we also compare to

21

Borsos, Mutný, Tagliasacchi and Krause

20 40 60 80 100
Subset Size

10
−2

10
−1

10
0

10
1

10
2

R
el

at
iv

e
E

rr
or

 fo
r N

LL

Uniform
Sensitivity Coreset
Bilevel Coreset

Figure 5: Relative error for the negative log-likelihood of a k = 5 component GMM obtained
by different methods. Our coreset construction outperforms other methods by an order of
magnitude, even those designed specifically for GMMs.

coresets for GMM generated via the sensitivity framework (Lucic et al., 2017). The results
in Figure 5 show an improvement of an order of magnitude by our method.

5.2.2 Logistic Regression

The target model in this experiment is logistic regression. For binary classification with
logistic regression, several coreset constructions have been proposed that serve as our base-
lines. We choose four standard binary classification data sets (Dua and Graff, 2017; Uzilov
et al., 2006) from the LIBSVM library1 for this experiment, of size between 9000 and 600000
samples and feature dimensions between 8 and 123. We standardize the features and solve
the logistic regression on the subsets selected by different methods to compare their test
performance with the one achieved by training on the full data set.

Since the model has low capacity, our framework needs only a small coreset for perfect
approximation. Hence, we evaluate the one-by-one forward selection version of our algorithm
with weights (Algorithm 1, with 150 outer iterations) and its unweighted (binary weights)
version (“BiCo w/ Weights” and “BiCo” in the figures). As for the baselines, we compare
to k-means++ (Arthur and Vassilvitskii, 2007) and coresets via sensitivity (Huggins et al.,
2016). We also experimented with Hilbert coresets (Campbell and Broderick, 2019). How-
ever, we were unable to tune this method to outperform uniform sampling on these data
sets. Hence, we do not show its performance. We provide a detailed description of the
baselines in Appendix C.

Figure 6 shows that our weighted coreset construction needs less than 2% of the data
to obtain the same test accuracy as when the model is trained on the full data set. The
unweighted variant needs twice as large a coreset on average to achieve the same performance,
however, it is significantly faster to construct—concretely, it takes 12.2 seconds on average
per data set to construct a coreset of size 100, which is a factor of 150 faster than weighted
coreset generation (the speedup factor equals the number of outer iterations). Further details
about the experimental setup can be found in Appendix C.

In the following experiment, we investigate coresets for multiclass logistic regression for
MNIST and CIFAR-10. For MNIST, we use 500-dimensional Nyström features to approx-

1. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

22

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Data Summarization via Bilevel Optimization

0.50% 1.01% 1.51% 2.01% 2.51% 3.02%
80

82

84

86

88

90

92

94
Phishing

0.17% 0.34% 0.51% 0.68% 0.85% 1.02%
65

70

75

80

85
Adult

0.01% 0.02% 0.03% 0.04% 0.05% 0.06%

55

60

65

70

75

Covtype

0.08% 0.17% 0.25% 0.34% 0.42% 0.50%
75

80

85

90

95
Cod-rna

Uniform
k-means
Sensitivity
BiCo
BiCo w/ Weights
Full Dataset

Subset Size

Te
st

 A
cc

ur
ac

y

Figure 6: Coresets for binary logistic regression. Our coreset constructions consistently
outperform other data summarization approaches, achieving the same performance with 2%
of the data as training on the full data set.

imate the feature map of the RBF kernel k(x, y) = exp(−γ‖x − y‖2) with γ = 10−3. For
CIFAR-10, we use the same setup as in Section 5.1. Figure 7 shows the comparison of one-
by-one unweighted forward selection and weighted coreset generation via regularization (the
algorithm is stopped when its test performance drops below the performance of the forward
selection variant), to uniform sampling and k-means in the feature space (we also compared
to k-center selection, which underperforms compared to k-means), and to the two-stage
selection of samples that are most frequently “forgotten” during training (misclassified at
some point in training after being classified correctly before; referred to as “forgetting” in
the figures) (Toneva et al., 2019)—we have also experimented with this method in the binary
logistic regression experiment, but it underperformed compared to uniform sampling under
subset sizes of 300. Our proposed methods can achieve compression ratios of over 10 (data
set size divided by smallest data set size required for obtaining the same test accuracy) on
both data sets with weighted coresets generated via regularization.

5.2.3 Neural Networks

For computationally tractable implicit gradient evaluations for networks with millions of
parameters, we construct coresets with binary weights using forward selection in batches,
and inverse Hessian-vector products approximated using the Neumann series (Section 3.5.1).
We truncate the series to T = 100 terms and we introduce a scaling hyperparameter α for

23

Borsos, Mutný, Tagliasacchi and Krause

0.5% 2.0% 8.0% 32.0% 100.0%
Subset Size

75

80

85

90

95

Te
st

 A
cc

ur
ac

y
MNIST

0.5% 2.0% 8.0% 32.0% 100.0%
Subset Size

30

40

50

60

CIFAR-10

Uniform
BiCo
BiCo Reg
k-means
Forgetting
Full Dataset

Figure 7: Coresets for multiclass logistic regression. Weighted coresets generated via regu-
larization achieve compression ratios of over 10 on both data sets.

20% 40% 60% 80% 100%
Subset Size

82

84

86

88

90

92

94

96

Te
st

 A
cc

ur
ac

y

CIFAR-10

20% 40% 60% 80% 100%
Subset Size

93

94

95

96

97

SVHN

Uniform
k-means
k-center embed
Forgetting
BiCo
Full Dataset

Figure 8: Coreset construction with forward batch selection for WideResNet-16-4; bilevel
coresets achieve compression ratios of 2 and 3.

the inner loss f , such that the Neumann series approximation is now applied to
(
α ∂2f
∂θ∂θ>

)−1
.

This is to ensure the convergence of the Neumann series, for which a necessary and sufficient
condition is maxj

∣∣∣λj (I − α ∂2f
∂θ∂θ>

)∣∣∣ < 1, where λj(A) denote the j-th eigenvalue of A (Chen,
2005). In automatic differentiation frameworks, Hessian-vector products can be calculated
efficiently without instantiating the Hessian. However, due to memory considerations, we
can only afford to evaluate f on a single minibatch of data in the Hessian-vector products,
which introduces another layer of approximation through the stochastic Hessian.

We demonstrate the effectiveness of bilevel coresets for wide residual networks (Zagoruyko
and Komodakis, 2016) and search for the smallest coreset size such that the test performance
matches the test performance of training on the full data set up to a 0.05% tolerance. For
computational considerations, we showcase the unweighted coreset construction via forward

24

Data Summarization via Bilevel Optimization

selection in batches of 250 points, starting from a random pool of 2500 points. We evalu-
ate the method by constructing coresets for a WideResNet-16-4 (2.7 million parameters) on
CIFAR-10 and SVHN (Netzer et al., 2011)—for SVHN we only use the train split, containing
approximately 73000 images. We achieved the best results by retraining the network from
scratch after every round of selection with SGD with momentum—further details about the
training can be found in Appendix C.

We compare in Figure 8 our unweighted batch forward selection to the following subset
selection methods for neural networks: uniform sampling, k-means/k-center in the pixel
space (Nguyen et al., 2018), k-means/k-center in the last layer embedding of the trained
network (Sener and Savarese, 2018), and selecting samples that are most frequently “forgot-
ten” during training (Toneva et al., 2019). We plot each method’s test performance until
they first reach the test performance of training on the full data set.

We find that, for both CIFAR-10 and SVHN, k-means outperforms k-center in the feature
space, while k-center is better for selection based on the last layer embeddings. The perfor-
mance of k-means/k-center suggests that simple definitions of redundancy are suboptimal
for constructing coresets. Figure 8 shows that our method achieves a compression ratio of 2
on CIFAR-10 and 3 on SVHN, i.e., it can find a representative subset of the training data
of size 23500 (47%) for CIFAR-10 and 23000 (31%) for SVHN, such that the WideResNets
trained on the chosen subsets achieve the test performance comparable to training on the
full data set (within a 0.05 margin of 95.30 for CIFAR-10 and 97.01 for SVHN). Whereas
retaining points that are frequently forgotten (Toneva et al., 2019) matches the performance
of our method for coreset sizes above 15000 (30%) for CIFAR-10 and 10000 (14%) for SVHN,
it underperforms uniform sampling in generating small coresets.

An important application of data summarization is speeding up hyperparameter tuning,
since the evaluations can be performed on the summary instead of the full data set. In
neural architecture search, highly model-specific summaries are undesirable, as they might
favor specific architectural choices. To inspect whether the coresets for WideResNet-16-4
are transferable to other architectures, we measure the performance of VGG16 (Simonyan
and Zisserman, 2015) and MobileNetV2 (Sandler et al., 2018) adapted to CIFAR-10 and
SVHN (kernel strides and pooling kernel sizes reduced to accommodate 32× 32 images) on
coresets of size 23000; the training procedure is the same as for the WideResNet. Table 1
shows that, whereas the transferred coresets do not reach the full data set performance, they
perform significantly better than uniform sampling and the transferred k-center summary
and perform similarly to the “forgetting” summary.

We can improve the transferability of the coreset by building joint coresets for multiple
models, as proposed in Section 4.4. In the following experiment, we generate a joint coreset
for WideResNet-16-4 and VGG16 and evaluate the resulting coreset for transferability on
MobileNetV2. For this, we use a simple heuristic for approximating the solution of Equation
(11) with λ = 1: similarly to the previous experiment, we generate the coreset by forward
greedy selection in batches of 250 by alternating the model in each step (i.e., we select a
new batch of points for the WideResNet, then for VGG16). The results in Table 2 show
that this simple heuristic improves the effectiveness of the joint coreset on VGG16 and
the transferability to MobileNetV2 at the expense of small performance degradation on
WideResNet.

25

Borsos, Mutný, Tagliasacchi and Krause

CIFAR-10 SVHN
VGG16 MobileNetV2 VGG16 MobileNetV2

Uniform 91.49± 0.16 91.71± 0.33 94.24± 0.26 94.22± 0.39
k-center emb. 92.72± 0.20 92.77± 0.29 94.59± 0.21 94.83± 0.34
Forgetting 93.75± 0.23 93.80± 0.08 95.47± 0.17 95.30± 0.16

BiCo 93.66± 0.15 93.65± 0.22 95.43± 0.15 95.53± 0.20

Full data set 94.23± 0.14 94.46± 0.15 95.93± 0.07 96.04± 0.09

Table 1: Coresets of size 23000 for WideResNet-16-4 transferred to VGG16 and Mo-
bileNetV2. Our method provides similar transfer performance to “forgetting” (Toneva et al.,
2019), while both outperform other methods.

Data set Architecture BiCo
WRN

BiCo
WRN + VGG

CIFAR-10
WideResNet-16-4 95.24± 0.06 95.18± 0.07

VGG16 93.66± 0.15 93.88± 0.16
MobileNetV2 93.65± 0.22 93.79± 0.18

SVHN
WideResNet-16-4 96.97± 0.02 96.88± 0.09

VGG16 95.43± 0.15 95.75± 0.14
MobileNetV2 95.53± 0.20 95.76± 0.10

Table 2: Coresets of size 23000 for WideResNet-16-4 transferred to VGG16 and MobileNetV2
(Coreset WRN); coresets constructed jointly for WideResNet-16-4 and VGG16 transferred
to MobileNetV2 (Coreset WRN + VGG).

5.3 Continual Learning

We compare our approach to existing replay memory management strategies by conducting
an extensive experimental study. We focus on continual learning settings where the learning
algorithm is a neural network, and we keep the network structure fixed during learning on dif-
ferent tasks. This is known as the “single-head” setup, which is more challenging than instan-
tiating new top layers for different tasks (“multi-head” setup) and does not assume any knowl-
edge of the task descriptor during training and test time. For validating our coreset construc-
tion in the continual learning setting, we use the following 10-class classification data sets:

• PMNIST (Goodfellow et al., 2014): consist of 10 tasks, where in each task all images’
pixels undergo the same fixed random permutation.

• SMNIST (Zenke et al., 2017): MNIST is split into 5 tasks, where each task consists of
distinguishing between consecutive image classes.

• SCIFAR-10: similar to SMNIST on CIFAR-10.

Following Aljundi et al. (2019b), we keep a subsample of 1000 points for each task for all
data sets while we retain the full test sets. For PMNIST, we use a fully connected net with

26

Data Summarization via Bilevel Optimization

Method PMNIST SMNIST SCIFAR-10

Training w/o replay 73.82± 0.49 19.90± 0.03 19.95± 0.02
Uniform sampling 78.46± 0.40 92.80± 0.79 43.22± 0.62
k-means of features 78.34± 0.49 93.40± 0.56 43.96± 0.78

k-means of embeddings 78.84± 0.82 93.96± 0.48 44.37± 0.76
k-means of grads 76.71± 0.68 87.26± 4.08 36.99± 1.30
k-center of features 77.32± 0.47 93.16± 0.96 36.90± 1.09

k-center of embeddings 78.57± 0.58 93.84± 0.78 40.81± 0.53
k-center of grads 77.57± 1.12 88.76± 1.36 35.11± 1.66
Gradient matching 78.00± 0.57 92.36± 1.17 43.69± 0.73

Max entropy samples 77.13± 0.63 91.30± 2.77 35.31± 1.57
Hardest samples 76.79± 0.55 89.62± 1.23 32.31± 0.88
FRCL’s selection 78.01± 0.44 91.96± 1.75 43.35± 1.15
iCaRL’s selection 79.68± 0.41 93.99± 0.39 44.22± 1.31

BiCo 79.33± 0.51 95.81± 0.28 44.51± 1.41

Table 3: Continual learning with replay memory size of 100 for versions of MNIST and 200 for
CIFAR-10. We report the average test accuracy over the tasks with one standard deviation
over 5 runs with different random seeds. Our coreset construction performs consistently
among the best.

two hidden layers with 100 units, ReLU activations, and dropout with probability 0.2 on
the hidden layers. For SMNIST and SCIFAR-10, we use a CNN consisting of two blocks of
convolution, dropout, max-pooling, and ReLU activation, where the number of filters are 32
and 64 and have size 5 × 5, followed by two fully connected layers of size 128 and 10 with
dropout. The dropout probability is 0.5. We fix the replay memory size m = 100 for tasks
derived from MNIST. For SCIFAR-10, we then set the memory size to m = 200. We train
our networks for 400 epochs using Adam with step size 5 · 10−4 after each task.

We perform an extensive comparison under the protocol described above of our method
to other data selection methods proposed in the continual learning or the coreset literature—
the detailed description of the baselines can be found in Appendix D. For each method, we
report the test accuracy averaged over tasks on the best buffer regularization strength β.
For a fair comparison to other methods in terms of summary generation time, we restrict
our coreset selection method in all of the continual learning experiments to forward selection
with binary weights, via the Nyström proxy method with q = 512 (Section 3.5.2)—we use
the Neural Tangent Kernel (Jacot et al., 2018) corresponding to the chosen architecture,
without dropout and max-pooling obtained with the library of Novak et al. (2020).

We report the results in Table 3. We note that while several methods outperform uniform
sampling on some data sets, only our method is consistently outperforming it on all data sets.
For inspecting the gains obtained by our method over uniform sampling, we plot the final per-
task test accuracy on SMNIST in Figure 9. We notice that our method’s advantage does not
come from excelling at one task but rather by representing the majority of tasks better than
uniform sampling. In Appendix D, we present a study of the effect of the replay memory size.

27

Borsos, Mutný, Tagliasacchi and Krause

Method PMNIST SMNIST

k-center 85.33± 0.67 65.71± 3.17
Uniform 84.96± 0.17 80.06± 2.19
BiCo 86.11± 0.25 84.62± 0.89

Table 4: VCL with 20 points/task. VCL
can benefit from our coreset construction.

1 2 3 4 5
Task

75

80

85

90

95

100

Te
st

 A
cc

ur
ac

y

Uniform per task
Coreset per task

Figure 9: Per-task test accuracy on SMNIST.

Method PMNIST SMNIST

Train on coreset 45.03± 1.31 89.99± 0.76
Reservoir 73.21± 0.59 90.72± 0.97
BiCo 74.49± 0.59 92.51± 1.30

Table 5: Streaming with replay memory of size 100.
BiCo uses the merge-reduce buffer.

Method SMNIST SCIFAR-10

Reservoir 80.60± 4.36 30.42± 0.93
CBRS 89.71± 1.31 37.51± 1.15
BiCo 92.37± 0.27 37.09± 0.65

Table 6: Imbalanced streaming on SM-
NIST and SCIFAR-10.

Our method can also be combined with different approaches to continual learning, such
as variational continual learning (VCL) (Nguyen et al., 2018). Whereas VCL also relies on
data summaries, it was proposed with uniform and k-center summaries. We replace these
with our coreset construction, and, following Nguyen et al. (2018), we conduct an experi-
ment using a single-headed two-layer network with 256 units per layer and ReLU activation,
where the coreset size is set to 20 points per task. The results in Table 4 corroborate the
advantage of our method over simple selection rules and suggest that VCL can benefit from
representative coresets.

5.4 Streaming

Streaming using neural networks has received little attention. To the best of our knowledge,
the replay-based approach to streaming has been tackled by Aljundi et al. (2019b), who
propose to select points in the replay memory that maximize the angles between pairs
of gradients corresponding to the selected points, Hayes et al. (2019), who propose storing
cluster centers per class and merging closest clusters for reduction, and Chrysakis and Moens
(2020), who propose to class-balance reservoir sampling for imbalanced streams. We compare
our method with these methods experimentally.

For evaluating our proposed coreset construction method for training neural networks in
the streaming setting, we modify PMNIST and SMNIST by first concatenating all tasks for
each data set and then streaming them in batches of size 125. We fix the replay memory
size to m = 100 and set the number of slots s = 10—the replay buffer is managed by the
merge-reduce framework (Section 4.2). We train the models for 40 gradient descent steps
using Adam with step size 5 · 10−4 after each batch. We use the same architectures as in
the continual learning experiments.

We compare our coreset selection to reservoir sampling (Vitter, 1985) and the sample
selection methods of Aljundi et al. (2019b) and Hayes et al. (2019). We were unable to

28

Data Summarization via Bilevel Optimization

tune the latter two to outperform reservoir sampling, except the gradient-based selection
method of Aljundi et al. (2019b) on PMNIST, achieving a test accuracy of 74.43 ± 1.02.
Table 5 shows the dominance of our strategy over reservoir sampling. The table also shows
the performance on training only once in the end of the stream on the created coreset,
which alone provides strong performance, confirming the merge-reduce framework’s validity.
We have also experimented with streaming on CIFAR-10 with buffer size m = 200, where
our coreset construction did not outperform reservoir sampling. However, when the task
representation in the stream is imbalanced, our method has significant advantages.

The setup of the streaming experiment favors reservoir sampling, as the data in the
stream from different classes is balanced. We illustrate the benefit of our method in the
more challenging scenario when the class representation is imbalanced. Similarly to Aljundi
et al. (2019b), we create imbalanced streams from SMNIST and SCIFAR-10, by retaining
200 random samples from the first four tasks and 2000 from the last task. In this setup,
reservoir sampling will underrepresent the first tasks. For SMNIST, we set the replay buffer
size to m = 100, while for SCIFAR-10, we use m = 200. We evaluate the test accuracy
on the tasks individually, where we do not undersample the test set. We train the same
CNN as in the continual learning experiments on the two imbalanced streams and set the
number of slots to s = 1. We compare our method to reservoir sampling and class-balancing
reservoir sampling (CBRS) (Chrysakis and Moens, 2020). The results in Table 6 confirm the
flexibility of our framework and show that it is competitive with CBRS, which is specifically
designed for imbalanced streams.

5.5 Batch Active Learning

We evaluate our proposed method focusing on the audio domain, where semi-supervised
batch active learning has not yet been studied to the best of our knowledge. Our first
contribution in this section is showing that semi-supervised strategies proposed in the image
domain are also highly effective in audio keyword recognition tasks. Then, we show our
batch selection strategy significantly outperforms other acquisition strategies on these tasks.
Whereas our strategy is oblivious to the SSL algorithm, we choose MixMatch (Berthelot
et al., 2019) as the semi-supervised learning algorithm due to its simplicity, ease of adaptation
to the audio domain, and strong empirical performance.

For demonstrating the effectiveness of SSL and its combination with active learning in
the audio domain, we focus on the Spoken Digit data set (Jackson, 2016) (2700 utterances, 10
classes) and Speech Commands V2 (Warden, 2018) (85000 utterances, 35 classes) data sets,
both containing utterances of the length of one second or shorter. With the goal of applying
deep neural network architectures from the image domain with minimal adaptations, we map
the utterances to 32× 32 mel spectrograms by first resampling them to 16kHz and applying
the mel feature extraction with of window length of 128 ms, hop length of 32 ms and 32 bins.

We first investigate the advantages of data augmentation and semi-supervised learning.
Our model is a Wide ResNet-28-10 (Zagoruyko and Komodakis, 2016) with weight decay of
10−4 and without dropout, whereas the SSL algorithm is MixMatch with two augmentations
for label guessing and unlabeled cost weight λu = 10, with other hyperparameters are set
to their defaults (Berthelot et al., 2019). As for data augmentation, we apply the following
transformations in order with 0.5 probability: i) amplitude change by a ∼ U(0.8, 1.2),

29

Borsos, Mutný, Tagliasacchi and Krause

Spoken Digit Nr. of Labeled Samples
Method 10 30 60

Supervised w/o augm. 17.33± 3.03 35.17± 9.74 54.56± 5.67
Supervised w augm. 44.06± 6.98 63.33± 5.25 79.17± 3.17

MixMatch 55.78± 11.88 72.67± 10.46 87.83± 3.91

Speech Commands Nr. of Labeled Samples
50 100 200

Supervised w/o augm. 6.30± 0.66 12.03± 2.01 34.20± 0.91
Supervised w augm. 23.26± 2.27 36.94± 1.87 54.34± 1.46

MixMatch 56.19± 3.02 74.52± 5.24 87.94± 2.70

Table 7: Supervised and semi-supervised learning with uniformly chosen labeled subsets of
Spoken Digit (Jackson, 2016) and Speech Commands data set (Warden, 2018).

10 20 30 40 50 60 70

Nr. Labeled Samples

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y

Spoken Digit

Uniform
k-center
Max-entropy
Consistency
BADGE
BiCo

50 75 100 125 150 175 200

Nr. Labeled Samples

60

70

80

90
Te

st
 A

cc
ur

ac
y

Speech Commands

Uniform
k-center
Max-entropy
BADGE
BiCo

Nr. of Labeled Samples
Spoken Digit Speech Commands

Method 40 70 100 200

Uniform 82.06± 5.31 94.83± 2.09 74.52± 5.24 87.94± 2.70
Max-ent. 77.50± 10.23 91.78± 4.40 64.46± 8.44 84.53± 4.34
k-center 89.44± 7.50 93.83± 3.92 66.41± 8.76 80.71± 3.86
Consist. 86.56± 2.33 98.22± 0.96 - -
BADGE 83.67± 7.72 96.44± 1.46 71.28± 4.66 82.66± 2.90
BiCo 95.44± 4.67 99.27± 0.60 87.10± 2.39 90.74± 0.85

Figure 10: Batch active learning with batch size m = 10 under semi-supervised training
with MixMatch (Berthelot et al., 2019). Results averaged over six random seeds, shaded
areas represent one standard deviation. Our method provides a significant advantage with
a small labeled pool.

ii) audio speed change by s ∼ U(0.8, 1.2), iii) random time shifts by t ms, where t ∼
U(−250, 250), iv) mixing in background noise with SNR r dB, where r ∼ U(0, 40); we use
the noise segments from the Speech Commands data set.

30

Data Summarization via Bilevel Optimization

Figure 11: The selected batch of samples for label query by our method (green circles) in
the first round of active learning on Spoken Digit data set, when the model is trained on the
initial pool (red triangles). The digit values denote the true classes, whereas colors denote
predicted classes. The points chosen by our method represent a diverse batch where 6 out
of 10 points are misclassified.

We train the models with Adam with an initial learning rate 10−3 cosine annealed to 0
over 30 epochs. The results in Table 7 demonstrate the superiority of semi-supervised learn-
ing via MixMatch on the chosen keyword recognition tasks. These results are also strong
indicators of the necessity of evaluating batch active learning in the semi-supervised setting.
For this, we compare our proposed method with batch selection strategies compatible with
semi-supervised learning. We note that some batch selection strategies are not applicable to
SSL: prominent examples are Bayesian techniques since the common semi-supervised losses
do not have Bayesian interpretations. To this end, we implement uniform subsampling,
max-entropy selection (predictions averaged over two augmentations), selection based on
the k-center algorithm in the last layer of the trained network (Sener and Savarese, 2018),
the consistency-based batch selection of Gao et al. (2019) (with five augmentations for cal-
culating the variance), and BADGE (Ash et al., 2020), that selects the batch based on the
k-means centers of the last layer gradient embeddings of the hard pseudo-labeled Du.

For our proposed method, we solve the coreset selection problem in Equation (10) with
the CNTK proxy with cross-entropy loss (Section 3.5.2) with 2048-dimensional features and
we add 10−4 L2 penalty to the inner objective, turning it into strongly convex multiclass
logistic regression problem. Furthermore, we use data augmentations for the inner problem:
for each labeled point, we presample 100 augmentations (choosing each randomly from the
four types of MixMatch augmentations) and concatenate them for batch gradient descent.
We perform one-by-one forward selection, with approximate implicit gradients obtained
using 100 steps of conjugate gradients to generate the unweighted coreset.

We compare the methods in the challenging setting of small labeled pools (nlabeled ≤ 200)
and perform the acquisition in batches of size m = 10 starting with 10 and 50 labeled sam-
ples for Spoken Digit and Speech Commands, respectively. The starting labeled pools are
guaranteed to contain at least one sample from each class. In every round of active learning,

31

Borsos, Mutný, Tagliasacchi and Krause

Figure 12: Reconstruction error (mean squared error in Eq. 12) over the dictionary of
signals plotted against the subset size of measurements. The recovery methods L2, L1, and
generative model (GM) are compared with different algorithms to generate the coreset of
measurements for recovery: random, approx-greedy, and bilevel. The size of the dictionary
is 16384, 786, and 786 from left to right.

we retrain the models from scratch until convergence using MixMatch with the four types
of augmentations (amplitude, speedup/slowdown, random shift, and background noise aug-
mentations). We found that retraining from scratch outperformed the warm-started train-
ing (with the model from the previous round) for all acquisition strategies. Consequently,
running the acquisition strategies (including BiCo) have negligible computational costs com-
pared to the training.

The results in Figure 10 show a significant advantage of our method over other acquisition
strategies with only a small number of labeled samples. Especially for Speech Commands,
some acquisition strategies suffer from redundancy in the selected batch and, consequently,
underperform compared to uniform sampling. We were unable to achieve good performance
with the consistency-based acquisition (Gao et al., 2019) on Speech Commands—this phe-
nomenon was also observed by the authors when starting the method with only a few labeled
samples, who refer to it as “cold start failure”. We also evaluated starting the consistency-
based acquisition after a larger number of labeled samples have been acquired by uniform
sampling, but the method did not outperform uniform sampling.

We can gain insight into our proposed method by inspecting the chosen batches of points
in the active learning round. For this, we plot the acquisitions in the first round of active
learning on the Spoken Digit data set in Figure 11, which represents points by their last
layer embeddings (after training the network on the initial pool with 60.33% test accuracy)
mapped to two dimensions by t-SNE (van der Maaten and Hinton, 2011). The points chosen
by our method represent a diverse batch where 6 out of 10 points are misclassified.

5.6 Dictionary Selection for Compressed Sensing

In this section, we showcase our framework for selecting dictionary measurement adaptively
and incrementally on two examples in Figure 12: a synthetic data set containing a set of
random sparse vectors, and the recovery of MNIST digits using a variational autoencoder
(VAE) as the generative model for the images coupled with the reconstruction method of

32

Data Summarization via Bilevel Optimization

Bora et al. (2017). The synthetic data set contains 1024 vectors in 128-dimensional Euclidean
space where the sparsity level is set to 10%, meaning only approximately 12 values are non-
zero per vector. For this data set, the dictionary elements (measurements) are vectors in
128 dimensional space that have normally distributed entries with mean zero and variance
1/128. The MNIST dataset has dimensionality 282 since we consider the images as flattened
vectors of pixels and we select 250 at random for computational efficiency. Note that in
these examples, we create a coreset of the measurements, not of the data points, hence the
measurement set is what we choose to be large. The dimensionality of the measurements is
either in the size of the data or in the dimensionality in the latent space of the variational
autoencoder (VAE). In both data sets, we used λ = 0.01 as in Eq. (12). When constructing
the coreset, we assume that the measurement a>j xi for each element i ∈ D is noiseless since
we are constructing the measurements ourselves and have full control over the process.

The baseline algorithms are randomly sampled measurements with normally distributed
entries where the variance is proportional to the inverse of the dimension, which satisfy
the RIP property with high probability, and approximate-greedy, which is inspired by the
heuristics of Krause and Cevher (2010) to speed up the greedy algorithm by picking the mea-
surements with the largest average inner product between the signal and the measurements.
The classical greedy algorithm is too expensive given the dictionary sizes used here. The dic-
tionary of linear measurements is chosen as a set of random matrices with entries distributed
according to the unit normal distribution, or a wavelets basis (db1 wavelet) for MNIST as
done by Bora et al. (2017), which is a more challenging baseline since not necessarily all
elements are equally sparse. We use the architecture and loss function to train the VAE
as in Kingma and Welling (2014) where we chose the latent vectors to be 20-dimensional.
Overall, the compression ratio significantly improves when using our bilevel method.

5.7 Computational Cost

In this section, we measure the runtime of our method. Recall from Section 3.5.1 that
the computational complexity of our algorithm with binary weights, forward selection in
batches, and Neumann series approximation is O

(
mb−1(tgmg + thmg + ng)

)
.

A single implicit gradient calculation (Equation 3) incurs the cost of calculating ∂g/∂θ
and ∂2f/∂θ∂w> and the cost of the Neumann series approximation. For large models, each
of these operations has to be performed in minibatches, requiring multiple backpropagation
steps. We measure the cost of these operations for WideResNet-16-4 in Table 8, totaling to
two minutes per implicit gradient calculation—for reference, we need 84 implicit gradient
calculations for generating the coreset of size 23500 for CIFAR-10 in Figure 8.

With the proxy reformulation, the number of parameters is reduced to the order of the
dimension of the Nyström features O(q). On the other hand, the proxy reformulation intro-
duces the overhead of calculating the proxy kernel, which might be a significant overhead for
deep neural networks. We measure the time for generating coresets with the CNTK Nyström
proxy with q = 512 from a data set of 1000 points for the small CNN (SCNN) described in
Section 5.3 and for the WideResNet-16-4 from Section 5.2. We calculate the corresponding
NTKs without batch normalization and pooling with the library of Novak et al. (2020) on
a single GeForce GTX 1080 Ti GPU, whereas the coreset selection is performed on a single
CPU. The results are shown in Table 8.

33

Borsos, Mutný, Tagliasacchi and Krause

Op Time

∂g/∂θ 29.4 s
Neumann s. 18.9 s
∂2f/∂θ∂w> 70.8 s

Op SCNN WideResNet-16-4

NTK calc. 5.1 s 40.2 s
Coreset 100 29.8 s 31.0 s
Coreset 400 150.6 s 154.4 s

Table 8: Left: a single implicit gradient calculation step for a WideResNet-16-4 with Neu-
mann series approximation with 100 terms on CIFAR-10. Right: runtimes for generating
coresets out of 1000 points with CNTKs.

Another important consideration is how to solve the inner optimization problem after an
implicit gradient step. In all our applications except for deep neural networks Section 5.2,
we resume the inner optimization after the gradient update with the optimal parameters
found before the update and perform a small number of inner update steps. For deep neural
networks trained with learning rate schedules, we find it beneficial to retrain our models
from scratch after each forward batch selection step. A promising future direction is to
speed up the selection process without a proxy for neural networks by eliminating the need
for retraining from scratch.

6. Discussion and Conclusion

We presented a generic coreset construction framework applicable to any twice differentiable
model without requiring model-specific adaptations. We proposed several variants for scaling
the basic algorithm to large models and data sets. We showed that our method is effective
for various models in various settings, outperforming specialized coreset constructions and
other data summarization methods.

6.1 Limitations

We provide guarantees only for the case where the overall optimization objective G(w) is
convex, showing the nonvacuousness of the bound on the coreset size is an open problem.
Due to the hardness of the cardinality-constrained bilevel optimization problem, our method
is only a heuristic for the non-convex settings. In this paper, we provide empirical evidence
for the effectiveness of the proposed framework.

Except for the binary logistic regression experiments or kernelized linear regression, the
cost of our proposed coreset construction is higher than the cost of training the model on
the full data set. This contrasts with some of the previous coreset constructions’ goals to
speed up the training process. Our method is thus suited for settings with memory or
human resource constraints, as well as when the summary is reused (e.g., in hyperparameter
tuning)—settings for which we demonstrated the effectiveness of our approach empirically
in Section 5.

6.2 Future Work

The flexibility of our framework in accommodating different upper and lower-level objectives
allows for various extensions and applications. While we discussed some in this work, there
are several promising directions, e.g., the framework could be extended to Bayesian inference

34

Data Summarization via Bilevel Optimization

by using objectives from variational inference. Furthermore, the idea of formulating subset
selection as a cardinality-constrained bilevel optimization problem is very general and can
be applied to problems besides coreset construction. Some notable examples include basis
selection for the Nyström approximation, feature selection, and neural network pruning.

Acknowledgments

This research was supported by the SNSF grant 407540_167212 through the NRP 75 Big
Data program, by the European Research Council (ERC) under the European Union’s Hori-
zon 2020 research, innovation programme grant agreement No 815943, and by the Swiss
National Science Foundation through the NCCR Catalysis.

35

Borsos, Mutný, Tagliasacchi and Krause

Appendix A. Connection to Experimental Design

In this section, the weights are assumed to be binary, i.e., w ∈ {0, 1}n. We will use a short-
hand XS for the matrix where only rows of X whose indices are in S ⊂ [n] are selected. This
will be equivalent to selection done via the diagonal matrix D(w), where i ∈ S corresponds
to wi = 1 and zero otherwise. Additionally, let θ̂ be a minimizer of the following loss,

θ̂ = arg min
θ

n∑
i=1

wi(x
>
i θ − yi)2 + λσ2||θ||22 (13)

which has the following closed form,

θ̂S = (X>S XS + λσ2I)−1X>S yS . (14)

Frequentist Experimental Design. Under the assumption that the data follows the
linear model y = Xθ+ε, where ε ∼ N (0, σ2), we can show that the bilevel coreset framework
instantiated with the inner objective (13) and λ = 0, with various choices of outer objectives
is related to frequentist optimal experimental design problems. The following propositions
show how different outer objectives give rise to different experimental design objectives.

Proposition 5 (A-experimental design) Under the linear regression assumptions and

when g(θ̂) = 1
2Eε

[∥∥∥θ − θ̂∥∥∥2

2

]
, with the inner objective is equal to (13) with λ = 0, the

objective simplifies,

G(w) =
σ2

2
Tr((X>D(w)X)−1).

Proof Using the closed form in (14), and model assumptions, we see that θ̂S = θ +
(X>S XS)−1X>S εS . Plugging this into the outer objective,

g(θ̂) =
1

2
Eε

[∥∥∥θ − θ̂S∥∥∥2

2

]
=

1

2
Eε

[∥∥∥(X>S XS)−1X>S εS

∥∥∥2

2

]
=

1

2
Eε
[
Tr
(
ε>SXS(X>S XS)−2X>S εS

)]
=

σ2

2
Tr
(

(X>S XS)−1
)

=
σ2

2
Tr
(

(X>D(w)X)−1
)

where in the third line, we used the cyclic property of trace and, subsequently, the normality
of ε.

Proposition 6 (V-experimental design) Under the linear regression assumptions and

when g(θ̂) = 1
2nEε

[∥∥∥Xθ −Xθ̂∥∥∥2

2

]
and the inner objective is equal to (13) with λ = 0, the

objective simplifies,

G(w) =
σ2

2n
Tr(X(X>D(w)X)−1X>).

36

Data Summarization via Bilevel Optimization

Proof Using the closed form in (14), and model assumptions, we see that θ̂S = θ +
(X>S XS)−1X>S εS . Plugging this in to the outer objective g(θ̂),

G(w) =
1

2n
Eε

[∥∥∥Xθ −Xθ̂S∥∥∥2

2

]
=

1

2n
Eε

[∥∥∥X(X>S XS)−1X>S εS

∥∥∥2

2

]
=

1

2n
Eε
[
Tr
(
ε>SXS(X>S XS)−1X>X(X>S XS)−1X>S εS

)]
=

σ2

2n
Tr
(
X(X>S XS)−1X>

)
=

σ2

2n
Tr
(
X(X>D(w)X)−1X>

)
where in the third line, we used the cyclic property of trace and, subsequently, the normality
of ε.

Infinite data limit. The following proposition links the data summarization objective
and V-experimental design in the infinite data limit n→∞.

Proposition 7 (Infinite data limit) Under the linear regression assumptions y = Xθ+ε,
ε ∼ N (0, σ2I), let gV be

gV (θ̂) =
1

2n
Eε

[∥∥∥Xθ −Xθ̂∥∥∥2

2

]
the V-experimental design outer objective, and let the summarization objective be,

g(θ̂) =
1

2n
Eε

[
n∑
i=1

(x>i θ̂ − yi)2

]
.

For all θ̂S in Eq. (14), we have

lim
n→∞

g(θ̂S)− gV (θ̂S) =
σ2

2
.

Proof Since yi = x>i θ + εi, we have,

g(θ̂S) =
1

2n
Eε

[
n∑
i=1

(x>i θ̂S − x>i θ − εi)2

]

=
1

2n
Eε

[∥∥∥Xθ −Xθ̂S∥∥∥2

2

]
− 1

n
Eε
[
ε>(Xθ̂S −Xθ)

]
+

1

2n
Eε
[
‖ε‖22

]
= gV (θ̂S)− 1

n
Eε
[
ε>(Xθ̂S −Xθ)

]
+
σ2

2

= gV (θ̂S)− 1

n
Eε

[∑
i∈S

εi(x
>
i θ̂S − x>i θ)

]
− 1

n
Eε

 ∑
i∈[n]\S

εi(x
>
i θ̂S − x>i θ)

+
σ2

2

37

Borsos, Mutný, Tagliasacchi and Krause

We have limn→∞
1
nEε

[∑
i∈S εi(x

>
i θ̂S − x>i θ)

]
= 0 since S is a finite set. Since θ̂S is inde-

pendent of εi, i ∈ [n] \ S,

Eε

 ∑
i∈[n]\S

εi(x
>
i θ̂S − x>i θ)

 =
∑

i∈[n]\S

Eε [εi] Eε
[
x>i θ̂S − x>i θ

]
= 0.

As a consequence, as limn→∞ g(θ̂S)− gV (θ̂S) = σ2

2 .

Proposition 7 does not imply that our algorithm performs the same steps with gV instead
of g. It only means that the optimal solutions to the problems converge to selections with
the same quality in the infinite data limit.

Bayesian V-Experimental Design. Bayesian experimental design (Chaloner and Verdinelli,
1995) can be incorporated as well into our framework. In Bayesian modeling, the “true” pa-
rameter θ is not a fixed value, but instead a sample from a prior distribution p(θ) and
hence a random variable. Consequently, upon taking into account the random nature of the
coefficient vector, we can find appropriate inner and outer objectives.

Proposition 8 Under Bayesian linear regression assumptions and where θ ∼ N (0, λ−1I),
let the outer objective

gV (θ̂) =
1

2n
Eε,θ

[∥∥∥Xθ −Xθ̂∥∥∥2

2

]
,

where expectation is over the prior as well. Furthermore, let the inner objective be Eq. (13)
with the same value of λ, then the overall objective simplifies to

G(w) =
1

2n
Tr

(
X

(
1

σ2
X>D(w)X + λI

)−1

X>

)
. (15)

Proof Using the closed form in (14), and model assumptions, we see that θ̂S = (X>S XS +

λσ2I)−1X>S (XSθ + εS). Plugging this in to the outer objective gV (θ̂),

G(w) =
1

2n
Eε,θ

[∥∥∥Xθ −Xθ̂S∥∥∥2

2

]
=

1

2n
Eε,θ

[∥∥∥X((X>S XS + λσ2I)−1X>S (XSθ + εS)− θ)
∥∥∥2

2

]
=

1

2n
Eε,θ

[∥∥∥X(X>S XS + λσ2I)−1X>S εS − σ2λX(X>S XS + λσ2I)−1θ
∥∥∥2

2

]
=

1

2n
Eθ

[∥∥∥λσ2X(X>S XS + λσ2I)−1θ
∥∥∥2

2

]
+

1

2n
Eε

[∥∥∥X(X>S XS + λσ2I)−1X>S εS

∥∥∥2

2

]
=

σ2

2n
Tr
(
λσ2(X>S XS + λσ2I)−1X>X(X>S XS + λσ2I)−1

)
38

Data Summarization via Bilevel Optimization

+
σ2

2n
Tr(XS(X>S XS + λσ2I)−1X>X(X>S XS + λσ2I)−1X>S)

=
σ2

2n
Tr
(

(X>S XS + λσ2I)−1X>X(X>S XS + λσ2I)−1
(
λσ2I +X>S XS

))
=

σ2

2n
Tr
(
X(X>S XS + λσ2I)−1X>

)
=

σ2

2n
Tr
(
X(X>D(w)X + λσ2I)−1X>

)
where we used that Eε[ε] = 0, and the cyclic property of the trace, and the final results

follow by rearranging.

Similarly to the unregularized frequentist experimental design, in the infinite data limit,
even the Bayesian objectives share the same optima. The difference here is that the true
parameter is no longer a fixed value, and we need to integrate it using the prior.

Proposition 9 (identical to Proposition 2) Under the Bayesian linear regression as-
sumptions y = Xθ + ε, ε ∼ N (0, σ2I) and θ ∼ N (0, λ−1), let gV be

gV (θ̂) =
1

2n
Eε,θ

[∥∥∥Xθ −Xθ̂∥∥∥2

2

]
the Bayesian V-experimental design outer objective, and let the summarization objective be,

g(θ̂) =
1

2n
Eε,θ

[
n∑
i=1

(x>i θ̂ − yi)2

]
.

For all θ̂S in Eq. (14), we have

lim
n→∞

g(θ̂S)− gV (θ̂S) =
σ2

2
.

Proof The proof follows similarly as in Proposition 7.

Lemma 10 Assume ‖xi‖2 < L < ∞ for all i ∈ [n] and w ∈ Rn+ s.t. ‖w‖2 < ∞. The
function

G(w) =
1

2n
Tr

(
X

(
1

σ2
X>D(w)X + λI

)−1

X>

)
is convex and smooth in w.

Proof We will show that the Hessian of G(w) is positive semi-definite (PSD) and that the
maximum eigenvalue of the Hessian is bounded, which implies the convexity and smoothness
of G(w) .

39

Borsos, Mutný, Tagliasacchi and Krause

For brevity, we work with Ĝ(w) = Tr
(
X
(
X>D(w)X + λσ2I

)−1
X>
)
where σ2

2nĜ(w) =

G(w). In addition, denote F (w) = X>D(w)X+λσ2I and F+(w) =
(
X>D(w)X + λσ2I

)−1

s.t. F (w)F+(w) = I. First, we would like to calculate ∂Ĝ(w)
∂wi

, for which we will use directional
derivatives:

DvĜ(w) = lim
h→0

Ĝ(w + hv)− Ĝ(w)

h

= Tr
(
X

(
lim
h→0

F+(w + hv)− F+(w)

h

)
X>
)

= Tr
(
X

(
lim
h→0

F+(w + hv) · F (w)− F (w + hv)

h
· F+(w)

)
X>
)

def. of F
= −Tr

(
X

(
lim
h→0

F+(w + hv) · 6 hX
>D(v)X

6 h
· F+(w)

)
X>
)

= −Tr
(
XF+(w)X>D(v)XF+(w)X>

)
To get ∂Ĝ(w)

∂wi
, we should choose as direction vi := (0, . . . , 0, 1, 0, . . . , 0)> where 1 is on the

i-th position. Since X>D(vi)X = xix
>
i , we have that:

∂Ĝ(w)

∂wi
= DviĜ(w) = −Tr

(
XF+(w)xix

>
i F

+(w)X>
)

cyclic prop Tr
= −x>i F+(w)X>XF+(w)xi

We will proceed similarly to get ∂2Ĝ(w)
∂wj∂wi

.

Dv
∂Ĝ(w)

∂wi
= −x>i lim

h→0

F+(w + hv)X>XF+(w + hv)− F+(w)X>XF+(w)

h
xi

= x>i lim
h→0

F+(w + hv) · F (w + hv)F+(w)X>X

h
· F+(w)xi

−x>i lim
h→0

F+(w + hv) · X
>XF+(w + hv)F (w)

h
· F+(w)xi

Now, since,

F (w + hv)F+(w) = (F (w) + hX>D(v)X)F+(w)

= I + hX>D(v)XF+(w)

F+(w + hv)F (w) = F+(w + hv)(F (w + hv)− hX>D(v)X)

= I − hF+(w + hv)X>D(v)X

we have

Dv
∂Ĝ(w)

∂wi
= x>i F

+(w)
(
X>D(v)XF+(w)X>X +X>XF+(w)X>D(v)X

)
F+(w)xi

= 2x>i F
+(w)X>D(v)XF+(w)X>XF+(w)xi

40

Data Summarization via Bilevel Optimization

Choosing vj as our directional derivative, we have:

∂2Ĝ(w)

∂wj∂wi
= Dvj

∂Ĝ(w)

∂wi
= 2

(
x>i F

+(w)xj

)(
x>j F

+(w)X>XF+(w)xi

)
= 2

(
x>j F

+(w)xi

)(
x>j F

+(w)X>XF+(w)xi

)
from which we can see that we can write the Hessian of Ĝ(w) in matrix form as:

∇2
wĜ(w) = 2

(
XF+(w)X>

)
◦
(
XF+(w)X>XF+(w)X>

)
where ◦ denotes the Hadamard product. Since F+(w) is PSD it immediately follows that
XF+(w)X> and XF+(w)X>XF+(w)X> are PSD. Since the Hadamard product of two
PSD matrices is PSD due to the Schur product theorem, it follows that the Hessian ∇2

wĜ(w)
is PSD and thus G(w) is convex.

As for smoothness, we need the largest eigenvalue of the Hessian to be bounded:

λmax(∇2
wĜ(w)) ≤ Tr(∇2

wĜ(w))

= 2

n∑
i=1

(
XF+(w)X>

)
ii

(
XF+(w)X>XF+(w)X>

)
ii

= 2
n∑
i=1

(
x>i F

+(w)xi

)(
x>i F

+(w)X>XF+(w)xi

)
= 2

n∑
i=1

(
x>i F

+(w)xi

)∥∥XF+(w)xi
∥∥2

2

≤ 2
n∑
i=1

λmax(F+(w)) ‖xi‖22
∥∥XF+(w)xi

∥∥2

2

≤ 2
n∑
i=1

λmax(F+(w)) ‖xi‖22 ‖X‖
2
2

∥∥F+(w)
∥∥2

2
‖xi‖22

= 2λ3
max(F+(w)) ‖X‖22

n∑
i=1

‖xi‖42

≤ 2

λ3σ6
‖X‖22

n∑
i=1

‖xi‖42

≤ 2

λ3σ6
‖X‖2F nL

4

≤ 2n2L6

λ3σ6
,

where in the fifth line, we have used the property of the Rayleigh quotient that for any
nonzero vector x and self-adjoint matrix M , we have that x>Mx ≤ λmax(M) ‖x‖22. Thus G
is nL6

λ3σ4 -smooth.

41

Borsos, Mutný, Tagliasacchi and Krause

Appendix B. Connection to Influence Functions

Proof of Proposition 1. Following Koh and Liang (2017) and using the result of Cook
and Weisberg (1982), under twice differentiability and strict convexity of the inner loss, the
empirical influence function at k is

∂θ∗

∂ε>

∣∣∣∣
ε=0

= −

(
∂2
∑n

i=1w
∗
S,i`i(θ

∗)

∂θ∂θ>

)−1

∇θ`k(θ∗). (16)

Using the chain rule for I(k):

I(k) = −
∂
∑n

i=1 `i(θ
∗)

∂ε

∣∣∣∣
ε=0

= −

(
∇θ

n∑
i=1

`i(θ
∗)

)>
∂θ∗

∂ε>

∣∣∣∣
ε=0

Eq. (16)
= ∇θ`k(θ∗)>

(
∂2
∑n

i=1w
∗
S,i`i(θ

∗)

∂θ∂θ>

)−1

∇θ
n∑
i=1

`i(θ
∗).

Hence, argmaxk I(k) and the selection rule in Equation (5) are the same.

Appendix C. Detailed Experimental Setup for Sections 3.5 and 5.2

Variants All variants in Section 3.5 use λ = 10−7 regularizer in the inner problem. The
inner optimization is performed with Adam using a step size of 0.01 as follows: all variants
start with an optimization phase on the initial point set with 5 · 104 iterations; then, after
each step, an additional 104 GD iterations are performed. We note that performing 104 GD
iterations on the entire data set takes 2.3 seconds on a single GeForce GTX 1080 Ti.

Binary Logistic Regression The features of the data sets are standardized to zero mean
and unit variance. The logistic regression is solved using batch Adam with step size 0.01
and L2-penalty of 0.01. For the bilevel coresets, the selection process is started from 10
randomly chosen points and the implicit gradients are calculated through 100 steps of con-
jugate gradients. For the unweighted version, 50 gradient descent steps are performed after
each selection. For the weighted version, we use Adam with step size 0.01 to optimize the
weights over 150 outer iterations in each step.

We consider the following baselines:

• k-means in the feature space, where the chosen subset is the set of centers selected
by k-means++ (Arthur and Vassilvitskii, 2007); we also evaluated k-center, which
performed worse than k-means on all data sets,

• coresets for binary logistic regression via sensitivity (Huggins et al., 2016), where, for
each data set, we choose the best hyperparameter setting from a grid search over
k ∈ {5, 10, 25} and R ∈ {0.1, 1, 10, 100} — we refer to Huggins et al. (2016) for the
details about the hyperparameters k and R.

42

Data Summarization via Bilevel Optimization

Algorithm 3 Streaming BiCo with Merge-reduce Buffer
1: Input: stream S, number of slots s, β
2:
3: procedure select_index([(C1, β1), . . . , (Cs+1, βs+1)])
4: if s == 1 or βs−1 > βs then
5: return s
6: else
7: k = arg mini∈[1,...,s] (βi == βi+1)
8: return k
9: end if

10: end procedure
11:
12: buffer = []
13:
14: for Dt in stream S do
15: Ct = construct_coreset(Dt)
16: buffer.append((Ct, β))
17: if buffer.size > s then
18: k = select_index(buffer)
19: C′ = construct_coreset((Ck, βk), (Ck+1, βk+1))
20: β′ = βk + βk+1

21: delete buffer[k + 1]
22: buffer[k] = (C′, β′)
23: end if
24: end for

• Hilbert coresets (Campbell and Broderick, 2019) solved via Frank-Wolfe (Campbell
and Broderick, 2019) and GIGA (Campbell and Broderick, 2018) with the norm cho-
sen as the weighted Fisher information distance and with random features of 500
dimensions. However, we were unable to tune either of these methods to outperform
uniform sampling on any of the data sets, hence we do not show their performance.

Neural Networks For training the networks, we use weight decay of 5·10−4 and an initial
learning rate of 0.1 cosine-annealed to 0 over 300 · n/m epochs, where n is the full data set
size and m is the subset size. Additionally, we use dropout with a rate of 0.4 for SVHN.
For CIFAR-10, we use the standard data augmentation pipeline of random cropping and
horizontal flipping, whereas we do not use data augmentation for SVHN.

Appendix D. Continual Learning and Streaming

For the continual learning experiments, we compare the following methods:

• Training w/o replay: train after each task without replay memory. Demonstrates how
catastrophic forgetting occurs.

43

Borsos, Mutný, Tagliasacchi and Krause

C1, β C2, β C3, β C4, β C5, β C6, β C7, β

C12, 2β C34, 2β C56, 2β

C1234, 4β

1 2 3 4

4

5

5

6 7

6

7

D1 D2 D3 D4 D5 D6 D7 . . .

Figure 13: Merge-reduce on 7 steps with a buffer with 3 slots. The gray nodes are the ones in
the buffer after the 7 steps, the numbers in the upper left corners represent the construction
time of the corresponding coresets.

• Uniform sampling/per task coreset: the network is only trained on the points in the
replay memory with different selection methods.

• k-means/k-center in feature/embedding/gradient space: the per-task selection retains
points in the replay memory that are generated by k-means++ (Arthur and Vassilvit-
skii, 2007)/greedy k-center algorithm, where the clustering is done either in the original
feature space, in the last layer embedding of the neural network, or in the space of
the gradient with respect to the last layer (after training on the respective task). The
points that are the cluster centers in different spaces are the ones chosen to be saved
in the memory. We note that the k-center summarization in the last layer embedding
space is the coreset method proposed for active learning by Sener and Savarese (2018).

• Hardest/max-entropy samples per task: the saved points have the highest loss after
training on each task/have the highest uncertainty (as measured by the entropy of
the prediction). Such selection strategies are used, among others, by Coleman et al.
(2020) and Aljundi et al. (2019a).

• Training per task with FRCL’s/iCaRL’s selection: the points per task are selected
by FRCL’s inducing point selection (Titsias et al., 2020), where the kernel is chosen
as the linear kernel over the last layer embeddings/iCaRL’s selection (Algorithm 4 in
Rebuffi et al. (2017)) performed in the normalized embedding space.

• Gradient matching per task: same as iCaRL’s selection, but in the space of gradients
with respect to the last layer and jointly over all classes. This is a variant of Hilbert
coreset (Campbell and Broderick, 2019) with equal weights, where the Hilbert space
norm is chosen to be the squared 2-norm difference of loss gradients with respect to
the last layer at the maximum posterior value.

In the continual learning experiments, we train our networks for 400 epochs using Adam
with step size 5 · 10−4 after each task. The loss at each step consists of the loss on a
minibatch of size 256 of the current tasks and loss on the replay memory scaled by β. For
streaming, we train our networks for 40 gradient descent steps using Adam with step size
5 · 10−4 after each batch. For Aljundi et al. (2019b), we use a streaming batch size of 10 for
better performance, as indicated in Section 2.4 of the supplementary materials of Aljundi
et al. (2019b). We tune the replay memory regularization strength β separately for each
method from {0.01, 0.1, 1, 10, 100, 1000} and report the best result on the test set.

44

Data Summarization via Bilevel Optimization

Method/Memory size 50 100 200

CL uniform sampling 85.23± 1.84 92.80± 0.79 95.08± 0.30
CL BiCo 91.61± 0.78 95.81± 0.28 97.01± 0.41

Streaming reservoir sampling 83.90± 3.18 90.72± 0.97 94.12± 0.61
Streaming BiCo 85.32± 2.40 92.51± 1.30 95.50± 0.65

Table 9: Replay memory size study on SMNIST. Our method offers bigger improvements
with smaller memory sizes.

In our experiments, we used the Neural Tangent Kernel as proxy. It turns out that on
the data sets derived from MNIST, simpler kernels such as RBF are also good proxy choices.
To illustrate this, we repeat the continual learning and streaming experiments and report
the results in Table 10. For the RBF kernel k(x, y) = exp(−γ ‖x− y‖22) we set γ = 5 · 10−4.
While the RBF kernel is a good proxy for these data sets, it fails on harder data sets such
as CIFAR-10.

Method PMNIST SMNIST

C
L BiCo CNTK 79.33± 0.51 95.81± 0.28

BiCo RBF 79.95± 0.81 96.09± 0.32

V
C

L BiCo CNTK 86.11± 0.25 84.62± 0.89
BiCo RBF 86.16± 0.25 82.21± 1.35

St
r. BiCo CNTK 74.49± 0.69 92.57± 1.09

BiCo RBF 75.85± 0.65 92.49± 0.71

Table 10: RBF vs CNTK proxies.

References

Pankaj K Agarwal, Sariel Har-Peled, Kasturi R Varadarajan, et al. Geometric approximation
via coresets. Combinatorial and Computational Geometry, 52:1–30, 2005.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
11254–11263. IEEE, 2019a.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample
selection for online continual learning. In Advances in Neural Information Processing
Systems (NeurIPS), pages 11816–11825, 2019b.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong
Wang. On exact computation with an infinitely wide neural net. In Advances in Neural
Information Processing Systems (NeurIPS), pages 8139–8148, 2019.

45

Borsos, Mutný, Tagliasacchi and Krause

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In
ACM-SIAM symposium on Discrete algorithms, pages 1027–1035. Society for Industrial
and Applied Mathematics, 2007.

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agar-
wal. Deep batch active learning by diverse, uncertain gradient lower bounds. In Interna-
tional Conference on Learning Representations (ICLR), 2020.

Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions for
machine learning. arXiv:1703.06476, 2017.

Mihai Badoiu and Kenneth L. Clarkson. Smaller core-sets for balls. In ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 801–802. ACM/SIAM, 2003.

Maria-Florina Balcan, Andrei Broder, and Tong Zhang. Margin based active learning.
In International Conference on Computational Learning Theory (COLT), pages 35–50.
Springer, 2007.

Afonso S Bandeira, Edgar Dobriban, Dustin G Mixon, and William F Sawin. Certifying the
restricted isometry property is hard. IEEE Transactions on Information Theory, 59(6):
3448–3450, 2013.

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and
Colin A Raffel. Mixmatch: A holistic approach to semi-supervised learning. In Advances
in Neural Information Processing Systems (NeurIPS), pages 5049–5059, 2019.

Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing using
generative models. In International Conference on Machine Learning (ICLR), pages 537–
546, 2017.

Zalán Borsos, Mojmir Mutný, and Andreas Krause. Coresets via bilevel optimization for
continual learning and streaming. In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 14879–14890, 2020.

Zalán Borsos, Marco Tagliasacchi, and Andreas Krause. Semi-supervised batch active learn-
ing via bilevel optimization. In ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 3495–3499. IEEE, 2021.

Trevor Campbell and Tamara Broderick. Bayesian coreset construction via greedy iterative
geodesic ascent. In International Conference on Machine Learning, (ICML), pages 697–
705, 2018.

Trevor Campbell and Tamara Broderick. Automated scalable Bayesian inference via Hilbert
coresets. The Journal of Machine Learning Research, 20(1):551–588, 2019.

Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery from
incomplete and inaccurate measurements. Communications on Pure and Applied Mathe-
matics, 59(8):1207–1223, 2006.

46

Data Summarization via Bilevel Optimization

Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: A review. Statis-
tical Science, 10(3):273–304, 1995.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan,
Puneet K Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. Continual learning with
tiny episodic memories. arXiv:1902.10486, 2019.

Bernard Chazelle and Jiři Matoušek. On linear-time deterministic algorithms for optimiza-
tion problems in fixed dimension. Journal of Algorithms, 21(3):579–597, 1996.

Ke Chen. Matrix Preconditioning Techniques and Applications. Cambridge Monographs on
Applied and Computational Mathematics. Cambridge University Press, 2005.

Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from imbalanced
data. In International Conference on Machine Learning (ICML), pages 1952–1961, 2020.

Kenneth L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algo-
rithm. ACM Transactions on Algorithms, 6(4):63:1–63:30, 2010.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis,
Percy Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selec-
tion for deep learning. In International Conference on Learning Representations (ICLR),
2020.

R. Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function
for detecting influential cases in regression. Technometrics, 22(4):495–508, 1980.

R Dennis Cook and Sanford Weisberg. Residuals and influence in regression. New York:
Chapman and Hall, 1982.

David L Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):
1289–1306, 2006.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http:
//archive.ics.uci.edu/ml.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections
onto the L1-ball for learning in high dimensions. In International Conference on Machine
learning (ICML), pages 272–279, 2008.

Sean Ryan Fanello, Carlo Ciliberto, Matteo Santoro, Lorenzo Natale, Giorgio Metta, Lorenzo
Rosasco, and Francesca Odone. icub world: Friendly robots help building good vision
data-sets. In IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 700–705. IEEE, 2013.

Valerii V. Fedorov. Theory of optimal experiments. Probability and mathematical statistics.
Academic Press, New York, NY, USA, 1972.

Dan Feldman. Introduction to core-sets: an updated survey. arXiv:2011.09384, 2020.

47

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Borsos, Mutný, Tagliasacchi and Krause

Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In ACM symposium on Theory of computing - STOC ’11, pages 569–578. ACM,
ACM Press, 2011.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International Conference on Machine Learning (ICML),
pages 1126–1135, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
reverse gradient-based hyperparameter optimization. In International Conference on Ma-
chine Learning (ICML), pages 1165–1173, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In International
Conference on Machine Learning (ICML), pages 1568–1577, 2018.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Re-
search Logistics, 3(1-2):95–110, 1956. ISSN 0028-1441, 1931-9193.

R French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences,
3(4):128–135, 1999. ISSN 1364-6613.

Mingfei Gao, Zizhao Zhang, Guo Yu, Sercan O Arik, Larry S Davis, and Tomas Pfister.
Consistency-based semi-supervised active learning: Towards minimizing labeling cost.
arXiv:1910.07153, 2019.

Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. In International
Conference on Learning Representations (ICLR), 2014.

Yuhong Guo and Dale Schuurmans. Discriminative batch mode active learning. In Advances
in Neural Information Processing Systems (NeurIPS), pages 593–600, 2008.

Sariel Har-peled. Geometric Approximation Algorithms. American Mathematical Society,
USA, 2011.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In ACM symposium on Theory of Computing (STOC), pages 291–300. ACM, ACM Press,
2004.

Tyler L. Hayes, Nathan D. Cahill, and Christopher Kanan. Memory efficient experience re-
play for streaming learning. In 2019 International Conference on Robotics and Automation
(ICRA), 2019.

Steven C.H. Hoi and M.R. Lyu. A semi-supervised active learning framework for image
retrieval. In Computer Vision and Pattern Recognition (CVPR), pages 302–309 vol. 2.
IEEE, 2005.

Steven C.H. Hoi, Rong Jin, Jianke Zhu, and Michael R. Lyu. Batch mode active learning and
its application to medical image classification. In International Conference on Machine
learning (ICML), pages 417–424, 2006.

48

Data Summarization via Bilevel Optimization

Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable bayesian
logistic regression. In Advances in Neural Information Processing Systems (NeurIPS),
pages 4080–4088, 2016.

Zohar Jackson. Free spoken digit dataset, 2016. https://github.com/Jakobovski/
free-spoken-digit-dataset.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In Advances in neural information processing sys-
tems (NeurIPS), pages 8571–8580, 2018.

Ajil Jalal, Sushrut Karmalkar, Alexandros G Dimakis, and Eric Price. Instance-optimal com-
pressed sensing via posterior sampling. In International Conference on Machine Learning
(ICML), 2021.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer.
Glister: Generalization based data subset selection for efficient and robust learning. AAAI
Conference on Artificial Intelligence, 35(9):8110–8118, 2021.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In International
Conference on Learning Representations (ICLR), 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National
Academy of Sciences, 114(13):3521–3526, 2017.

Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse
batch acquisition for deep bayesian active learning. In Advances in Neural Information
Processing Systems (NeurIPS), pages 7026–7037, 2019.

PangWei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In International Conference on Machine Learning (ICML), pages 1885–1894, 2017.

Andreas Krause and Volkan Cevher. Submodular dictionary selection for sparse represen-
tation. In International Conference on Machine Learning (ICML), pages 567–574, 2010.

Michael Langberg and Leonard J. Schulman. Universal ε-approximators for integrals. In
ACM-SIAM Symposium on Discrete Algorithms, pages 598–607. SIAM, Society for Indus-
trial and Applied Mathematics, 2010.

Yan Leng, Xinyan Xu, and Guanghui Qi. Combining active learning and semi-supervised
learning to construct SVM classifier. Knowledge-Based Systems, 44:121–131, 2013.

David D Lewis and William A Gale. A sequential algorithm for training text classifiers. In
SIGIR’94, pages 3–12. Springer, 1994.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-SGD: Learning to learn quickly
for few-shot learning. arXiv:1707.09835, 2017.

49

https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset

Borsos, Mutný, Tagliasacchi and Krause

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture
search. In International Conference on Learning Representations (ICLR), 2019.

Francesco Locatello, Michael Tschannen, Gunnar Rätsch, and Martin Jaggi. Greedy algo-
rithms for cone constrained optimization with convergence guarantees. In Advances in
Neural Information Processing Systems (NeurIPS), pages 773–784, 2017.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learn-
ing. In Advances in Neural Information Processing Systems (NeurIPS), pages 6467–6476,
2017.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparame-
ters by implicit differentiation. In International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 1540–1552, 2020.

Mario Lucic, Matthew Faulkner, Andreas Krause, and Dan Feldman. Training Gaussian
mixture models at scale via coresets. The Journal of Machine Learning Research, 18(1):
5885–5909, 2017.

David J.C. MacKay. Information-based objective functions for active data selection. Neural
Comput., 4(4):590–604, 1992.

Michael W. Mahoney and Petros Drineas. Cur matrix decompositions for improved data
analysis. Proceedings of the National Academy of Sciences, 106(3):697–702, 2009.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of Learning and Motivation, volume 24,
pages 109–165. Elsevier, 1989.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training
of machine learning models. In International Conference on Machine Learning (ICML),
pages 6950–6960, 2020.

Toby J. Mitchell. An algorithm for the construction of "D-Optimal" experimental designs.
Technometrics, 16(2):203, 1974.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. NIPS Workshop on
Deep Learning and Unsupervised Feature Learning 2011, 2011.

Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual
learning. In International Conference on Learning Representations (ICLR), 2018.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-
Dickstein, and Samuel S. Schoenholz. Neural Tangents: Fast and easy infinite neural
networks in Python. In International Conference on Learning Representations (ICLR),
2020.

Barak A Pearlmutter. Fast exact multiplication by the Hessian. Neural computation, 6(1):
147–160, 1994.

50

Data Summarization via Bilevel Optimization

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In Interna-
tional Conference on Machine Learning (ICML), pages 737–746, 2016.

Jeff M. Phillips. Coresets and sketches. arXiv:1601.00617, 2016.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert.
icarl: Incremental classifier and representation learning. In Computer Vision and Pattern
Recognition (CVPR), pages 2001–2010. IEEE, 2017.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv:1606.04671, 2016.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Computer Vision and Pattern
Recognition (CVPR), pages 4510–4520. IEEE, 2018.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-
set approach. In International Conference on Learning Representations (ICLR), 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep
generative replay. In Advances in Neural Information Processing Systems (NeurIPS),
pages 2990–2999, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations (ICLR),
2015.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. In Advances in Neural Information
Processing Systems (NeurIPS), pages 596–608, 2020.

Shuang Song, David Berthelot, and Afshin Rostamizadeh. Combining mixmatch and active
learning for better accuracy with fewer labels. arXiv:1912.00594, 2019.

Javier Tapia, Espen Knoop, Mojmir Mutný, Miguel A. Otaduy, and Moritz Bächer. Make-
sense: Automated sensor design for proprioceptive soft robots. Soft Robotics, 7(3):332–345,
2020.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In Advances in Neural
Information Processing Systems (NeurIPS), 2017.

Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

Michalis K. Titsias, Jonathan Schwarz, Alexander G. de G. Matthews, Razvan Pascanu, and
Yee Whye Teh. Functional regularisation for continual learning with Gaussian processes.
In International Conference on Learning Representations (ICLR), 2020.

51

Borsos, Mutný, Tagliasacchi and Krause

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Ben-
gio, and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural
network learning. In International Conference on Learning Representations (ICLR), 2019.

Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Core vector machines: Fast SVM
training on very large data sets. Journal of Machine Learning Research, 6(13):363–392,
2005.

Murad Tukan, Alaa Maalouf, and Dan Feldman. Coresets for near-convex functions. Ad-
vances in Neural Information Processing Systems (NeurIPS), pages 997–1009, 2020.

Andrew V Uzilov, Joshua M Keegan, and David H Mathews. Detection of non-coding RNAs
on the basis of predicted secondary structure formation free energy change. BMC Bioinf.,
7(1):173, 2006.

Laurens van der Maaten and Geoffrey Hinton. Visualizing non-metric similarities in multiple
maps. Mach Learn, 87(1):33–55, 2011.

L. Vicente, G. Savard, and J. Júdice. Descent approaches for quadratic bilevel programming.
Journal of Optimization Theory and Applications, 81(2):379–399, 1994.

Luis N. Vicente and Paul H. Calamai. Bilevel and multilevel programming: A bibliography
review. Journal of Global Optimization, 5(3):291–306, 1994.

Jeffrey S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software, 11(1):37–57, 1985.

H. von Stackelberg and A. Peacock. The Theory of the market economy. Hodge, 1952.

Tianyang Wang, Jun Huan, and Bo Li. Data dropout: Optimizing training data for con-
volutional neural networks. In 2018 IEEE 30th International Conference on Tools with
Artificial Intelligence (ICTAI), pages 39–46. IEEE, IEEE, 2018.

P. Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition.
arXiv:1804.03209, 2018.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active
learning. In Francis Bach and David Blei, editors, International Conference on Machine
Learning (ICML), pages 1954–1963, 2015.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias
in stochastic meta-optimization. In International Conference on Learning Representations
(ICLR), 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv:1605.07146, 2016.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In International Conference on Machine Learning (ICML), pages 3987–3995,
2017.

52

Data Summarization via Bilevel Optimization

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient
matching. In International Conference on Learning Representations (ICLR), 2021.

Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty. Semi-supervised learning using
gaussian fields and harmonic functions. In International Conference (ICML), pages 912–
919, 2003.

53

	Introduction
	Background and Related Work
	Coresets via Bilevel Optimization
	Problem Setup
	Background on Bilevel Optimization
	Constructing Coresets via Incremental Subset Selection (BiCo)
	Connections and Guarantees
	Connection to Influence Functions
	Connection to Experimental Design
	Theoretical Guarantees

	Practical Bilevel Coreset Construction: Variants
	Binary Weights, IHVP Approximations and Selection in Batches
	Selection via Proxy
	Bilevel Coresets via Regularization

	Extensions and Applications of Bilevel Coresets
	Continual Learning
	Streaming
	Batch Active Learning
	Joint Coresets
	Dictionary Selection for Compressed Sensing

	Experiments
	Practical Variants of Algorithm 1
	Comparison to other Summaries
	Gaussian Mixture Models
	Logistic Regression
	Neural Networks

	Continual Learning
	Streaming
	Batch Active Learning
	Dictionary Selection for Compressed Sensing
	Computational Cost

	Discussion and Conclusion
	Limitations
	Future Work

	Connection to Experimental Design
	Connection to Influence Functions
	Detailed Experimental Setup for Sections 3.5 and 5.2
	Continual Learning and Streaming

