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Abstract
We investigate online convex optimization in non-stationary environments and choose dy-
namic regret as the performance measure, defined as the difference between cumulative loss
incurred by the online algorithm and that of any feasible comparator sequence. Let T be
the time horizon and PT be the path length that essentially reflects the non-stationarity of
environments, the state-of-the-art dynamic regret is O(

√
T (1 + PT )). Although this bound

is proved to be minimax optimal for convex functions, in this paper, we demonstrate that
it is possible to further enhance the guarantee for some easy problem instances, particu-
larly when online functions are smooth. Specifically, we introduce novel online algorithms
that can exploit smoothness and replace the dependence on T in dynamic regret with
problem-dependent quantities: the variation in gradients of loss functions, the cumulative
loss of the comparator sequence, and the minimum of these two terms. These quantities
are at most O(T ) while could be much smaller in benign environments. Therefore, our
results are adaptive to the intrinsic difficulty of the problem, since the bounds are tighter
than existing results for easy problems and meanwhile safeguard the same rate in the worst
case. Notably, our proposed algorithms can achieve favorable dynamic regret with only
one gradient per iteration, sharing the same gradient query complexity as the static regret
minimization methods. To accomplish this, we introduce the collaborative online ensemble
framework. The proposed framework employs a two-layer online ensemble to handle non-
stationarity, and uses optimistic online learning and further introduces crucial correction
terms to enable effective collaboration within the meta-base two layers, thereby attaining
adaptivity. We believe the framework can be useful for broader problems.
Keywords: Online Learning, Online Convex Optimization, Dynamic Regret, Problem-
dependent Bounds, Gradient Variation, Optimistic Online Mirror Descent, Online Ensemble

1. Introduction

In many real-world applications, data are inherently accumulated over time, and thus it is
of great importance to develop a learning system that updates in an online fashion. Online
Convex Optimization (OCO) (Hazan, 2016; Orabona, 2019) is a powerful paradigm for
learning in such scenarios, which can be regarded as an iterative game between a player
and an adversary. At iteration t, the player chooses a decision vector xt from a convex
set X ⊆ Rd. Subsequently, the adversary discloses a convex function ft : X 7→ R, and the
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player incurs a loss denoted by ft(xt). The standard performance measure is the (static)
regret (Zinkevich, 2003),

S-RegretT =
T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x), (1)

which is the difference between cumulative loss incurred by the online algorithm and that
of the best decision in hindsight. The rationale behind such a metric is that the best fixed
decision in hindsight is reasonably good over all the iterations. However, this might be
too optimistic and may not hold in non-stationary environments, where data are evolving
and the optimal decision is drifting over time. To address this limitation, dynamic regret is
proposed to compete with changing comparators u1, . . . ,uT ∈ X ,

D-RegretT (u1, . . . ,uT ) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut), (2)

which draws considerable attention recently (Zhang et al., 2018a; Zhao et al., 2020b; Cutkosky,
2020a; Zhao et al., 2021a; Baby and Wang, 2021; Zhang et al., 2021; Zhao et al., 2022c,
2023). The measure is also called the universal dynamic regret (or general dynamic regret),
in the sense that it gives a universal guarantee that holds against any comparator sequence.
Note that the static regret (1) can be viewed as its special form by choosing comparators
as the fixed best decision in hindsight. Moreover, a variant appeared frequently in the lit-
erature is called the worst-case dynamic regret (Besbes et al., 2015; Jadbabaie et al., 2015;
Mokhtari et al., 2016; Yang et al., 2016; Wei et al., 2016; Zhang et al., 2017; Baby and
Wang, 2019; Yuan and Lamperski, 2020; Zhao et al., 2020a; Zhang et al., 2020a,b; Zhao
and Zhang, 2021), defined as

D-RegretT (x∗1, . . . ,x∗T ) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(x∗t ), (3)

which specializes the general form (2) with comparators ut = x∗t ∈ arg minx∈X ft(x). There-
fore, universal dynamic regret is very general and can include the static regret (1) and the
worst-case dynamic regret (3) as special cases by different instantiations of comparators.
We further remark that the worst-case dynamic regret is often too pessimistic, whereas
the universal one is more adaptive to non-stationary environments. Actually, changes of
online functions usually come from two sources: sampling randomness and environmental
non-stationarity, with the latter being the primary concern in non-stationary online learn-
ing. Optimizing the worst-case dynamic regret can be problematic in certain scenarios. For
instance, consider a stochastic optimization task where ft’s are independently randomly
sampled from the same distribution. Then, minimizing the worst-case dynamic regret is
not suitable and can lead to overfitting (Zhang et al., 2018a), as the minimizer of online
function may significantly deviate from the minimizer of the expected function due to the
sampling randomness. By contrast, since universal dynamic regret can accommodate any
feasible comparator sequence, it can automatically adapt to underlying distribution shifts.

There are many studies on the worst-case dynamic regret (Besbes et al., 2015; Jadbabaie
et al., 2015; Mokhtari et al., 2016; Yang et al., 2016; Zhang et al., 2017, 2018b; Baby and
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Wang, 2019; Zhang et al., 2020b; Zhao and Zhang, 2021), but only few results are known for
the universal dynamic regret. Zinkevich (2003) shows that online gradient descent (OGD)
with a step size η > 0 achieves an O((1 + PT )/η + ηT ) universal dynamic regret, where

PT =
T∑
t=2
‖ut − ut−1‖2 (4)

is the path length of comparators u1, . . . ,uT and thus reflects the non-stationarity of en-
vironments. If the path length PT were known, one could choose the optimal step size
η∗ = Θ(

√
(1 + PT )/T ) and attain an O(

√
T (1 + PT )) dynamic regret. However, this path

length quantity is hard to know since the universal dynamic regret aims to provide guaran-
tees against any feasible comparator sequence. The step size η = Θ(1/

√
T ) commonly used

in static regret would lead to an inferior O(
√
T (1 +PT )) bound, which exhibits a large gap

from the favorable bound with an oracle step size tuning. Zhang et al. (2018a) resolve the
issue by proposing a novel online algorithm to search the optimal step size η∗, attaining an
O(
√
T (1 + PT )) universal dynamic regret, and they also establish an Ω(

√
T (1 + PT )) lower

bound to show the minimax optimality.
Although the rate is minimax optimal for convex functions, we would like to design algo-

rithms with problem-dependent regret guarantees beyond the worst-case analysis (Roughgar-
den, 2021). Specifically, we aim to enhance the guarantee for some easy problem instances,
particularly when the online functions are smooth, by replacing the dependence on T by
certain problem-dependent quantities that are O(T ) in the worst case while could be much
smaller in benign environments. For static regret mininimization, existing studies can attain
such results like small-loss bounds (Srebro et al., 2010) and gradient-variation bounds (Chi-
ang et al., 2012). Thus, a natural question arises whether it is possible to achieve similar
problem-dependent guarantees for universal dynamic regret?

Our results. In this paper, extending our preliminary conference version (Zhao et al.,
2020b), we provide an affirmative answer by designing online algorithms with problem-
dependent dynamic regret bounds. Specifically, we focus on the following two problem-
dependent quantities: the gradient variation of online functions VT , and the cumulative loss
of the comparator sequence FT , defined as

VT =
T∑
t=2

sup
x∈X
‖∇ft(x)−∇ft−1(x)‖22, and FT =

T∑
t=1

ft(ut). (5)

The two problem-dependent quantities are both at most O(T ) under standard assumptions
of online learning, while could be much smaller in easier problem instances. We propose two
novel online algorithms called Sword and Sword++ (“Sword” is short for Smoothness-aware
online learning with dynamic regret) that are suitable for different feedback models. Our
algorithms are online ensemble methods (Zhou, 2012; Zhao, 2021), which admit a two-layer
structure with a meta-algorithm running over a group of base-learners. We prove that
they enjoy an O(

√
(1 + PT + min{VT , FT })(1 + PT )) dynamic regret, achieving gradient-

variation and small-loss bounds simultaneously. Compared to the O(
√
T (1 + PT )) minimax

rate, our result replaces the dependence on T by the problem-dependent quantity PT +
min{VT , FT }. Our bounds become much tighter when the problem is easy, such as when
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both PT and VT (or FT ) exhibit sublinear growth in T . Meanwhile, our regret bounds can
safeguard the same guarantee in the worst case. Hence, our results are adaptive to the
intrinsic difficulty of problem instances as well as the non-stationarity of environments.

Our first algorithm, Sword, achieves the favorable problem-dependent guarantees under
the multi-gradient feedback model, where the player can query gradient information multiple
times at each round. This algorithm is conceptually simple, yet it requires a gradient
query complexity of O(log T ) at each round. Our second algorithm, Sword++, improves
upon this by necessitating only one gradient per iteration, despite using a two-layer online
ensemble structure. Therefore, Sword++ is not only computationally efficient but also
more attractive due to its reduced feedback requirements — it is particularly suitable for
the one-gradient feedback model, in which the player receives only the gradient ∇ft(xt) after
submitting the decision xt. Therefore, Sword++ has the potential to be extended to more
constrained bandit feedback models.

Technical contributions. Note that existing studies have demonstrated that the worst-
case dynamic regret can benefit from smoothness (Yang et al., 2016; Zhang et al., 2017; Zhao
and Zhang, 2021). However, their analyses do not apply to our concerned universal dynamic
regret, because we cannot exploit the optimality condition of comparators u1, . . . ,uT , in
stark contrast with the worst-case dynamic regret analysis. To address this, we propose
an adaptive online ensemble method to hedge non-stationarity while extracting adaptivity.
Our method incorporates a meta-base two-layer ensemble to hedge the non-stationarity and
employs optimistic online learning for adaptive reuse of historical gradient information. Two
crucial novel ingredients are designed to achieve favorable problem-dependent guarantees.

• We introduce optimistic online mirror descent (Optimistic OMD) as a unified build-
ing block for the algorithm design of dynamic regret minimization at both meta and
base levels.1 We present generic and completely modular analysis for the dynamic re-
gret of Optimistic OMD, where the negative term is essential especially for achieving
problem-dependent dynamic regret guarantees.

• We implement an adaptive online ensemble method that combines optimistic online
learning for attaining adaptivity with a meta-base structure to hedge non-stationarity.
A key innovation is the emphasis on collaboration within the online ensemble. In
our collaborative online ensemble framework, we introduce a novel decision-deviation
correction term in algorithm design and simultaneously exploit the negative term in
regret analysis, facilitating effective collaboration within two layers, which is crucial
for achieving desired problem-dependent bounds with only one gradient per iteration.

We emphasize that these ingredients are particularly important for achieving gradient-
variation dynamic regret, which we will demonstrate to be more fundamental than the small-
loss bound. In particular, our proposed Sword++ algorithm effectively utilizes negative
terms and introduces correction terms to ensure effective collaboration within the two layers.

1. For the meta-algorithm, we only care about its static regret, which is essentially a special case of the
universal dynamic regret. When the meta-algorithm implements Hedge-style updates with changing
learning rates, it aligns more with optimistic FTRL (Follow-The-Regularized-Leader) instead of opti-
mistic OMD. However, we prioritize discussing optimistic OMD (hence using a fixed learning rate),
intentionally to better illustrate the core ideas of our regret analysis and algorithm design.
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The overall framework of collaborative online ensemble is summarized in Section 5, and we
believe that the proposed framework has the potential for broader online learning problems.

Organization. The rest is structured as follows. Section 2 briefly reviews related works.
In Section 3, we introduce the problem setup and the optimistic online mirror descent
framework, where a general dynamic regret analysis is provided. Section 4 establishes the
gradient-variation dynamic regret bounds under two different gradient feedback models.
Section 5 illustrates our proposed collaborative online ensemble framework, which is very
general and useful for attaining problem-dependent dynamic regret. Section 6 provides
some additional results regarding implications, significance and a lower bound. The major
proofs are presented in Section 7. Furthermore, Section 8 reports the experiments. Finally,
we conclude the paper in Section 9. Omitted proofs are provided in the appendix.

2. Related Work

In this section, we present a brief overview of both static and dynamic regret minimization
in the context of online convex optimization. Additionally, we provide more discussions on
the subsequent studies after the preprint of our manuscript is publicly available.

2.1 Static Regret

Static regret has been extensively studied in online convex optimization. Let T be the time
horizon and d be the dimension, there exist online algorithms with static regret bounded by
O(
√
T ), O(d log T ), and O(log T ) for convex, exponentially concave, and strongly convex

functions, respectively (Zinkevich, 2003; Hazan et al., 2007). These results are proved to
be minimax optimal (Abernethy et al., 2008). More results can be found in the seminal
books (Shalev-Shwartz, 2012; Hazan, 2016) and references therein.

In addition to exploiting the convexity of functions, there are studies improving static
regret by incorporating smoothness, whose main proposal is to replace the dependence on
T by problem-dependent quantities. Such problem-dependent bounds enjoy many benign
properties, in particular, they can safeguard the worst-case minimax rate yet can be much
tighter in easier problem instances. There are two representative problem-dependent bounds
— small-loss bound (Srebro et al., 2010) and gradient-variation bound (Chiang et al., 2012).

Small-loss bounds are first introduced in the context of prediction with expert ad-
vice (Littlestone and Warmuth, 1994; Freund and Schapire, 1997), which replace the de-
pendence on T by cumulative loss of the best expert. Later, Srebro et al. (2010) show
that in the online convex optimization setting, OGD with a certain step size scheme can
achieve an O(

√
1 + F ∗T ) small-loss regret bound when the online convex functions are

smooth and non-negative, where F ∗T is the cumulative loss of the best decision in hind-
sight, namely, F ∗T = ∑T

t=1 ft(x∗) with x∗ chosen as the offline minimizer. The key tech-
nical ingredient is to exploit the self-bounding property of smooth functions. Gradient-
variation bounds are introduced by Chiang et al. (2012), rooting in the development of
second-order bounds for prediction with expert advice (Cesa-Bianchi et al., 2005) and on-
line convex optimization (Hazan and Kale, 2008). For convex and smooth functions, Chi-
ang et al. (2012) establish an O(

√
1 + VT ) gradient-variation regret bound, where VT =∑T

t=2 supx∈X ‖∇ft(x)−∇ft−1(x)‖22 measures the cumulative gradient variation. Gradient-
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variation bounds are particularly favored in slowly changing environments where online
functions evolve gradually. Furthermore, the techniques developed for gradient-variation
regret bounds have a profound connection to many other learning problems, including re-
peated games (Syrgkanis et al., 2015) and stochastic optimization (Sachs et al., 2022).

In addition, problem-dependent static regret bounds are also studied in the bandit online
learning setting, including gradient-variation bounds for two-point bandit convex optimiza-
tion (Chiang et al., 2013), as well as small-loss bounds for multi-armed bandits (Allenberg
et al., 2006; Wei and Luo, 2018; Lee et al., 2020a), linear bandits (Lee et al., 2020a), semi-
bandits (Neu, 2015), graph bandits (Lykouris et al., 2018; Lee et al., 2020b), and contextual
bandits (Allen-Zhu et al., 2018; Foster and Krishnamurthy, 2021), etc.

Finally, we mention that problem-dependent regret minimization falls under the wider
umbrella of adaptive online convex optimization (McMahan and Streeter, 2010; Duchi et al.,
2010), with more recent explorations discussed in (McMahan, 2017; Joulani et al., 2020;
Cutkosky, 2020b) and the monograph (Orabona, 2019). However, in addition to developing
problem-dependent bounds, this field also covers data-dependent bounds. A caveat is that
these data-dependent bounds (or called “algorithm-dependent bounds”) might be influenced
not only by the complexity of the problem instance but also by the dynamics of the algorithm
itself. This can be sometimes undesired, particularly when the data-dependent quantity is
not appropriated defined, potentially leading to a misleading representation of the learning
problem’s difficulty. For instance, if the regret upper bound depends on a data-dependent
quantity like ∑T

t=2‖∇ft(xt)−∇ft−1(xt−1)‖22 (rather than the problem-dependent quantity∑T
t=2 supx∈X ‖∇ft(x)−∇ft−1(x)‖22), the regret bound becomes affected by the algorithm’s

decision sequence x1, . . . ,xT . This will misleadingly lead to large bounds in scenarios where
the function sequence is constant (f1 = . . . = fT = f) but the decision sequence is unstable.

2.2 Dynamic Regret

Dynamic regret enforces the player to compete with time-varying comparators and thus is
favored in online learning in open and non-stationary environments (Sugiyama and Kawan-
abe, 2012; Zhao et al., 2021b; Zhou, 2022). The notion of dynamic regret is sometimes
referred to as tracking regret/switching regret/shifting regret in the prediction with expert
advice setting (Herbster and Warmuth, 1998, 2001; Bousquet and Warmuth, 2002; Cesa-
Bianchi et al., 2012; György and Szepesvári, 2016). It is known that in the worst case, a
sublinear dynamic regret is not attainable unless imposing certain regularities on the com-
parator sequence or the function sequence (Besbes et al., 2015; Jadbabaie et al., 2015). This
paper focuses on the most common regularity called the path length PT = ∑T

t=2‖ut−1−ut‖2
introduced by Zinkevich (2003), which measures fluctuation of the comparators. We simply
focus on the Euclidean norm throughout this paper, and it is straightforward to extend the
notions and results to general primal-dual norms. Other regularities include the squared
path length ST = ∑T

t=2‖ut−1 − ut‖22 introduced by Zhang et al. (2017), and the function
variation introduced by Besbes et al. (2015) that measures the cumulative variation with
respect to the function value and is defined as V f

T = ∑T
t=2 supx∈X |ft−1(x)− ft(x)|.

There are two kinds of dynamic regret notions in the previous studies. The universal
dynamic regret, as defined in (2), aims to compare with any feasible comparator sequence,
while the worst-case dynamic regret defined in (3) specifies the comparator sequence to
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be the sequence of minimizers of online functions. In the following, we present the related
works respectively. Notice that we will use notations PT and ST for path length and squared
path length of the comparator sequence {ut}t=1,...,T , while adopt the notations P ∗T and S∗T
for that of the sequence {x∗t }t=1,...,T where x∗t is one of minimizers of the online function ft,
namely, P ∗T = ∑T

t=2‖x∗t−1 − x∗t ‖2 and S∗T = ∑T
t=2‖x∗t−1 − x∗t ‖22.

Universal dynamic regret. The pioneering work of Zinkevich (2003) demonstrates that
online gradient descent (OGD) enjoys an O(

√
T (1 + PT )) universal dynamic regret, which

holds against any feasible comparator sequence. Nevertheless, the result is far from the
Ω(
√
T (1 + PT )) lower bound established by Zhang et al. (2018a), who further close the

gap by proposing a novel online algorithm that attains an optimal rate of O(
√
T (1 + PT ))

for convex functions (Zhang et al., 2018a). Our work further exploits the easiness of the
problem instances and achieves problem-dependent regret guarantees, hence better than
the minimax rate. Zhao et al. (2021a) study the universal dynamic regret for bandit con-
vex optimization under both one-point and two-point feedback models. Concurrent to our
conference version paper (Zhao et al., 2020b), Cutkosky (2020a) proposes a novel online
algorithm that achieves the same order of minimax optimal dynamic regret for convex func-
tions as (Zhang et al., 2018a), yet without relying on using a meta-algorithm hedging over a
group of base learners. Instead, their method employs the combination strategy developed
in parameter-free online learning (Cutkosky and Orabona, 2018; Cutkosky, 2019). Note
that it may be possible to modify the algorithm of Cutkosky (2020a) to achieve small-loss
bounds; however, attaining gradient-variation bounds would be generally challenging, es-
pecially under the one-gradient feedback model. More specifically, it is not hard to modify
their framework to incorporate optimistic online learning, but one usually needs to exploit
additional negative terms to convert the optimistic quantity ‖∇ft(xt) − ∇ft−1(xt−1)‖22 to
gradient variation supx∈X ‖∇ft(x) −∇ft−1(x)‖22, to eliminate the difference between deci-
sions xt and xt−1. Our algorithms, based on the collaborative online ensemble framework,
involve a careful exploitation of negative terms in the regret analysis of both meta and
base algorithms, alongside introducing correction terms in the algorithm design. However,
as far as we can see, with only one gradient feedback per round, it is challenging for the
framework of Cutkosky (2020a) to achieve the gradient-variation bound due to the lack of
negative terms in their regret analysis.

Worst-case dynamic regret. There are many efforts devoted to studying the worst-case
dynamic regret. Yang et al. (2016) prove that OGD enjoys an O(

√
T (1 + P ∗T )) worst-case

dynamic regret for convex functions when the path length P ∗T is known. For strongly con-
vex and smooth functions, Mokhtari et al. (2016) show that an O(P ∗T ) dynamic regret is
achievable, and Zhang et al. (2017) further propose the online multiple gradient descent
algorithm with an O(min{P ∗T , S∗T }) guarantee. Yang et al. (2016) show that O(P ∗T ) rate
is attainable for convex and smooth functions, provided that all the minimizers x∗t ’s lie
in the interior of the domain X . The above results mainly use the (squared) path length
as the non-stationarity measure, which measures the cumulative variation of the compara-
tor sequence. In another line of research, researchers use the variation with respect to
the function values as the measure. Besbes et al. (2015) show that OGD with a restart-
ing strategy attains an O(T 2/3V

f1/3
T ) regret for convex functions when the function varia-
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tion V f
T is available, which is improved to O(T 1/3V

f2/3
T ) for 1-dim square loss (Baby and

Wang, 2019). Chen et al. (2019) extend the results of Besbes et al. (2015) to more general
function-variation measures capable of capturing local temporal and spatial changes. To
take advantage of variations in both comparator sequences and function values, Zhao and
Zhang (2021) provide an improved analysis for online multiple gradient descent and prove an
O(min{P ∗T , S∗T , V

f
T }) worst-case dynamic regret for strongly convex and smooth functions.

For convex and smooth functions, it is also demonstrated that a simple greedy strategy,
i.e., xt+1 = x∗t ∈ arg minx∈X ft(x), can effectively optimize the worst-case dynamic regret,
as shown in (Zhao and Zhang, 2021, Section 4.2).

2.3 More Discussions

Subsequent works for dynamic regret minimization. There are many developments
for dynamic regret minimization after our work became publicly available (Zhao et al.,
2021c), and we briefly mention a few here. For exp-concave or strongly convex online func-
tions, optimal dynamic regret can be obtained by algorithms minimizing strongly adaptive
regre (Baby and Wang, 2021, 2022a). Dynamic regret of decision-theoretic online learning
is substantially explored, including online non-stochastic control (Zhao et al., 2022b; Zhang
et al., 2022b; Baby and Wang, 2022b), online MDPs (Fei et al., 2020; Zhao et al., 2022a; Li
et al., 2023b), and online games (Zhang et al., 2022a; Yan et al., 2023; Harris et al., 2022).
Furthermore, related techniques have been applied to online label shift (Bai et al., 2022)
and online covariate shift (Zhang et al., 2023). The efficiency issue regarding the projection
complexity of two-layer online ensemble is considered in (Zhao et al., 2022c).

Subsequent works employing the collaborative online ensemble. A pivotal tech-
nique in our paper is the collaborative online ensemble framework, which effectively facili-
tates the collaboration between meta and base layers by incorporating correction terms in
the algorithm design and exploiting negative terms in the regret analysis. We have found
this collaboration crucial for a variety of problems involving deploying a two-layer struc-
ture. We mention two particular examples raised in the literature after our result became
available, including game theory (Zhang et al., 2022a; Yan et al., 2023) and an intermediate
model for bridging stochastic and adversarial optimization (Chen et al., 2023a,b).

• Zhang et al. (2022a) investigate time-varying zero-sum games, introducing individual
regret, dynamic NE-regret, and duality gap as the joint performance measures to
guide algorithmic design. To handle multiple performance requirements, they deploy
a two-layer algorithm for each player, demonstrating that the overall algorithm enjoys
favorable regret guarantees. A vital component in their algorithm is to facilitate
collaborations between the meta and base layers. This is again achieved by injecting
correction terms in base level and exploiting negative terms in regret analysis, as well
as leveraging the unique structure of the zero-sum games. These results are further
generalized to strongly monotone games (Yan et al., 2023).

• Chen et al. (2023a) investigate the Stochastically Extended Adversarial (SEA) model,
initially proposed in (Sachs et al., 2022), serving as an intermediate model to bridge
stochastic and adversarial convex optimization. They enhance the theoretical guaran-
tees of (Sachs et al., 2022) by a careful analysis using optimistic online mirror descent.
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Furthermore, they generalize the results by considering dynamic regret minimization
for the SEA model, accommodating potential distribution shifts. Consequently, they
implement a two-layer algorithm similar to Sword++, ensuring a favorable regret.
Note that in the SEA model, due to the dependence issue of the random variables,
it is necessary to use the collaborative online ensemble like Sword++. As highlighted
in (Chen et al., 2023b, Remark 10), deploying an algorithm similar to Sword to the
SEA model will fail to yield desired regret bounds, primarily due to the dependence
issue introduced by employing intermediate decisions in the meta-base structure.

3. Problem Setup and Algorithmic Framework

In this section, we first formally state the problem setup, then introduce the foundational
algorithmic framework for dynamic regret minimization, and finally list several assumptions
that might be used in the theoretical analysis.

3.1 Problem Setup

Online Convex Optimization (OCO) can be modeled as an iterated game between the player
and the environments. At iteration t ∈ [T ], the player first chooses the decision xt from
a convex feasible set X ⊆ Rd, then the environments reveal the loss function ft : X 7→ R
and the player suffers the loss ft(xt) and observes a certain information about the function
ft(·).2 According to the revealed information, the online learning problems are typically
classified into full-information online learning and partial-information online learning (or
sometimes called bandit online learning). In this paper, we focus on the full-information
one, which can be further categorized into the following two setups:

(i) multi-gradient feedback: the player can access the entire gradient function ∇ft(·)
and thus can evaluate the gradient multiple times at each round;

(ii) one-gradient feedback: the player can observe the gradient information ∇ft(xt)
after submitting the decision xt at each round.

In Section 4.2, we develop the Sword algorithm, which achieves the gradient-variation dy-
namic regret under the multi-gradient feedback model. In Section 4.3, we present an im-
proved algorithm called Sword++ that can achieve the same dynamic regret guarantee (up
to constants) under the more challenging one-gradient feedback model.

To handle non-stationary environments, we focus on the dynamic regret measure, which
compares the online algorithm to a sequence of time-varying comparators u1, . . . ,uT ∈ X ,
as defined in (2). An upper bound of dynamic regret should be a function of comparators,
and typically the bound depends on some regularities that measure the fluctuation of the
comparator sequence, such as the path length PT = ∑T

t=2‖ut − ut−1‖2. Throughout the
paper, we focus on the Euclidean norm for simplicity, and it is straightforward to extend
our results to general primal-dual norms.

In addition to the regret measure, we further consider the gradient query complexity.
Note that algorithms designed for the multi-gradient feedback model may query the gra-

2. One may also understand this by defining ft over the entire Rd space while constraining the decisions to
the feasible domain X ⊆ Rd.
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dients for multiple times at each round. However, most algorithms designed for the static
regret minimization only require one gradient per iteration, namely, using ∇ft(xt) for the
next update only. Therefore, it is more desirable to achieve the favorable regret guarantees
under the one-gradient feedback model. In other words, our aim is to develop first-order
methods for dynamic regret minimization that require only one gradient query per iteration.

3.2 Optimistic Online Mirror Descent

We employ the algorithmic framework of Optimistic Online Mirror Descent (Optimistic
OMD) (Chiang et al., 2012; Rakhlin and Sridharan, 2013) as a general building block for
designing algorithms for non-stationary online learning. Optimistic OMD is an algorithmic
realization of optimistic online learning. Compared to the standard online learning setup,
the player receives an additional element at each round: an optimistic vector Mt ∈ Rd. This
vector acts as a predictive hint or an optimistic estimate of the upcoming gradient, thereby
called “optimistic vector” or simply “optimism”. Optimistic OMD starts from the initial
point x̂1 ∈ X and performs the following two-step updates at each round:

xt = arg min
x∈X

{
ηt〈Mt,x〉+Dψ(x, x̂t)

}
,

x̂t+1 = arg min
x∈X

{
ηt〈∇ft(xt),x〉+Dψ(x, x̂t)

}
,

(6)

which firstly updates by the optimistic vector Mt and then updates by the received gradient
∇ft(xt). In above, ηt > 0 is a (potentially) time-varying step size, and Dψ(·, ·) denotes the
Bregman divergence associated with the regularizer ψ defined as Dψ(x,y) = ψ(x)−ψ(y)−
〈∇ψ(y),x − y〉. We may assume the regularizer to be σ-strongly convex with respect to
the norm ‖ · ‖, i.e., ψ(y) ≥ ψ(x) + 〈∇ψ(x),y− x〉+ σ

2 ‖y− x‖2 holds for any x,y ∈ X . We
have the following general result regarding dynamic regret of optimistic OMD.

Theorem 1. Suppose that the regularizer ψ : X 7→ R is 1-strongly convex with respect to
the norm ‖ · ‖, and let ‖ · ‖∗ be the dual norm of ‖ · ‖. The dynamic regret of Optimistic
OMD whose update rule is specified in (6) is bounded as follows:

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤
T∑
t=1

ηt‖∇ft(xt)−Mt‖2∗ +
T∑
t=1

1
ηt

(
Dψ(ut, x̂t)−Dψ(ut, x̂t+1)

)

−
T∑
t=1

1
ηt

(
Dψ(x̂t+1,xt) +Dψ(xt, x̂t)

)
,

(7)

which holds for any comparator sequence u1, . . . ,uT ∈ X .

Remark 1. The dynamic regret upper bound in Theorem 1 consists of three terms:

(i) the first term ∑T
t=1 ηt‖∇ft(xt)−Mt‖2∗ is the adaptivity term that measures the devi-

ation between the gradient and optimistic vector;

(ii) the second term can be restructured as ∑T
t=2

( 1
ηt
Dψ(ut, x̂t)− 1

ηt−1
Dψ(ut−1, x̂t)

)
, hence

reflecting the non-stationarity of environments;
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(iii) the last one −∑T
t=1

1
ηt

(
Dψ(x̂t+1,xt) +Dψ(xt, x̂t)

)
is the negative term, which can be

greatly useful for problem-dependent bounds, particularly the gradient-variation one.

Moreover, we emphasize that the above regret guarantee is very general due to the flex-
ibility in choosing the regularizer ψ and comparators u1, . . . ,uT as well as the setting of
optimistic vectors M1, . . . ,MT . For example, by choosing the negative-entropy regularizer
and competing with the best fixed prediction, the result recovers the static regret bound
of Optimistic Hedge (Syrgkanis et al., 2015); by choosing the Euclidean regularizer and
setting the optimistic vectors as all zero vectors as well as competing with time-varying
compactors, it recovers the dynamic regret bound of Online Gradient Descent (Zinkevich,
2003). The versatility of this optimistic OMD framework motivates us to use it as a unified
building block for both algorithm design and theoretical analysis. ¶

3.3 Assumptions

In this part, we list several common assumptions that might be used in the theorems.

Assumption 1. The norm of the gradients of online functions over the domain X is
bounded by G, i.e., ‖∇ft(x)‖2 ≤ G, for all x ∈ X and t ∈ [T ].

Assumption 2. The domain X ⊆ Rd contains the origin 0, and the diameter of the domain
X is at most D, i.e., ‖x− x′‖2 ≤ D for any x,x′ ∈ X .

Assumption 3. All the online functions are L-smooth, i.e., ‖∇ft(x)−∇ft(x′)‖2 ≤ L‖x−
x′‖2 for any x,x′ ∈ Rd and t ∈ [T ].

Assumption 4. All the online functions are non-negative over Rd.

We have the following remarks regarding the assumptions. The general dynamic regret
analysis of Optimistic OMD (Theorem 1) does not require the smoothness assumption.
Nevertheless, this assumption is crucial for achieving problem-dependent dynamic regret
bounds. In fact, smoothness has been demonstrated to be essential even in the static
regret analysis for first-order methods to achieve gradient-variation bounds, as evidenced
in Lemma 9 of Chiang et al. (2012) and Theorem 1 of Yang et al. (2014). Therefore,
throughout the paper we focus on the problem-dependent dynamic regret of convex and
smooth functions. Note that Assumption 4 requires non-negativity outside the domain X ,
which is a precondition for establishing the self-bounding property for smooth functions,
see Lemma 3.1 of Srebro et al. (2010) and Lemma 13.2 of Cutkosky (2023).

Finally, we mention that following previous studies (Adamskiy et al., 2012; Luo and
Schapire, 2015), we treat double logarithmic factors in T as a constant. More concretely,
our usage of the O(·)-notation emphasizes the dependence on the time horizon T while
hiding the log log T factors, and also highlights the dependence on path length PT , as well
as the problem-dependent gradient-variation quantity VT and small-loss quantity FT .

4. Gradient-Variation Dynamic Regret

Our paper aims to develop online algorithms that can simultaneously achieve problem-
dependent dynamic regret bounds, scaling with two quantities: the gradient-variation term
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VT and the small-loss term FT , as defined in (5). As we will demonstrate in the next section,
the gradient-variation bound is more fundamental than the small-loss bound. Consequently,
we start by focusing on the gradient-variation dynamic regret in this section. In Section 6,
we will then present the small-loss bound and the best-of-both-worlds bound (i.e., achieving
gradient-variation and small-loss bounds simultaneously) as direct implications.

4.1 A Gentle Start

In the study of static regret, Chiang et al. (2012) propose the online extra-gradient descent
(OEGD) algorithm and prove that the algorithm enjoys gradient-variation static regret.
Specifically, OEGD starts from x̂1 ∈ X and then updates by

xt = ΠX [x̂t − η∇ft−1(xt−1)] , x̂t+1 = ΠX [x̂t − η∇ft(xt)] , (8)

where we define f0(x0) = 0 and ΠX [·] the Euclidean projection onto the nearest point in X .
We consider a fixed step size η > 0 for simplicity. For convex and smooth functions, Chiang
et al. (2012) prove that OEGD enjoys an O(

√
1 + VT ) gradient-variation static regret.

Actually, OEGD can be viewed as a specialization of Optimistic OMD (6) presented
in Section 3.2, by choosing the regularizer ψ(x) = 1

2‖x‖
2
2 and the optimistic vector Mt =

∇ft−1(xt−1) as well as a fixed step size η > 0. Therefore, Theorem 1 directly implies the
following dynamic regret upper bound for OEGD, with proof in Appendix A.

Lemma 1. Under Assumptions 1, 2, and 3, by choosing η ≤ 1
4L , dynamic regret of OEGD

(namely, Optimistic OMD with ψ(x) = 1
2‖x‖

2
2 and Mt = ∇ft−1(xt−1)) satisfies

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ η(G2 + 2VT ) + 1
2η (D2 + 2DPT ) (9)

for any comparator sequence u1, . . . ,uT ∈ X .

Lemma 1 immediately implies a static regret bound. By choosing comparators as
the best decision in hindsight u1 = . . . = uT ∈ arg minx∈X

∑T
t=1 ft(x), we have PT = 0

and thereby obtain the existing result (Chiang et al., 2012, Theorem 11): ∑T
t=1 ft(xt) −

minx∈X
∑T
t=1 ft(x) ≤ η(G2 + 2VT ) + D2

2η = O(
√

1 + VT ) when setting the step size η =
min{

√
D2/(G2 + 2VT ), 1/(4L)}. Note that the requirement of VT in tuning can be removed

by doubling trick (Cesa-Bianchi et al., 1997) or self-confident tuning (Auer et al., 2002).
However, it is more complicated when competing with a sequence of time-varying com-

parators. Lemma 1 suggests that it is crucial to tune the step size to balance non-stationarity
(path length PT ) and adaptivity (gradient-variation VT ) for achieving a tight dynamic re-
gret bound. Ideally, the optimal tuning is η∗ =

√
(D2 + 2DPT )/(2G2 + 2VT ), but this

requires the prior information of PT and VT that are generally unavailable. We note that
VT is empirically observable in the sense that at round t ∈ [T ] one can observe its internal
estimate Vt = ∑t

s=2 supx∈X ‖∇fs(x) − ∇fs−1(x)‖22. By contrast, PT = ∑T
t=2‖ut − ut−1‖2

cannot be known or approximated during the learning process. The ideal best compara-
tor sequence, which tightens the upper bound of cumulative loss, satisfies the condition∑T
t=1 ft(xt) ≤ minu1,...,uT {

∑T
t=1 ft(ut) + RT (PT , VT )}, where RT (PT , VT ) denotes the dy-

namic regret upper bound. Universal dynamic regret does not specifically target this optimal
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comparator sequence but aims to adapt to all feasible comparators, making the choice of
u1, . . . ,uT arbitrarily and entirely unknown within the feasible domain.

In summary, while the self-confident tuning can be used to remove the dependence on
the unknown gradient variation VT , it cannot address the unknown path length PT . In
fact, this is the fundamental problem of non-stationary online learning — how to deal with
uncertainty due to unknown environmental non-stationarity, captured by path length of
comparators in dynamic regret minimization.

To simultaneously handle the uncertainty arising from adaptivity and non-stationarity,
in addition to using optimistic online learning to reuse the historical gradients, we design an
adaptive online ensemble method (Zhou, 2012) that can hedge the non-stationarity while
extracting the adaptivity. Our approach deploys a two-layer meta-base structure, in which
multiple base-learners are maintained simultaneously and a meta-algorithm is used to track
the best one. More concretely, inspired by the recent advance in learning with multiple
learning rates (van Erven and Koolen, 2016; van Erven et al., 2021), we first construct a
pool of candidate step sizes to discretize possible range of the optimal step size, and then
initialize multiple base-learners denoted by B1, . . . ,BN . Each base-learner Bi returns her
own prediction xt,i by running the base-algorithm with a step size ηi from the pool. Finally,
those predictions from base-learners are combined by a meta-algorithm to produce the final
output xt = ∑N

i=1 pt,ixt,i, where pt ∈ ∆N is the weight from the meta-algorithm.
Due to the meta-base structure of the above procedures, we can naturally decompose

dynamic regret into the following two parts:

D-RegretT =
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) =
T∑
t=1

ft(xt)− ft(xt,i)︸ ︷︷ ︸
meta-regret

+
T∑
t=1

ft(xt,i)− ft(ut)︸ ︷︷ ︸
base-regret

, (10)

where {xt}t=1,...,T denotes the final output sequence, and {xt,i}t=1,...,T is the prediction
sequence of base-learner Bi. Notably, the decomposition holds for any base-learner’s index
i ∈ [N ]. The first part is the difference between cumulative loss of the final output sequence
and that of the prediction sequence of base-learner Bi, which is introduced by the meta-
algorithm and thus named as meta-regret; the second part is the dynamic regret of base-
learner Bi and therefore called base-regret. As a result, we need to make the meta-regret
and base-regret scaling with VT to achieve the desired gradient-variation dynamic regret.

In the following, we present two solutions. The first solution, developed in our conference
paper (Zhao et al., 2020b), is conceptually simpler but requires N = O(log T ) gradient
queries at each round, making it suitable only for the multi-gradient feedback model. The
second solution is an improved algorithm based on a refined analysis of the problem’s
structure, which attains the same dynamic regret guarantee with only one gradient per
iteration and hence suits for the more challenging one-gradient feedback model. Recall that
the definitions of the multi/one-gradient feedback models are presented in Section 3.1.

4.2 Multi-Gradient Feedback: Sword

Our approach, Sword, implements a meta-base online ensemble structure, in which multiple
base-learners are initiated simultaneously (denoted by B1, . . . ,BN ) and the intermediate
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predictions of all the base-learners are combined by a meta-algorithm to produce the final
output. Below, we describe the specific settings of the base-algorithm and meta-algorithm.

For the base-algorithm, we simply employ the OEGD algorithm (Chiang et al., 2012),
where the base-learner Bi shall update her local decision {xt,i}t=1,...,T by

xt,i = ΠX [x̂t,i − ηi∇ft−1(xt−1,i)] , x̂t+1,i = ΠX [x̂t,i − ηi∇ft(xt,i)] , (11)

where ηi > 0 is the associated step size from the step size pool H = {η1, . . . , ηN} and
the number of base-learner is chosen as N = O(log T ). Lemma 1 ensures an upper
bound of base-regret scaling with the gradient variation, i.e., ∑T

t=1 ft(xt,i)−
∑T
t=1 ft(ut) ≤

O(ηi(1 +VT ) +PT /ηi), whenever the step size satisfies ηi ≤ 1/(4L). The caveat is that each
base-learner requires her own gradient direction for the update, so we need the gradient
information of {∇ft(xt,i)}i=1,...,N at round t ∈ [T ]. Notably, the gradient query complexity
is N = O(log T ) per round, which means the method developed in this part only suits
for the multi-gradient feedback model. In Section 4.3, we will further design an improved
algorithm applicable for the one-gradient feedback model.

The main difficulty lies in the design and analysis of an appropriate meta-algorithm. In
order to be compatible to the gradient-variation base-regret, the meta-algorithm is required
to incur a problem-dependent meta-regret of order O(

√
VT logN). However, the meta-

algorithms used in existing studies (van Erven and Koolen, 2016; Zhang et al., 2018a)
cannot satisfy the requirements. For example, the vanilla Hedge suffers an O(

√
T logN)

meta-regret, which is problem-independent and thus not suitable for us. To this end, we
introduce the optimistic Hedge (Syrgkanis et al., 2015) by exploiting the optimistic online
learning, and further design a carefully designed optimism specifically for our problem.

Consider the problem of prediction with expert advice. At the beginning of iteration
(t+1), in addition to the loss vector `t ∈ RN returned by the experts, the player can receive
an optimism mt+1 ∈ RN . Optimistic Hedge updates the weight vector pt+1 ∈ ∆N by

pt+1,i ∝ exp
(
−ε
( t∑
s=1

`s,i +mt+1,i
))

, ∀i ∈ [N ]. (12)

Here, ε > 0 is the learning rate of the meta-algorithm and we consider a fixed learning rate
for simplicity.3 The optimism mt+1 ∈ RN can be interpreted as an optimistic guess of the
loss of round (t + 1), and we thus incorporate it into the cumulative loss for update. It is
well known that Optimistic Hedge can be regarded as an instance of Optimistic OMD with
the negative-entropy regularizer, as mentioned in Remark 1. Therefore, the general result
of Theorem 1 implies the following static regret bound of Optimistic Hedge, and the proof
can be found in Appendix A. Notably, the negative term shown in (13) will be of great
importance in the algorithm design and regret analysis.

Lemma 2. The regret of Optimistic Hedge with a fixed learning rate ε > 0 to any expert
i ∈ [N ] is at most

T∑
t=1
〈pt, `t〉 −

T∑
t=1

`t,i ≤ ε
T∑
t=1
‖`t −mt‖2∞ + lnN

ε
− 1

4ε

T∑
t=2
‖pt − pt−1‖21. (13)

3. We adopt the terminology “learning rate” for the meta-algorithm of our approach following the convention
in the prediction with expert advice, and use “step size” for the general online convex optimization.
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Algorithm 1 Sword: meta-algorithm
Input: step size pool H; learning rate ε
1: Initialization: ∀i ∈ [N ], p0,i = 1/N
2: for t = 1 to T do
3: Receive xt+1,i from base-learner Bi
4: Update weight pt+1,i by (16)
5: Predict xt+1 = ∑N

i=1 pt+1,ixt+1,i
6: end for

Algorithm 2 Sword: base-algorithm
Input: step size ηi ∈ H
1: Let x̂1,i,x1,i be any point in X
2: for t = 1 to T do
3: x̂t+1,i = ΠX

[
x̂t,i − ηi∇ft(xt,i)

]
4: xt+1,i = ΠX

[
x̂t+1,i − ηi∇ft(xt,i)

]
5: Send xt+1,i to the meta-algorithm
6: end for

Let DT = ∑T
t=1‖`t −mt‖2∞ measure the deviation between optimism and gradient. With a

proper learning rate tuning scheme, Optimistic Hedge enjoys an O(
√
DT logN) meta-regret.

The framework of optimistic online learning is very powerful for designing adaptive
methods, in that the adaptivity quantity DT = ∑T

t=1‖`t −mt‖2∞ is very general and can
be specialized flexibly with different configurations of feedback loss `t and optimism mt.
To achieve the desired gradient-variation dynamic regret, we need to investigate the online
ensemble structure carefully. To this end, we specialize Optimistic Hedge in the following
way to make the meta-regret compatible with the desired gradient-variation quantity.

• The feedback loss `t ∈ RN is set as the linearized surrogate loss:

`t,i = 〈∇ft(xt),xt,i〉, ∀t ∈ [T ] and ∀i ∈ [N ]. (14)

• The optimism mt ∈ RN is set with a careful design: m1 = 0 and

mt,i = 〈∇ft−1(x̄t),xt,i〉, ∀t ∈ [T ] and ∀i ∈ [N ], where x̄t =
N∑
i=1

pt−1,ixt,i. (15)

We will explain the motivation of such designs in Remark 2. Note that this optimism
is legitimate as the instrumental variable x̄t only uses the information of pt−1 and local
decisions {xt,i}i=1,...,N at time t. The meta-algorithm updates the weight pt+1 ∈ RN by

pt+1,i ∝ exp
(
−ε
( t∑
s=1
〈∇fs(xs),xs,i〉+ 〈∇ft(x̄t+1),xt+1,i〉

))
, ∀i ∈ [N ]. (16)

Algorithm 1 summarizes detailed procedures of the meta-algorithm, which in conjunction
with the base-algorithm of Algorithm 2 yields the Sword algorithm. We also discuss the
gradient query complexity of the overall algorithm. In each round t ∈ [T ], at the base level,
the algorithm computes the gradient information ∇ft(xt,i) for all i ∈ [N ]. At the meta
level, it additionally requires the gradients ∇ft(xt) and ∇ft(x̄t+1). Consequently, the total
gradient query complexity per round is N + 2 = O(log T ).

Remark 2 (design of optimism). The design of optimism in (15), particularly the con-
struction of the instrumental variable x̄t, is crucial and is the most challenging part in this
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method. Our design carefully leverages the structure of two-layer online ensemble methods,
specifically, the goal of designing optimism is to approximate the current gradient ∇ft(xt)
(which is unknown) via the available knowledge till round t. We propose to use ∇ft−1(x̄t)
as the approximation, and the difference of online functions delivers the gradient-variation
term supx∈X ‖ft(x)−ft−1(x)‖22, while the difference between xt and x̄t can be upper bounded
by the decision variation of the meta-algorithm,

‖xt − x̄t‖22 =
∥∥∥∥∥
N∑
i=1

(pt,i − pt−1,i)xt,i
∥∥∥∥∥

2

2
≤
( N∑
i=1
|pt,i − pt−1,i|‖xt,i‖2

)2
≤ D2‖pt − pt−1‖21, (17)

which can be eliminated by the negative term in the regret bound of Optimistic Hedge as
shown in (13), providing with a suitable setting for the learning rate of the meta-algorithm.
As such, the adaptivity quantity DT can be converted to the desired gradient variation VT
plus the decision variation of the meta-algorithm, concretely,

‖`t −mt‖2∞
(15)= maxi∈[N ]〈∇ft(xt)−∇ft−1(x̄t),xt,i〉2

≤ D2‖∇ft(xt)−∇ft−1(x̄t)‖22
≤ 2D2(‖∇ft(xt)−∇ft−1(xt)‖22 + ‖∇ft−1(xt)−∇ft−1(x̄t)‖22)
≤ 2D2 supx∈X ‖∇ft(x)−∇ft−1(x)‖22 + 2D2L2‖xt − x̄t‖22
≤ 2D2 supx∈X ‖∇ft(x)−∇ft−1(x)‖22 + 2D4L2‖pt − pt−1‖21,

(18)

where the derivation makes use of the boundedness of the feasible domain, triangle inequal-
ity, and the smoothness of online functions. The last term will be canceled by the negative
term in the meta-regret, then we obtain the desired gradient-variation regret guarantee. ¶

The following theorem shows that the meta-regret is at most O(
√

(1 + VT ) logN), which
is nicely compatible to the attained base-regret. The proof can be found in Section 7.2.

Theorem 2. Under Assumptions 1, 2, and 3, by setting the learning rate of the meta-
algorithm (16) optimally as ε = min{1/(4D2L),

√
(lnN)/(2D2(G2 + VT ))}, the meta-regret

of Sword (Algorithm 1) is at most

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) ≤ 2D
√

2(G2 + VT ) lnN + 8D2L lnN = O
(√

(1 + VT ) logN
)
.

Note that the optimal learning rate tuning of the meta-algorithm requires the knowl-
edge of gradient variation VT = ∑T

t=2 supx∈X ‖∇ft(x)−∇ft−1(x)‖22. The undesired demand
can be removed by the self-confident tuning method (Auer et al., 2002), which employs a
time-varying learning rate scheme for the meta-algorithm’s update based on internal esti-
mates, roughly, pt+1,i ∝ exp

(
− εt(

∑t
s=1 `s,i + mt+1,i)

)
,∀i ∈ [N ] with εt = O(1/

√
1 + Vt)

with an internal estimate Vt = ∑t
s=2 supx∈X ‖∇fs(x) − ∇fs−1(x)‖22. Besides, notice that

this Vt is actually not easy to calculate due to the computation of instantaneous varia-
tion supx∈X ‖∇ft(x)−∇ft−1(x)‖22, which is the difference of convex functions programming
and is not easy to solve even with the explicit form of functions ft and ft−1. Fortunately,
we can use an alternative twisted quantity V̄T = ∑T

t=2‖∇ft(xt) − ∇ft−1(xt−1)‖22 for the
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learning rate configuration and also achieve the same regret bound via a refined analysis.
Then, it suffices to perform the self-confident tuning over V̄T by monitoring the correspond-
ing internal estimate V̄t = ∑t

s=2‖∇fs(xs) − ∇fs−1(xs−1)‖22, which avoids the burdensome
calculations of inner optimization problems and thereby significantly streamlines the com-
putational efforts paid for the adaptive learning rate tuning. A caveat of this Optimistic
Hedge update when implemented time-varying learning rates is that it essentially is a spe-
cial case of Optimistic FTRL rather than Optimistic OMD. For a more thorough technical
discussion, see Remark 9 in Appendix B.

So far, the obtained base-regret bound (Lemma 1) and meta-regret bound (Theorem 2)
are both adaptive to the gradient variation, and we can simply combine them to achieve
the final gradient-variation dynamic regret as stated in Theorem 3, providing with an ap-
propriate candidate step size pool. The proof is provided in Section 7.3.

Theorem 3. Under Assumptions 1, 2, and 3, set the pool of candidate step sizes H as

H =

ηi = min
{ 1

4L, 2
i−1

√
D2

8G2T

}
| i ∈ [N ]

 , (19)

where N = d2−1 log2(G2T/(2D2L2))e + 1 is the number of candidate step sizes; and set
the learning rate of the meta-algorithm as ε = min{1/(4D2L),

√
(lnN)/(2D2(G2 + VT ))}.

Then, Sword enjoys the following dynamic regret against any comparators u1, . . . ,uT ∈ X ,

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ O
(√

(1 + PT + VT )(1 + PT )
)
.

Remark 3. Compared with the existing O(
√
T (1 + PT )) dynamic regret (Zhang et al.,

2018a), our result is more adaptive in the sense that it replaces T by the problem-dependent
quantity PT +VT . Therefore, the bound will be much tighter in easy problems, for example
when both VT and PT are o(T ). Meanwhile, it safeguards the same minimax rate, since
both quantities are at most O(T ). Furthermore, because the universal dynamic regret
studied in this paper holds against any comparator sequence, it specializes the static regret
by setting all comparators as the best fixed decision in hindsight, i.e., u1 = . . . = uT = x∗ ∈
arg minx∈X

∑T
t=1 ft(x). Under such a circumstance, the path length PT = ∑T

t=2‖ut−1−ut‖2
becomes zero, so the regret bound in Theorem 3 implies an O(

√
1 + VT ) gradient-variation

static regret bound, recovering the result of Chiang et al. (2012). ¶

4.3 One-Gradient Feedback: Sword++

So far, we have designed an online algorithm (Sword) with the gradient-variation dynamic
regret. While it achieves a favorable regret guarantee, one caveat is that Sword runs
N = O(log T ) base-learners simultaneously and each base-learner requires her own gra-
dient direction for the update. Consequently, the overall algorithm necessitates O(log T )
gradient queries at each iteration, making it time-consuming and only applicable to the
multi-gradient feedback model. In contrast, algorithms designed for static regret minimiza-
tion typically work well under the more challenging one-gradient feedback model, namely,
they only require the gradient information ∇ft(xt) for updates. Given this, it is natural
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to ask whether it is possible to design online algorithms that can achieve the same dy-
namic regret guarantee as Sword using only one gradient query per iteration, making them
applicable to the one-gradient feedback online learning.

We resolve the question affirmatively. The new algorithm, called Sword++, also im-
plements an online ensemble structure. Compared to Sword presented in Section 4.2, the
key novel ingredient is the framework of collaborative online ensemble. We carefully in-
troduce correction terms to the online loss and optimism, forming a biased surrogate loss
and a surrogate optimism, which are then fed to the meta-algorithm. By further exploit-
ing the negative terms in the meta and base levels, the overall algorithm ensures effective
collaboration within the meta and base two layers, thereby achieving the favorable gradient-
variation dynamic regret with only one gradient query per iteration.

In the following, we describe the details of Sword++. The algorithm maintains multiple
base-learners denoted by B1, . . . ,BN , which are performed with different step sizes and
then combined by a meta-algorithm to track the best one. An exponential step size grid is
adopted as the schedule, denoted by H = {ηi = c · 2i | i ∈ [N ]} with N = O(log T ) for some
constant c > 0 (usually scaling with poly(1/T )), whose specific setting will be given later.

Base-algorithm. Instead of performing updates over the original loss ft as shown in (11),
all the base-learners of Sword++ update over the linearized surrogate loss gt : X 7→ R
defined gt(x) = 〈∇ft(xt),x〉, and moreover, the optimism is chosen as Mt = ∇gt−1(xt−1,i)
for each base-learner Bi with i ∈ [N ]. By definition, we have ∇gt(xt,i) = ∇ft(xt), so each
base-learner Bi essentially performs the following update at each iteration:

xt,i = ΠX [x̂t,i − ηi∇ft−1(xt−1)] , x̂t+1,i = ΠX [x̂t,i − ηi∇ft(xt)] . (20)

Using above update steps, we no longer need to evaluate the gradient ∇ft(xt,i) over the
local decisions for every base-learner, as was done by Sword (see its update rule in (11)).
Instead, a single call of ∇ft(xt) is sufficient at each round for the update in Sword++.

We note that although the linearized trick has previously been employed in the meta-
base structure for achieving the minimax dynamic regret O(

√
T (1 + PT )) with one gradient

per iteration (Zhang et al., 2018a), this modification alone is far from enough to obtain a
problem-dependent dynamic regret. To see this, we can check the regret of the base-learner
updated with the surrogate loss gt(x). A similar argument of Lemma 1 shows that the
base-regret over the linearized loss (#) ,∑T

t=1 gt(xt,i)−
∑T
t=1 gt(ut) satisfies

(#) ≤ ηi(G2 + 2VT ) + D2 + 2DPT
2ηi

+ 2ηiL2
T∑
t=2
‖xt − xt−1‖22 −

1
4ηi

T∑
t=2
‖xt,i − xt−1,i‖22.

(21)

In the analysis of Sword, because the gradient ∇ft(xt,i) is evaluated on every base-learner’s
own decision xt,i, the additional positive term (the third one) is 2ηiL2∑T

t=2‖xt,i− xt−1,i‖22,
which can be cancelled by the negative term −∑T

t=2‖xt,i−xt−1,i‖22/(4ηi) whenever the step
size is set appropriately. However, when the base-learner updates her decision over the
surrogate loss, the additional positive term becomes 2ηiL2‖xt − xt−1‖22, which cannot be
handled by the negative term of any base-learner. Thus, more advanced mechanisms are
required to achieve problem-dependent dynamic regret under the one-gradient query model.
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To tackle the difficulty, our primary idea is to facilitate collaboration between the meta
and base levels. Specifically, we aim to leverage negative terms from both levels to handle
the positive term. However, it turns out that the positive term cannot be entirely offset by
the combined negative terms from meta and base levels. To address this issue, we introduce
correction terms to the feedback loss and optimism in the meta-algorithm. This generates
a new negative term that, together with the negative term from the meta level, effectively
cancels out the positive term. Nevertheless, another new positive term emerges due to the
injected correction, which we ensure can be managed by the negative term from the base
level. As a result, the overall undesired positive term is finally addressed.

The above forms the main idea of our proposed collaborative online ensemble frame-
work. The term “collaboration” refers to the interplay between meta and base layers.
Indeed, on their own, neither the base level nor the meta level can achieve a gradient-
variation base/meta regret; each incurs some additional positive terms. This positive term
necessitates the negative terms from the other layer to help effectively cancel it out.

In the following, we describe the details of the meta-algorithm. We will provide a
brief explanation of the design of corrections in Remark 4 and offer a more comprehensive
elaboration on the general framework of collaborative online ensemble in Section 5.

Meta-algorithm. We still employ Optimistic Hedge as the meta-algorithm, but addition-
ally require innovative designs in feedback loss and optimism. Specifically, instead of simply
using the linearized surrogate loss `t,i , 〈∇ft(xt),xt,i〉 as the feedback loss like Sword (see
the update rule in (14)), we carefully construct the surrogate loss in the following way and
send it to the meta-algorithm.

• The feedback loss `t ∈ RN is constructed as follows: for each i ∈ [N ], `1,i =
〈∇f1(x1),x1,i〉 and for t ≥ 2, it composes the linearized surrogate loss 〈∇ft(xt),xt,i〉
with a decision-deviation correction term, namely,

`t,i = 〈∇ft(xt),xt,i〉+ λ‖xt,i − xt−1,i‖22. (22)

• The optimism mt ∈ RN is similarly configured as follows: m1 = 0 and for t ≥ 2 and
i ∈ [N ], the optimism also admits a decision-deviation correction term, namely,

mt,i = 〈Mt,xt,i〉+ λ‖xt,i − xt−1,i‖22 = 〈∇ft−1(xt−1),xt,i〉+ λ‖xt,i − xt−1,i‖22. (23)

Both feedback loss and optimism admit an additional correction term λ‖xt,i−xt−1,i‖22 that
measures the stability of the local decisions returned by the base-learner, where λ > 0 is
the correction coefficient to be determined later. We will explain soon in Remark 4 on
the crucial role and design motivation of this correction. Overall, the meta-algorithm of
Sword++ updates the weight pt+1 ∈ RN as follows: for any i ∈ [N ],

pt+1,i ∝ exp
(
−ε
( t∑
s=1

`s,i +mt+1,i
))

, (24)

where ε > 0 is a (for simplicity) fixed learning rate. Notably, the update only requires the
gradient information of ∇ft(xt) and thus is feasible for the one-gradient feedback model.
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Remark 4 (design of correction term). We emphasize that the correction term λ‖xt,i −
xt−1,i‖22, appearing in the construction of both feedback loss and optimism, is crucial for the
design and is the most challenging part in this method. We briefly explain the motivation.
As mentioned earlier in (21), the use of linearized surrogate loss gt(x) will introduce an
additional term ∑T

t=2‖xt − xt−1‖22, which cannot be directly canceled by the negative term
of any base-regret, namely, −∑T

t=2‖xt,i − xt−1,i‖22. To address the difficulty, we scrutinize
the positive term and find that actually it can be further expanded as:

‖xt − xt−1‖22 =
∥∥∥∥∥
N∑
i=1

pt,ixt,i −
N∑
i=1

pt−1,ixt−1,i

∥∥∥∥∥
2

2

≤ 2
∥∥∥∥∥
N∑
i=1

pt,ixt,i −
N∑
i=1

pt,ixt−1,i

∥∥∥∥∥
2

2
+ 2

∥∥∥∥∥
N∑
i=1

pt,ixt−1,i −
N∑
i=1

pt−1,ixt−1,i

∥∥∥∥∥
2

2

≤ 2
(

N∑
i=1

pt,i‖xt,i − xt−1,i‖2

)2

+ 2
(

N∑
i=1
|pt,i − pt−1,i|‖xt−1,i‖2

)2

≤ 2
N∑
i=1

pt,i‖xt,i − xt−1,i‖22 + 2D2‖pt − pt−1‖21,

which concludes that
T∑
t=2
‖xt − xt−1‖22 ≤ 2

T∑
t=2

N∑
i=1

pt,i‖xt,i − xt−1,i‖22 + 2D2
T∑
t=2
‖pt − pt−1‖21. (25)

The right hand side of (25) is a weighted combination of stability of base-learners (hence
called mixed stability), and the second one is the stability of the meta-algorithm’s weights
(hence called meta stability). We also similarly define ∑T

t=2‖xt,i − xt−1,i‖22 as the base sta-
bility (of the base learner i ∈ [N ]). Clearly, the meta stability can be readily canceled by
the negative term of meta-regret. However, it is challenging to address the first positive
term, namely, the mixed stability. To overcome the difficulty, we algorithmically add the
decision-variation correction term in the feedback loss and optimism of the meta-algorithm,
as well as leveraging the negative term of base-regret. The underlying intuition is to penal-
ize base-learners with large decision variations, so as to ensure a small enough variation of
final decisions. As such, we have facilitated the collaborations between the base and meta
levels — the overall positive term (∑T

t=2‖xt − xt−1‖22) is jointly cancelled out by the nega-
tive term of meta-regret (−∑T

t=2‖pt − pt−1‖21) and the one due to the injected corrections
(−∑T

t=2
∑N
i=1 pt,i‖xt,i − xt−1,i‖22); and meanwhile, the injected corrections will introduce

a new positive term (∑T
t=2‖xt,i − xt−1,i‖22), which can be further tackled by the negative

term of base-regret (−∑T
t=2‖xt,i − xt−1,i‖22). A notable characteristic is that the positive

terms of meta/base/mixed stability cannot be cancelled solely by the negative terms within
their respective layer. Instead, they necessitate additional negative terms, either from regret
analysis or algorithmic corrections, to help effectively cancel out. Only through such collab-
orations within the two-layer online ensembles can the proposed Sword++ algorithm attain
the desired gradient-variation dynamic regret, utilizing only one gradient per iteration. A
general presentation of this collaborative online ensemble will be provided in Section 5. ¶
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Algorithm 3 Sword++: meta-algorithm
Input: step size pool H; learning rate ε
1: Initialization: ∀i ∈ [N ], p0,i = 1/N
2: for t = 1 to T do
3: Receive xt+1,i from base-learner Bi
4: Update weight pt+1,i by (22)–(24)
5: Predict xt+1 = ∑N

i=1 pt+1,ixt+1,i
6: end for

Algorithm 4 Sword++: base-algorithm
Input: step size ηi ∈ H
1: Let x̂1,i,x1 be any point in X
2: for t = 1 to T do
3: x̂t+1,i = ΠX [x̂t,i − ηi∇ft(xt)]
4: xt+1,i = ΠX [x̂t+1,i − ηi∇ft(xt)]
5: Send xt+1,i to the meta-algorithm
6: end for

We summarize the procedures of Sword++ in Algorithm 3 (meta-algorithm) and Algo-
rithm 4 (base-algorithm). Though multiple base-learners are performed with different step
sizes to tackle the uncertainty of non-stationary environments, Sword++ requires the gradi-
ent information of ∇ft(xt) only at round t and then broadcasts it to all the base-learners for
local update. Therefore, Sword++ is feasible for the one-gradient feedback model. More-
over, the algorithm provably achieves the same gradient-variation dynamic regret as Sword
up to constants, shown in Theorem 4, whose proof is presented in Section 7.4.

Theorem 4. Under Assumptions 1, 2, and 3, set the pool of candidate step sizes H as

H =

ηi = min
{ 1

8L,

√
D2

8G2T
· 2i−1

}
| i ∈ [N ]

 , (26)

where N = d2−1 log2(G2T/(8D2L2))e + 1 is the number of candidate step sizes; further
set the correction coefficient as λ = 2L and the learning rate of the meta-algorithm as
ε = min

{
1/(8D2L),

√
(lnN)/(D2(‖∇f1(x1)‖22 + V̄T ))

}
. Then, Sword++ satisfies

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ O
(√

(1 + PT + VT )(1 + PT )
)

for any comparator sequence u1, . . . ,uT ∈ X . In above, V̄T = ∑T
t=2‖∇ft(xt)−∇ft−1(xt−1)‖22

is the variant of gradient variation VT .

Note that the learning rate tuning of the meta-algorithm requires the knowledge of V̄T .
Yet, this unpleasant dependence can be removed by performing the self-confident tuning over
V̄T by monitoring the internal estimate V̄t = ∑t

s=2‖∇fs(xs)−∇fs−1(xs−1)‖22. Importantly,
this adaptive learning rate tuning can be easily realized under the one-gradient feedback
model, namely, only ∇ft(xt) available at round t. To avoid clutter, we here stick to a fixed
learning rate instead of a time-varying one, which is more convenient to demonstrate the
collaboration between meta and base layers in the regret analysis (also see Remark 8 in the
proof of Theorem 4). We also defer an adaptive learning rate version to Appendix B.

Up to now, we have shown that it is possible to design online methods to achieve stronger
guarantees than static methods under the challenging one-gradient feedback online learning,
and meanwhile suffer no computational overhead in terms of the gradient query complexity.
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5. A General Framework: Collaborative Online Ensemble

In this section, we formally introduce the proposed collaborative online ensemble framework,
a general algorithmic template designed to achieve (problem-dependent) dynamic regret
guarantees. This framework is particularly crucial for attaining gradient-variation bounds.
As will be demonstrated shortly, our proposed Sword (in Section 4.2) and Sword++ (in
Section 4.3) can both be considered as specific instantiations.

5.1 Algorithmic Template

We focus on the standard OCO setup as specified in Section 3.1. At iteration t ∈ [T ], the
player first chooses the decision xt ∈ X , then the environments reveal the loss function
ft : X 7→ R. Subsequently, the player suffers the loss ft(xt) and observes certain gradient
information of ∇ft(·) according to the feedback model.

The overall algorithmic template implements a meta-base two-layer online ensemble.
There are three crucial ingredients in collaborative online ensemble: (i) the surrogate loss,
(ii) the surrogate optimism, and (iii) the correction terms. Additionally, the negative terms,
hidden in the analysis, play a significant role within the framework. To better present the
algorithmic template, we introduce the following notations:

• for the base-algorithm, let gbase
t : X 7→ R be the base surrogate loss and hbase

t : X 7→ R
be the base surrogate optimism;

• for the meta-algorithm, let gmeta
t : X 7→ R be the meta surrogate loss and hmeta

t : X 7→
R be the meta surrogate optimism, and let ct ∈ RN be the correction term.

The base-algorithm updates the decisions {xt,i}Ni=1 by Optimistic OGD over the base
surrogate loss and optimism, that is,

xt,i = ΠX
[
x̂t,i − ηi∇hbase

t (xt−1,i)
]
, x̂t+1,i = ΠX

[
x̂t,i − ηi∇gbase

t (xt,i)
]
, (27)

where ηi > 0 is a fixed step size specified by the step size pool H = {η1, . . . , ηN}. Subse-
quently, the player makes the final decision at this round by xt = ∑N

i=1 pt,ixt,i.
The meta-algorithm will then update the weight pt+1 ∈ ∆N by Optimistic Hedge over

the feedback loss `t ∈ RN and optimism mt ∈ RN ,

pt+1,i ∝ exp
(
−ε
( t∑
s=1

`s,i +mt+1,i
))

, (28)

where ε > 0 is (for simplicity) chosen as a fixed learning rate of the meta-algorithm and the
feedback loss `t ∈ RN and optimism mt ∈ RN are defined as

`t,i = gmeta
t (xt,i) + λct,i, and mt,i = hmeta

t (xt,i) + λct,i, (29)

where λ ≥ 0 is the coefficient of the correction terms and ct,i is the i-th entry of ct.

Remark 5. The meta-base updates in (27) and (28) are quite versatile, as there are many
options for constructing the surrogate (meta/base) loss, optimism, and the correction term.
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Table 1: Summary of three instantiations of the collaborative online ensemble framework,
including Sword, Sword++, and Sword.optimism.

Algorithm gbase
t (x) hbase

t (x) gmeta
t (x) hmeta

t (x) ct

Sword ft(x) ft−1(x) 〈∇ft(xt),x〉 〈∇ft−1(x̄t),x〉 ct = 0
Sword++ 〈∇ft(xt),x〉 〈∇ft−1(xt−1),x〉 〈∇ft(xt),x〉 〈∇ft−1(xt−1),x〉 ct,i = ‖xt,i − xt−1,i‖22
Sword.optimism 〈∇ft(xt),x〉 〈Mt,x〉 〈∇ft(xt),x〉 〈Mt,x〉 ct,i = ‖xt,i − xt−1,i‖22

We remind that a feasible construction must adhere to the feedback model — in the multi-
gradient feedback model, the entire gradient function ∇ft(·) is available, while in the one-
gradient feedback model, only the gradient ∇ft(xt) is available to the player. In Section 5.2,
we will present several concrete instantiations of the general algorithmic template, including
the proposed Sword and Sword++ in the earlier subsections. ¶

5.2 Instantiations

In this part, we present three instantiations of the general algorithmic template, including
Sword, Sword++, and another important instantiation, which we refer to as Sword.optimism.
For clarity, we provide a summary of these instantiations in Table 1.

Recovering Sword. We instantiate the algorithmic template as follows: setting

• base surrogate loss as gbase
t (x) = ft(x) and base optimism as hbase

t (x) = ft−1(x);

• meta surrogate loss as gmeta
t (x) = 〈∇ft(xt),x〉 and meta optimism as hmeta

t (x) =
〈∇ft−1(x̄t),x〉, as well as correction term as ct = 0.

Then, the template updates in the following way: the base-algorithm updates by

xt,i = ΠX [x̂t,i − ηi∇ft−1(xt−1,i)] , x̂t+1,i = ΠX [x̂t,i − ηi∇ft(xt,i)] ,

and the meta-algorithm updates by

pt+1,i ∝ exp
(
−ε
( t∑
s=1
〈∇fs(xs),xs,i〉+ 〈∇ft(x̄t+1),xt,i〉

))
.

The update procedures precisely recover Sword as presented in Algorithms 1 and 2. Note
that in Sword, there are no correction terms, since the gradient-variation dynamic regret
bound is attained by guaranteeing gradient-variation meta-regret for the meta-algorithm
and gradient-variation base-regret for the base-algorithm, respectively.

Recovering Sword++. We instantiate the algorithmic template as follows: setting

• base surrogate loss as gbase
t (x) = 〈∇ft(xt),x〉 and base optimism as hbase

t (x) =
〈∇ft−1(xt−1),x〉;

• meta surrogate loss as gmeta
t (x) = 〈∇ft(xt),x〉 and meta optimism as hmeta

t (x) =
〈∇ft−1(xt−1),x〉, as well as correction term ct as ct,i = ‖xt,i − xt−1,i‖22 with x0,1 = 0.
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Then, the template updates in the following way: the base-algorithm updates by

xt,i = ΠX [x̂t,i − ηi∇ft−1(xt−1)] , x̂t+1,i = ΠX [x̂t,i − ηi∇ft(xt)] ,

and the meta-algorithm updates by

pt+1,i ∝ exp
(
− ε

( t∑
s=1
〈∇fs(xs),xs,i〉+ λ

t+1∑
s=1
‖xs,i − xs−1,i‖22 + 〈∇ft(xt),xt+1,i〉

))
.

The update procedures precisely correspond to Sword++. We emphasize once more that the
algorithmic updates only necessitate querying the gradient ∇ft(xt) at each round t ∈ [T ].

Another important instantiation. We further present another instantiation of the
template that can be of independent interest. The resulting algorithm can achieve an
optimistic dynamic regret bound of order O(

√
AT (1 + PT )), where AT = ∑T

t=1‖∇ft(xt) −
Mt‖22 measures the quality of the optimistic vectors {Mt}Tt=1. We instantiate the algorithmic
template as follows: setting

• base surrogate loss gbase
t (x) = 〈∇ft(xt),x〉 and base optimism hbase

t (x) = 〈Mt,x〉;

• meta surrogate loss gmeta
t (x) = 〈∇ft(xt),x〉 and meta optimism hmeta

t (x) = 〈Mt,x〉,
as well as correction term ct as ct,i = ‖xt,i − xt−1,i‖22 with x0,1 = 0.

Then, the template updates in the following way: the base-algorithm updates by

xt,i = ΠX [x̂t,i − ηiMt] , x̂t+1,i = ΠX [x̂t,i − ηi∇ft(xt)] , (30)

and the meta-algorithm updates by

pt+1,i ∝ exp
(
− ε

( t∑
s=1
〈∇fs(xs),xs,i〉+ λ

t+1∑
s=1
‖xs,i − xs−1,i‖22 + 〈Mt+1,xt+1,i〉

))
. (31)

We refer to the above meta-base updates, (30) and (31), as Sword.optimism. Its dynamic
regret analysis detailed in Section 5.3. Notice that by setting the optimism as the last-round
gradient, specifically, Mt = ∇ft−1(xt−1), Sword.optimism recovers Sword++ exactly.

5.3 Theoretical Guarantee

In this part, we present the dynamic regret analysis for Sword.optimism, which is arguably
the most general instantiation of the collaborative online ensemble template. It is straight-
forward to extend Theorem 5 for the general template presented in Section 5.1, specifically,
the meta-base updates in (27) and (28). However, the various variables in the general tem-
plate may somewhat obscure the core ideas. Therefore, we choose to showcase the dynamic
regret analysis for Sword.optimism, as its analysis effectively captures the essence and its
algorithm is also sufficiently general (for instance, it can specialize Sword++).

Theorem 5. Under Assumptions 1 and 2, set the pool of candidate step sizes H as

H =

ηi = min
{
η̄,

√
D2

8G2T
· 2i−1

}
| i ∈ [N ]

 , (32)
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where N = d2−1 log2((8G2T η̄2)/D2)e+ 1 is the number of candidate step sizes; further set
the learning rate of the meta-algorithm as

ε = min
{
ε̄,

√
lnN

D2∑T
t=1‖∇ft(xt)−Mt‖22

}
. (33)

Then, Sword.optimism satisfies that for any comparator sequence u1, . . . ,uT ∈ X ,

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ 2
√
D2(lnN)AT + 2

√
(D2 + 2DPT )AT

+ 2 lnN
ε̄

+ 2(D2 + 2DPT )
η̄

+
(
λ− 1

4η̄

)
Sx,i −

1
4ε̄Sp − λSmix.

(34)

In above, AT = ∑T
t=1‖∇ft(xt) − Mt‖22 is the adaptivity term, PT = ∑T

t=2‖ut−1 − ut‖2
is the path length, Sx,i = ∑T

t=2‖xt,i − xt−1,i‖22, Sp = ∑T
t=2‖pt − pt−1‖21, and Smix =∑T

t=2
∑N
i=1 pt,i‖xt,i − xt−1,i‖22 are base stability, meta stability, and mixed stability.

The proof of Theorem 5 is presented in Section 7.5. Notice that by setting the correction
coefficient λ = 0 and setting clipped parameters η̄ and ε̄ as appropriate constants, Theorem 5
directly implies an O(

√
AT (1 + PT )) dynamic regret for Sword.optimism.

As aforementioned, when setting the optimism as Mt = ∇ft−1(xt−1), Sword.optimism
recovers Sword++. Consequently, Theorem 5 serves as a preliminary analysis for Sword++
by substituting Mt = ∇ft−1(xt−1) in the upper bound (34). By further combining the
analysis of (25) in Remark 4, we can then prove the gradient-variation bound of Theorem 4,
see the detailed argument in Section 7.4. The key element is to effectively cancel out
the additional positive term using negative terms and correction terms jointly, which are
strategically introduced due to the collaboration between the meta and base levels.

6. Implication, Significance, and Lower Bound

In this section, we present several additional results, including the implication to small-
loss dynamic regret, the implication to the worst-case dynamic regret, the significance of
problem-dependent bounds, and a lower bound justification.

6.1 Implication to Small-Loss Dynamic Regret

In this part, we investigate another problem-dependent quantity — the cumulative loss of
comparators defined as FT = ∑T

t=1 ft(ut).
In the conference version, we propose the Sword algorithm (presented in Section 4.2)

to achieve the gradient-variation dynamic regret, and then propose a variant to attain the
small-loss bound, which employs OGD as the base-algorithm and uses the vanilla Hedge
with linearized surrogate loss as the meta-algorithm (i.e., choosing the optimistic vector
Mt = 0 for both meta- and base-algorithms). In the current paper, we demonstrate that
the improved algorithm Sword++ designed in Section 4.3 itself provably achieves the small-
loss dynamic regret without any algorithmic modification. In fact, we have the following
theorem regarding the small-loss bound of Sword++, whose proof is in Section 7.6.
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Theorem 6. Set the parameters the same as those in Theorem 4. Under Assumptions 1, 2, 3,
and 4, Sword++ satisfies that

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ O
(√

(1 + PT + FT )(1 + PT )
)
,

and hence achieves the best-of-both-worlds guarantee:
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ O
(√

(1 + PT + min{VT , FT })(1 + PT )
)
.

The bounds hold for any comparator sequence u1, . . . ,uT ∈ X .
Comparing with Theorem 4, one more assumption (Assumption 4) is required. As men-

tioned, this non-negativity assumption is a precondition for establishing the self-bounding
property for smooth functions (Srebro et al., 2010; Cutkosky, 2023), and thus is commonly
used in the small-loss analysis of online learning and stochastic optimization (Srebro et al.,
2010; Cotter et al., 2011; Zhang et al., 2013, 2019; Zhang and Zhou, 2019).
Remark 6. Our conference version (Zhao et al., 2020b) achieves the best-of-both-worlds
bound in a different way, in which we use a heterogeneous model selection method of learning
an optimism (Rakhlin and Sridharan, 2013) since different optimistic vectors are used for the
small-loss and gradient-variation bounds. As such, three algorithms (Swordvar, Swordsmall,
and Swordbest) are designed to achieve the three different bounds (gradient-variation, small-
loss, and best-of-both-worlds bounds) respectively. By contrast, Theorem 6 indicates that
the Sword++ algorithm can achieve all the three problem-dependent dynamic regret bounds
without any modifications, owing to its one-gradient query complexity property. This also,
to some extent, demonstrates the fundamental importance of achieving gradient-variation
bounds — sometimes this can directly imply a small-loss bound in the analysis. ¶

Remark 7. Comparing to the O(
√
T (1 + PT )) minimax rate, Theorem 6 replaces the

dependence on T by the problem-dependent quantity PT + min{VT , FT } and thus achieves
dual adaptivity in terms of both gradient variation VT and the small-loss quantity FT .
Furthermore, one may wonder whether it is possible to replace T by min{VT , FT } only.
This requires a lower bound argument and we only have a partial answer. Specifically,
we prove in Theorem 8 that no algorithm can achieve an O(

√
(1 + FT )(1 + PT )) bound

in general. Nevertheless, we fail to provide a similar reasoning for the gradient-variation
bound. Indeed, we have the following conjectures. For the multi-gradient feedback model,
we are inclined to believe that the O(

√
(1 + PT + VT )(1 + PT )) rate may not be optimal

and it might be possible to achieve O(
√

(1 + VT )(1 + PT )). For the one-gradient feedback
model, we conjecture that our obtained rate has already been optimal. We leave this
problem-dependent lower bound as an important future work to investigate. ¶

6.2 Implication to Worst-Case Dynamic Regret

In this part, we present the implication of the universal dynamic regret to the worst-case
dynamic regret. As discussed in Section 2.2, for the worst-case dynamic regret, there are
two kinds of regularities: path length P ∗T = ∑T

t=2‖x∗t−1 − x∗t ‖2 and function variation
V f
T = ∑T

t=2 supx∈X |ft−1(x)− ft(x)|. The following theorem provides a reduction to both.
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Theorem 7. Let AT ∈ R+ be a certain adaptivity term. Suppose there exists an algorithm
A that ensures the following guarantee: for any comparator sequence u1, . . .uT ∈ X with
path length PT = ∑T

t=2‖ut − ut−1‖2, it holds that

D-RegretT (u1, . . . ,uT ) ≤
√
AT (D + PT ), (35)

for some constant D > 0. Then A enjoys the worst-case dynamic regret bound:

D-RegretT (x∗1, . . . ,x∗T ) ≤ 3
√
DAT + min

{√
ATP ∗T , 5D

1/3T 1/3A
1/3
T (V f

T )1/3
}
. (36)

Theorem 7 demonstrates that an O(
√
AT (1 + PT )) universal dynamic regret bound can

directly imply an O(
√
AT + min{

√
ATP ∗T , (TATV

f
T )1/3}) worst-case dynamic regret bound.

A typical choice of this adaptivity term is AT = ∑T
t=1‖∇ft(xt) −Mt‖22 that measures the

quality of optimistic gradient vectors {Mt}Tt=1. Then, the implication matches the best-
known optimistic worst-case dynamic regret bound presented in (Jadbabaie et al., 2015;
Zhang et al., 2020b), taking the best of the path-length and function-variation regularities.
It is worth noting that Jadbabaie et al. (2015) achieve this result through a carefully de-
signed doubling trick scheme, which will introduce a potentially non-convex inner optimiza-
tion supx∈X |ft(x)− ft−1(x)| at iteration t ∈ [T ]. In contrast, our Theorem 7 demonstrates
that when the algorithm achieves an O(

√
AT (1 + PT )) universal dynamic regret, it auto-

matically obtains the desired worst-case dynamic regret bounds. Notably, our proposed
Sword.optimism algorithm (see the last instantiation in Section 5.2) already satisfies this
requirement using the collaborative online ensemble framework.

The proof of Theorem 7 can be found in Section 7.7. Given the universal dynamic regret
bound (35), one can immediately derive anO(

√
AT+

√
ATP ∗T ) worst-case path-length bound

by setting ut = x∗t for any t ∈ [T ], but it is less straightforward to obtain the O(
√
AT +

T 1/3A
1/3
T (V f

T )1/3) function-variation bound. To achieve so, we need to introduce a reference
comparator sequence that exhibits piecewise-stationary behavior. The desired function-
variation bound is then achievable by optimally tuning the stationary length of the sequence
during the analysis. The idea was introduced in Zhang et al. (2020b, Appendix A.2), but
an explicit reduction was not provided. We offer a clear presentation of the results.

Moreover, in Theorem 7, we focus on the O(
√
AT (1 + PT )) universal dynamic regret

bound, which incorporates the general adaptivity term AT . Using a similar analysis, we can
also convert the gradient-variation/small-loss universal dynamic regret bounds, attained by
Sword and Sword++, into the worst-case dynamic regret bounds. Details are omitted here.

6.3 Significance of Problem-Dependent Bounds

In this part, we justify the significance of our problem-dependent dynamic regret bounds.
We present two concrete problem instances to demonstrate that it is possible to achieve a
constant dynamic regret bound instead of the minimax rate O(

√
T (1 + PT )).

We consider the quadratic loss function of the form ft(x) = 1
2(at · x− bt)2, where at 6= 0

and x ∈ X , [−1, 1]. Clearly, the online function ft : R 7→ R is convex and smooth. Denote
by T the time horizon. The coefficients at and bt will be specified below in each instance.

Instance 1 (VT � FT ). Let the time horizon T = 2K + 1 be odd with K > 2. We set the
coefficients at = 0.5− t−1

T and bt = 1 for all t ∈ [T ].
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We set the comparator ut to be the minimizer of ft, i.e, ut = x∗t = arg minx∈X ft(x).
Clearly, ut = 1 for t ∈ [K+1], and ut = −1 for t = K+2, . . . , T . A direct calculation shows

VT =
T∑
t=2

sup
x∈X
|(a2

t−1 − a2
t )x− (at−1 − at)|2 =

T∑
t=2

sup
x∈X

∣∣∣∣(T − 2t+ 3
T 2

)
· x− 1

T

∣∣∣∣2

=
K+2∑
t=2

(2T − (2t− 3)
T 2

)2
+

T∑
t=K+3

(2t− 3
T 2

)2
≤

T∑
t=2

( 2
T

)2
= O(1).

FT =
T∑
t=1

1
2(atut − bt)2 =

K+1∑
t=1

1
2

(
0.5− t− 1

T
− 1

)2
+

T∑
t=K+2

1
2

(
−0.5 + t− 1

T
− 1

)2
= Θ(T ).

We can observe that the gradient variation VT = O(1) is significantly smaller than the
small-loss quantity FT = Θ(T ) in this problem instance; and meanwhile, the path length
is PT = O(1). Then, the minimax dynamic regret bound is O(

√
T (1 + PT )) = O(

√
T );

the small-loss bound is O(
√

(1 + PT + FT )(1 + PT )) = O(
√
T ); and the gradient-variation

bound is O(
√

(1 + PT + VT )(1 + PT )) = O(1). As a result, by exploiting the problem’s
structure, Sword++ can enjoy a constant dynamic regret against u1, . . . , uT in this scenario,
significantly improving upon the problem-independent bound of order O(

√
T ).

Instance 2 (FT � VT ). Let the time horizon T = 2K be even. During the first half
iterations, (at, bt) is set as (1, 1) on odd rounds and (0.5, 0.5) on even rounds. During the
remaining iterations, (at, bt) is set as (1,−1) on odd rounds and (0.5,−0.5) on even rounds.

We set the comparator ut to be the minimizer of ft, i.e, ut = x∗t = arg minx∈X ft(x).
Clearly, ut = 1 for t ∈ [K], and ut = −1 for t = K + 1, . . . , T . A direct calculation shows

VT =
T∑
t=2

sup
x∈X
|(a2

t−1 − a2
t )x− (at−1bt−1 − atbt)|2 = Θ(T ), FT = 0.

We can see that the small-loss quantity FT = 0 is considerably smaller than the gradi-
ent variation VT = Θ(T ) in this scenario; and meanwhile, the path length is PT = O(1).
Then, the minimax dynamic regret bound is O(

√
T (1 + PT )) = O(

√
T ); the gradient-

variation bound is O(
√

(1 + PT + VT )(1 + PT )) = O(
√
T ); and the small-loss bound is

O(
√

(1 + PT + FT )(1 + PT )) = O(1). As a result, by exploiting the problem’s structure,
Sword++ can enjoy a constant dynamic regret against u1, . . . , uT in this scenario, signifi-
cantly improving upon the problem-independent bound of order O(

√
T ).

6.4 A Lower Bound

We here present a lower bound for dynamic regret of convex and smooth functions.
Theorem 8. For any online algorithm A, there always exists a sequence of convex and
smooth functions f1, . . . , fT and a sequence of comparators u1, . . . ,uT , such that, for any
constant c > 0,

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) > c
√

(1 + FT )(1 + PT ). (37)

when the time horizon T is sufficiently large.
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For the static regret bound, the worst-case minimax rate O(
√
T ) can be improved

to O(
√
FT ) or O(

√
VT ) by substituting the dependence on T with problem-dependent

quantities. A natural question for universal dynamic regret is whether it is possible to
also attain an O(

√
(1 + min{VT , FT })(1 + PT )) bound that improves the minimax rate

O(
√
T (1 + PT )). Theorem 8 shows that no algorithm can achieve theO(

√
(1 + FT )(1 + PT ))

universal dynamic regret bound. We provide the proof in Section 7.8, where the probabilistic
method is applied to show the contradiction. In the constructed problem instance, the small-
loss quantity is always FT = 0, and there exist a certain online function sequence {ft}Tt=1
such that the dynamic regret is lower bound by Ω(T ). Therefore, theO(

√
(1 + FT )(1 + PT ))

upper bound would violate this lower bound, rendering it unfeasible. Nevertheless, as the
gradient variation VT = ∑T

t=2 supx∈X ‖∇ft(x)−∇ft−1(x)‖22 is larger than 0 in this instance,
we cannot rule out the possibility of the O(

√
(1 + VT )(1 + PT )) upper bound.

7. Proofs

This section presents the proofs of main results, including Theorem 1 of Section 3, Theo-
rems 2–4 of Section 4, Theorem 5 of Section 5, and Theorems 6–8 of Section 6.

7.1 Proof of Theorem 1

Proof The instantaneous dynamic regret can be upper bounded and decomposed as

ft(xt)− ft(ut) ≤ 〈∇ft(xt)−Mt,xt − x̂t+1〉︸ ︷︷ ︸
term (a)

+ 〈Mt,xt − x̂t+1〉︸ ︷︷ ︸
term (b)

+ 〈∇ft(xt), x̂t+1 − ut〉︸ ︷︷ ︸
term (c)

.

In the following, we use the stability lemma (Lemma 5) to bound term (a) and appeal to
the Bregman proximal inequality (Lemma 4) to bound term (b) and term (c).

We first investigate term (a). Intuitively, the prediction xt should be close the x̂t+1 when
the optimistic vector Mt is close to the gradient of the next iteration ∇ft(xt). The intuition
is formalized in the stability lemma (Chiang et al., 2012, Propostion 7), as restated in
Lemma 5 of Appendix C, which implies ‖xt− x̂t+1‖ ≤ ηt‖∇ft(xt)−Mt‖∗ and consequently,

term (a) ≤ ‖∇ft(xt)−Mt‖∗‖xt − x̂t+1‖ ≤ ηt‖∇ft(xt)−Mt‖2∗.

We now analyze term (b) and term (c). By the Bregman proximal inequality (Lemma 4)
and the Optimistic OMD update step xt = arg minx∈X {ηt〈Mt,x〉+Dψ(x, x̂t)}, we have

term (b) = 〈Mt,xt − x̂t+1〉 ≤
1
ηt

(
Dψ(x̂t+1, x̂t)−Dψ(x̂t+1,xt)−Dψ(xt, x̂t)

)
.

Similarly, the update x̂t+1 = arg minx∈X {ηt〈∇ft(xt),x〉+Dψ(x, x̂t)} implies

term (c) = 〈∇ft(xt), x̂t+1 − ut〉 ≤
1
ηt

(
Dψ(ut, x̂t)−Dψ(ut, x̂t+1)−Dψ(x̂t+1, x̂t)

)
.

Combining the three upper bounds completes the proof.
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7.2 Proof of Theorem 2

Proof Substituting the definitions of feedback loss and optimism into Lemma 2 yields
T∑
t=1
〈∇ft(xt),xt − xt,i〉 ≤ εD2‖∇ft(xt)−∇ft−1(x̄t)‖22 + lnN

ε
− 1

4ε

T∑
t=2
‖pt − pt−1‖21.

Together with the derivations in (17) and (18), this implies
T∑
t=1
〈∇ft(xt),xt − xt,i〉 ≤ 2εD2(G2 + VT ) + lnN

ε
+
(

2D4L2ε− 1
4ε

) T∑
t=2
‖pt − pt−1‖21.

Setting the learning rate as ε = min{1/(4D2L),
√

(lnN)/(2D2(G2 + VT ))}, by Lemma 7
we obtain an 2D

√
2(G2 + VT ) lnN + 8D2L lnN upper bound, which ends the proof as

ft(xt)− ft(xt,i) ≤ 〈∇ft(xt),xt − xt,i〉 holds due to the convexity of online functions.

7.3 Proof of Theorem 3

Proof As stated in (10), dynamic regret can be decomposed into the meta-regret and
base-regret, and the decomposition holds for any base-learner’s index i ∈ [N ].

Upper bound of meta-regret. Theorem 2 shows that for any i ∈ [N ],

meta-regret =
T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) ≤ 2D
√

2(4G2 + VT ) lnN + 8D2L lnN. (38)

Upper bound of base-regret. Lemma 1 indicates that for any index i ∈ [N ],

base-regret =
T∑
t=1

ft(xt,i)−
T∑
t=1

ft(ut) ≤ ηi(G2 + 2VT ) + 1
2ηi

(D2 + 2DPT ), (39)

where ηi ∈ H is the step size associated with the i-th base-learner. Recall in Lemma 1,
we require the step size ηi ≤ 1/(4L) to leverage the negative term in the regret analy-
sis. Denote by η∗ =

√
(D2 + 2DPT )/(G2 + 2VT ) the optimal step size without consider-

ing the constraint and by η† = min{1/(4L), η∗} the clipped one. Notice that we have
η1 =

√
D2/(8G2T ), ηN = 1/(4L), and η1 ≤ η† ≤ ηN , due to path length PT ∈ [0, DT ] and

gradient variation VT ≤ 4G2(T −1) by Assumption 1 and Assumption 2. More importantly,
owing to the construction of the step size pool H in (19), we can assure that there exists an
index i∗ ∈ [N ] such that ηi∗ ≤ η† ≤ ηi∗+1 = 2ηi∗ . As a result, we pick i = i∗ in (39) and get

base-regret ≤ ηi∗(G2 + 2VT ) + D2 + 2DPT
2ηi∗

≤ η†(G2 + 2VT ) + D2 + 2DPT
η†

(40)

≤ 2
√

(G2 + 2VT )(D2 + 2DPT ) + 8L(D2 + 2DPT ) (41)

≤ O
(√

(1 + PT + VT )(1 + PT )
)
. (42)

In above, (41) holds because η† is either η∗ or 1/(4L) and
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• when η† = η∗, the right hand side of (40) = 2
√

(G2 + 2VT )(D2 + 2DPT );

• when η† = 1/(4L), we have η∗ =
√

(D2 + 2DPT )/(G2 + 2VT ) ≥ 1
4L , which implies

that 1
4L(G2 + 2VT ) ≤ 4L(D2 + 2DPT ). Under such a case, the right hand side of (40)

= 4L(D2 + 2DPT ) + 1
4L(G2 + 2VT ) ≤ 8L(D2 + 2DPT ).

Combining two upper bounds yields (41) and further obtains (42).

Upper bound of overall dynamic regret. Note that the meta-base regret decom-
position (10) and meta-regret upper bound (38) hold for any index i ∈ [N ]. Hence, we
can choose the index as i∗ as specified above and further combine the base-regret upper
bound (39) to achieve the final desired result. Hence, we complete the proof of Theorem 3.

7.4 Proof of Theorem 4

Proof Since Sword++ is essentially an instantiation of the collaborative online ensemble
framework, we prove its dynamic regret building upon the general result of Theorem 5.

We substitute Mt = ∇ft−1(xt−1) into (34) of Theorem 5 and notice that

AT ≤ G2 + 2
T∑
t=2
‖∇ft(xt)−∇ft−1(xt)‖22 + 2

T∑
t=2
‖∇ft−1(xt)−∇ft−1(xt−1)‖22

≤ G2 + 2 sup
x∈X

T∑
t=2
‖∇ft(x)−∇ft−1(x)‖22 + 2L2

T∑
t=2
‖xt − xt−1‖22

≤ G2 + 2VT + 4L2Smix + 4D2L2Sp. (43)

As a result, the first term of (34) of Theorem 5 can be further bounded by

2
√
D2(lnN)AT

≤ 2
√
D2(lnN) (G2 + 2VT + 4L2Smix + 4D2L2Sp)

≤ 2
√
D2(lnN) (G2 + 2VT ) + 2

√
D2(lnN)(4L2Smix + 4D2L2Sp)

≤ 2
√
D2(lnN) (G2 + 2VT ) + 2 lnN

ε̄
+ 8ε̄D2L2Smix + 8ε̄D4L2Sp, (44)

where the last inequality is a consequence of the AM-GM inequality. Using a similar argu-
ment, we can bound the second term of (34) of Theorem 5 by

2
√

(D2 + 2DPT )AT

≤ 2
√

(D2 + 2DPT )(G2 + 2VT + 4L2Smix + 4D2L2Sp)

≤ 2
√

(D2 + 2DPT )(G2 + 2VT ) + 2D2 + 4DPT
η̄

+ 8η̄L2Smix + 8η̄D2L2Sp. (45)
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Plugging (44) and (45) into (34), we get the following dynamic regret bound,

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

≤ 2
√

lnN (G2D2 + 2D2VT ) + 2
√

(D2 + 2DPT )(G2 + 2VT ) + 4 lnN
ε̄

+ 4(D2 + 2DPT )
η̄

+
(
λ− 1

4η̄

)
Sx,i +

(
8η̄D2L2 + 8ε̄D4L2 − 1

4ε̄

)
Sp +

(
8η̄L2 + 8ε̄D2L2 − λ

)
Smix. (46)

We complete the proof by dropping the last three non-positive terms, which is ensured by
the parameter configurations λ = 2L, η̄ = 1/(8L) and ε̄ = 1/(8D2L). We finally men-
tion that the lnN = O(log log T ) term is treated as a constant throughout the paper.
Actually, this term can be improved to log logPT by imposing a non-uniform prior over
base-learners (Zhang et al., 2018a, Proof of Theorem 3). Details are omitted here.

Remark 8 (Collaboration in Regret Analysis). The derivation uses a fixed learning rate for
the meta-algorithm, which not only simplifies the proof but also more effectively illustrates
the collaboration of meta-base two layers in the analysis. The analysis in (46) highlights
the crucial role of collaboration between meta and base layers. The positive terms — base
stability Sx,i, meta stability Sp, and mixed stability Smix — cannot be cancelled solely by
negative terms within their respective layer. Instead, they necessitate additional negative
terms, either from regret analysis or algorithmic corrections, to help cancel out. ¶

7.5 Proof of Theorem 5

Proof The proof shares the same spirit with that of Theorem 3, where we decompose the
overall dynamic regret into the meta-regret and base-regret. The difference is that we now
use a linearized surrogate loss function to substitute the original loss function. Indeed,

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤
T∑
t=1
〈∇ft(xt),xt − xt,i〉︸ ︷︷ ︸

meta-regret

−
T∑
t=1
〈∇ft(xt),xt,i − ut〉︸ ︷︷ ︸

base-regret

.
(47)

Notably, the above meta-base regret decomposition holds for any base-learner’s index i ∈
[N ]. In the following, we upper bound these two terms respectively.

Upper bound of meta-regret. According to the definitions of the feedback loss `t and
the optimism mt, see the definition below (28), we can rewrite the meta-regret as

meta-regret =
T∑
t=1
〈pt, `t〉 −

T∑
t=1

`t,i − λ
T∑
t=1

N∑
i=1

pt,i‖xt,i − xt−1,i‖22 + λ
T∑
t=1
‖xt,i − xt−1,i‖22.
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We use Lemma 2 and the setting of step size ε = min{ε̄,
√

(lnN)/(D2AT )} to get

T∑
t=1
〈pt, `t〉 −

T∑
t=1

`t,i ≤ εD2
T∑
t=1
‖∇ft(xt)−Mt‖22 + lnN

ε
− 1

4ε

T∑
t=2
‖pt − pt−1‖21

≤ 2
√
D2(lnN)AT + 2 lnN

ε̄
− 1

4ε̄

T∑
t=2
‖pt − pt−1‖21.

Combining above two inequalities, we obtain

meta-regret ≤ 2
√
D2(lnN)AT + 2 lnN

ε̄
− 1

4ε̄

T∑
t=2
‖pt − pt−1‖21

− λ
T∑
t=1

N∑
i=1

pt,i‖xt,i − xt−1,i‖22 + λ
T∑
t=1
‖xt,i − xt−1,i‖22. (48)

Upper bound of base-regret. By Lemma 1, we obtain the base-regret for any i ∈ [N ],

base-regret ≤ ηiAT + D2 + 2DPT
2ηi

− 1
4η̄

T∑
t=2
‖xt,i − xt−1,i‖22. (49)

Upper bound of overall dynamic regret. Combining the meta-regret (48) and the
base-regret (49) with the decomposition (47), for any i ∈ [N ], we arrive at

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

≤ 2
√
D2(lnN)AT + ηiAT + D2 + 2DPT

2ηi
+ 2 lnN

ε̄

+
(
λ− 1

4η̄

) T∑
t=2
‖xt,i − xt−1,i‖22 −

1
4ε̄

T∑
t=2
‖pt − pt−1‖21 − λ

T∑
t=1

N∑
i=1

pt,i‖xt,i − xt−1,i‖22. (50)

Here, we remain to choose the best base-learner to make the term ηiAT + D2+2DPT
2ηi

tightest
possible. Note that the optimal step size is η∗ =

√
(D2 + 2DPT )/AT , but nevertheless,

the step size we should identify is η† = min{η∗, η̄} due to the threshold in the step size
pool (32). It can be verified that candidate step sizes range from η1 =

√
D2

8G2T to ηN = η̄.

• when η† = η∗, there must be an index i∗ satisfying ηi∗ ≤ η∗ ≤ ηi∗+1 = 2ηi∗ . We choose
i = i∗ and obtain ηi∗AT + D2+2DPT

2ηi∗
≤ η∗AT + D2+2DPT

η∗ = 2
√

(D2 + 2DPT )AT ;

• when η† = η̄, we will choose the compared index as i = N and obtain that ηNAT +
D2+2DPT

2ηN
= η̄AT + D2+2DPT

2η̄ ≤ (2D2 + 4DPT )/η̄.

As a result, taking both cases into account completes the proof.
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7.6 Proof of Theorem 6

Proof The proof shares the same spirit as that of Theorem 4, whereas we upper bound the
adaptivity term in a different way to achieve the small-loss bound. Specifically, we convert
the adaptivity term to the cumulative loss of decisions defined by FXT = ∑T

t=1 ft(xt).

AT ≤ ‖∇f1(x1)‖22 + 2
T∑
t=2
‖∇ft(xt)‖22 + 2

T∑
t=2
‖∇ft−1(xt−1)‖22

≤ 8L
T∑
t=1

ft(xt) + 8L
T∑
t=2

ft−1(xt−1) ≤ 16L
T∑
t=1

ft(xt) = 16LFXT ,

where the second inequality comes from the self-bounding property of smooth and non-
negative functions as shown in Lemma 6. Then, a direct application of Theorem 5 with the
parameter configurations λ = 2L, η̄ = 1/(8L) and ε̄ = 1/(8D2L) indicates

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ 2
√

16LD2 lnNFXT + 2
√

16L(D2 + 2DPT )FXT

+ 16D2L lnN + 16L(D2 + 2DPT ).

According to the definition of FT and FXT , the above inequality implies that

FXT − FT ≤ 2
√

16L(D2 lnN +D2 + 2DPT )FXT + 16L(D2 lnN +D2 + 2DPT )

≤ 2
√

16L(D2 lnN +D2 + 2DPT )(FT + 16L(D2 lnN +D2 + 2DPT ))
+ 80L(D2 lnN +D2 + 2DPT )

= O(
√

(1 + PT + FT )(1 + PT )) +O(1 + PT )

= O(
√

(1 + PT + FT )(1 + PT )), (51)

where the second inequality is by the converting trick in Lemma 9. This ends the proof.

7.7 Proof of Theorem 7

Proof By the universal dynamic regret bound D-RegretT (u1, . . . ,uT ) ≤
√
AT (D + PT )

and choosing ut = x∗t , we directly obtain the path-length worst-case dynamic regret bound:

D-RegretT (x∗1, . . . ,x∗T ) ≤
√
AT (D + P ∗T ). (52)

In the following, we focus on the function-variation type bound. This is achieved fol-
lowing the argument of Zhang et al. (2020b), we introduce a virtual piece-wise stationary
comparator sequence that only changes every ∆ ∈ [1, T ] iterations. Specifically, denoting
by Im = [(m− 1)∆ + 1,min{m∆, T}] ⊆ [1, T ] the m-th interval, we define the comparator
over the interval Im as x∗Im

∈ arg minx∈X
∑
t∈Im

ft(x). There are in total M = dT/∆e
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intervals. Then, we can decompose the worst-case dynamic regret as

D-RegretT (x∗1, . . . ,x∗T ) =
T∑
t=1

ft(xt)−
M∑
m=1

∑
t∈Im

ft(x∗Im
)

︸ ︷︷ ︸
term (a)

+
M∑
m=1

∑
t∈Im

ft(x∗Im
)−

T∑
t=1

ft(x∗t )︸ ︷︷ ︸
term (b)

.

For term (a), since the piece-wise stationary comparator sequence only changes M−1 times,
its path length is at most D(M − 1). Thus, the universal dynamic regret (35) ensures

term (a) ≤
√
AT (D +D(M − 1)) ≤

√
DAT

(
1 + T

∆

)
≤
√
DAT +

√
DTAT

∆ .

Moreover, the argument in Besbes et al. (2015, Proposition 2) shows that term (b) ≤ 2∆V f
T .

Combining the upper bounds for term (a) and term (b), we obtain

D-RegretT (x∗1, . . . ,x∗T ) ≤
√
DAT +

√
DTAT

∆ + 2∆V f
T .

The optimal interval length is ∆∗ , (DTAT )1/3(V f
T )−2/3, which will lead to an O(

√
AT +

A
1
3
TT

1
3 (V f

T ) 1
3 ) worst-case dynamic regret. However, a caveat is that the interval length

∆ ∈ [T ] should be a positive integer, so we use the clipped version ∆† , min {d∆∗e , T}.
We show that (36) is achievable with ∆† by considering the following three cases.

• Case 1 (1 ≤ ∆∗ ≤ T ): in such a case, ∆† = d∆∗e and thus ∆∗ ≤ ∆† ≤ 2∆∗,

D-RegretT (x∗1, . . . ,x∗T ) ≤
√
DAT +

√
DTAT

∆∗
+ 4∆∗V f

T ≤
√
DAT + 5D

1
3A

1
3
TT

1
3 (V f

T )
1
3 .

• Case 2 (∆∗ > T ): in such a case, ∆† = T and
√
DAT ≥ TV f

T . Then, we have

D-RegretT (x∗1, . . . ,x∗T ) ≤
√
DAT +

√
DAT + 2TV f

T ≤ 3
√
DAT .

• Case 3 (∆∗ ≤ 1): in such a case, ∆† = 1 and
√
DATT ≤ V f

T . Since P ∗T ≤ DT , we have√
ATP ∗T ≤

√
DATT ≤ D

1
3A

1
3
TT

1
3 (V f

T ) 1
3 , indicating that the path-length bound (52) is

tighter than the desired result (36).

The proof is completed by combining above three cases and the path-length bound (52).

7.8 Proof of Theorem 8

Proof The theorem is proved by the probabilistic method, following the proof of Zhang
et al. (2017, Theorem 5). For iterations t = 1, . . . , T , we randomly sample a convex and
smooth function ft : Rd 7→ R from the distribution P.
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Specifically, we construct the function as ft(x) = ‖x− σεt‖22, where σ > 0 and εt ∈ Rd
is a random vector with components sampled independently from the Rademacher dis-
tribution, i.e., εt(i) = 1 or −1 with equal probability of 50%. We further set the com-
parator ut = x∗t = arg minx∈X ft(x) = σεt. Denote by xt the decision returned by
any deterministic online algorithm A. Then the expected dynamic regret is defined as
E[D-RegretT ] = E

[∑T
t=1 ft(xt)−

∑T
t=1 ft(ut)

]
with expectation taken over the randomness

of the online function ft. Then, we show that E[D-RegretT ] ≥
√
T/2·E[

√
(1 + FT )(1 + PT )].

On one hand, noticing that E[σ〈xt, εt〉] = 0 and E[σ2‖εt‖22] ≥ dσ2 for any t ≥ 1, we have

E[D-RegretT ] =
T∑
t=1

E[‖xt − σεt‖22] =
T∑
t=1

E[‖xt‖22 + 2σ〈xt, εt〉+ σ2‖εt‖22] ≥ dTσ2,

On the other hand, let δt(i) = εt(i)− εt−1(i). We have

E[PT (u1, . . . ,uT )] = σ
T∑
t=2

E


√√√√ d∑
i=1
δ2
t (i)

 ≤ σ T∑
t=2

√√√√ d∑
i=1

E
[
δ2
t (i)

]
≤
√

2dTσ, (53)

where the first inequality is due to the Jensen’s inequality and the second inequality is by
the fact that E

[
δ2
t (i)

]
= 2 for any t ∈ [T ] and i ∈ [d]. The above equation leads to

E
[√

(1 + FT )(1 + PT )
]

= E[
√

1 + PT ] ≤
√

1 + E[PT ] ≤ (2d)
1
4
√
Tσ.

By choosing σ = 1, we can ensure that E[D-Regret] ≥
√
T/2 · E

[√
(1 + FT )(1 + PT )

]
. We

note that the choice of σ might lead to a violation of the bounded domain assumption,
which can be easily fixed by rescaling. Then, the probabilistic argument implies that for
any algorithm A there exists a sequence of online functions f1, . . . , fT and comparators
{ut = x∗t }Tt=1 such that D-RegretT ≥

√
T/2 ·

√
(1 + FT )(1 + PT ). This ends the proof.

8. Experiments

This section provides empirical studies to validate the effectiveness of our algorithms.

Settings. We simulate the online environments as follows. The player sequentially receives
the feature of an instance and is then required to make the prediction. We focus on the online
regression problem, where at each round an instance (ψt, yt) is received with ψt ∈ Ψ ⊆ Rd
being the feature and yt ∈ Y ⊆ R being the corresponding label. At each round, the player
first receives the feature ψt and is required to make the prediction by ŷt = ψ>t xt based on
the learned model xt ∈ X ⊆ Rd; then, the ground-truth label yt ∈ R is revealed and the
player suffers a loss of `(yt, ŷt), where in the simulation we choose the Huber loss defined as

`(y, ŷ) =
{1

2(y − ŷ)2, for |y − ŷ| ≤ δ,
δ(|y − ŷ| − 1

2δ), otherwise.

As a result, the online function can be regarded as a composition of the loss function and
the data item, that is, ft : X 7→ R with ft(x) = `(yt,ψ>t x). It can be verified that the
online functions are convex, and satisfy the condition of non-negativity and smoothness.
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Figure 1: Performance comparisons of all algorithms in terms of cumulative loss.

Datasets. We compare the performance on both synthetic and real-world datasets. First,
the synthetic data are generated as follows: at each round, the feature xt ∈ Rd is randomly
generated from a ball with a radius of Γ, i.e., B = {ψ ∈ Rd | ‖ψ‖2 ≤ Γ}; the associated label
is set as yt = ψ>t x∗t +εt, where εt is the random noise drawn from [0, 0.1] and x∗t ∈ Rd is the
underlying model. The underlying model x∗t is randomly sampled from a ball with a radius
of D/2 (recall that D is the diameter of the feasible domain throughout the paper), and it
is forced to be stationary within a stage and will be changed every S rounds to simulate
non-stationary environments with abrupt changes. In our simulation, we set Γ = 1, D = 2,
d = 5, T = 50000, S = 1000, and δ = 2. Next, we employ a real-world dataset called
Sulfur recovery unit (SRU) (Gama et al., 2014; Zhao et al., 2021b), which is a regression
dataset with slowly evolving distribution changes. There are in total 10,081 data samples
representing the records of gas diffusion, where the feature consists of five different chemical
and physical indexes and the label is the concentration of SO2.

Contenders. We compare the performance of the following algorithms: (i) OGD (Zinke-
vich, 2003), online gradient descent, which is an OCO algorithm designed for static regret
minimization; (ii) Ader (Zhang et al., 2018a), an OCO algorithm designed for optimizing
dynamic regret yet with only problem-independent guarantee; (iii) Sword, the algorithm
proposed in Section 4.2, which achieves problem-dependent dynamic regret guarantees re-
quiring multiple gradients per iteration; and (iv) Sword++, the algorithm proposed in Sec-
tion 4.3, which achieves the same dynamic regret with only one gradient query per round.
The implementations of all algorithms are based on PyNOL package (Li et al., 2023a).

Results. We repeat the experiments five times and report the mean and the standard
deviation in Figure 1 and Figure 2. In Figure 1, we examine the performance in terms of
cumulative loss. First, we can observe that OGD incurs a large cumulative loss over the
horizon and is not able to effectively learn from the non-stationary environments. By con-
trast, both Ader and our approach (Sword, Sword++) achieve a satisfactory performance
in the presence of distribution changes. Moreover, Sword and Sword++ exploit the adap-
tivity of the problem instance and thus achieve more encouraging empirical behavior than
Ader, which demonstrates the empirical effectiveness. Figure 2 reports the running time
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Figure 2: Performance comparisons of all algorithms in terms of running time (in seconds).

comparison, where the y-axis uses a logarithmic scale for a better presentation. We can
observe that OGD is the most computationally efficient; besides, Ader and Sword++ are
also comparable. By contrast, Sword requires significantly more running time. The result
accords to our theory well, in that the gradient computation is the most time-consuming
in our simulations. Theoretically, both Sword++ and Ader (with linearized surrogate loss)
only require one gradient query per iteration, which shares the same gradient query com-
plexity with OGD. On the contrary, Sword needs to query N = O(log T ) gradients at each
round and is thus much more computationally inefficient. In summary, the empirical re-
sults validate the advantages of our proposed algorithms, notably showing that Sword++
behaves well and is computationally light.

9. Conclusion

In this paper, we exploit the easiness of problem instances to enhance the universal dynamic
regret. We propose two novel online ensemble algorithms, Sword and Sword++, for convex
and smooth online learning. Both algorithms achieve a best-of-both-worlds dynamic regret
of order O(

√
(1 + PT + min{VT , FT })(1 + PT )), where VT measures the gradient variation

and FT is the cumulative loss of comparators. These quantities are at most O(T ) yet
can be very small when the problem is easy, hence reflecting the difficulty of problem
instance. Consequently, our bounds can outperform the O(

√
T (1 + PT )) minimax dynamic

regret (Zhang et al., 2018a) by exploiting smoothness. Our results are accomplished by
several crucial technical ingredients. We adopt optimistic online mirror descent as a unified
building block for both base and meta algorithms, and carefully exploit the negative terms
in the regret analysis. Moreover, in the design of Sword++, we introduce the framework
of collaborative online ensemble. This framework emphasizes the importance of jointly
using negative terms in the regret analysis and integrating additional correction terms in
the algorithmic design, which facilitates effective collaboration between the meta and base
layers. By incorporating these elements, we can finally achieve favorable problem-dependent
dynamic regret guarantees under the one-gradient feedback model.
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All of attained dynamic regret bounds are universal in the sense that they hold against
any feasible comparator sequence, making the algorithms adaptive to non-stationary en-
vironments. An important future work is to investigate the optimality of our attained
problem-dependent dynamic regret bounds. We now only have very preliminary under-
standings for small-loss dynamic regret (see the lower bound in Theorem 8 and conjectures
regarding the gradient-variation dynamic regret in Remark 7). However, a complete under-
standing requires refined problem-dependent lower bounds.
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Appendix A. Proofs of Lemma 1 and Lemma 2

The versatility of Optimistic OMD makes it very general to derive many existing results
in a unified view. We elucidate two implications of Theorem 1, which serve as proofs of
Lemma 1 (dynamic regret of OEGD) and Lemma 2 (static regret of Optimistic Hedge).

Proof [of Lemma 1] We first show a general result for Optimistic OMD with an arbitrary
optimistic vector Mt ∈ Rd and the regularizer ψ(x) = 1

2‖x‖
2
2, and then prove Lemma 1 by

simply substituting Mt = ∇ft−1(xt−1) into it.
It is well-known that ψ(x) = 1

2‖x‖
2
2 is 1-strongly convex with respect to the Euclidean

norm ‖ · ‖2 and Dψ(x,y) = 1
2‖x− y‖22. Thus, Theorem 1 implies

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ η
T∑
t=1
‖∇ft(xt)−Mt‖22 + 1

2η

T∑
t=1

(
‖ut − x̂t‖22 − ‖ut − x̂t+1‖22

)

− 1
2η

T∑
t=1

(
‖x̂t+1 − xt‖22 + ‖x̂t − xt‖22

)
.

Notice that the second term can be upper bounded as follows.
T∑
t=1

(
‖ut − x̂t‖22 − ‖ut − x̂t+1‖22

)
≤ ‖u1 − x̂1‖22 +

T∑
t=2

(
‖ut − x̂t‖22 − ‖ut−1 − x̂t‖22

)

≤ ‖u1 − x̂1‖22 +
T∑
t=2
‖ut − ut−1‖2‖ut − x̂t + ut−1 − x̂t‖2 ≤ D2 + 2D

T∑
t=2
‖ut − ut−1‖2.

We further evaluate the last term using the inequality of a2 + b2 ≥ (a+ b)2/2 and obtain
T∑
t=1

(
‖x̂t+1 − xt‖22 + ‖x̂t − xt‖22

)
≥

T∑
t=2

(
‖x̂t − xt−1‖22 + ‖x̂t − xt‖22

)
≥ 1

2

T∑
t=2
‖xt − xt−1‖22.
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Hence, combining all the three inequalities, we get the following result:

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ η
T∑
t=1
‖∇ft(xt)−Mt‖22 + 1

η
(D2 + 2DPT )− 1

4η

T∑
t=2
‖xt − xt−1‖22.

When choosing the optimism as the last-round gradient Mt = ∇ft−1(xt−1), the adap-
tivity term ∑T

t=1‖∇ft(xt)−Mt‖22 can be upper bounded in the following way:

T∑
t=1
‖∇ft(xt)−Mt‖22 ≤ G2 + 2

T∑
t=2

(
‖∇ft(xt)−∇ft−1(xt)‖22 + ‖∇ft−1(xt)−∇ft−1(xt−1)‖22

)

≤ G2 + 2
T∑
t=2

sup
x∈X
‖∇ft(x)−∇ft−1(x)‖22 + 2L2

T∑
t=2
‖xt − xt−1‖22,

where the last step exploits L-smoothness of online functions. Therefore,

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ η(G2 + 2VT ) + 1
2η (D2 + 2DPT ) +

(
2ηL2 − 1

4η

) T∑
t=2
‖xt − xt−1‖22

≤ η(G2 + 2VT ) + 1
2η (D2 + 2DPT ),

where η ≤ 1/(4L) ensures the last term to be non-positive. This ends the proof.

Next, by choosing the regularizer ψ(p) = ∑N
i=1 pi ln pi, the online function ft(p) = 〈p, `t〉

and optimism Mt = mt, Optimistic OMD recovers Optimistic Hedge (Rakhlin and Srid-
haran, 2013). Here, with a slight abuse of notations, we now use p ∈ ∆N to denote the
variable in prediction with expert advice. Theorem 1 implies the static regret for Optimistic
Hedge algorithm by choosing comparators as a fixed one in the simplex.

Proof [of Lemma 2] It is well-known that the negative entropy ψ(p) = ∑N
i=1 pi ln pi is

1-strongly convex with respect to ‖ · ‖1 and Dψ(p, q) = ∑N
i=1 pi ln(pi/qi). By choosing

comparators as ei, Theorem 1 indicates that the regret ∑T
t=1 (〈pt, `t〉 − `t,i) is bounded by

ε
T∑
t=1
‖`t −mt‖2∞ + 1

ε

T∑
t=1

(
Dψ(ei, p̂t)−Dψ(ei, p̂t+1)

)
− 1
ε

T∑
t=1

(
Dψ(p̂t+1,pt) +Dψ(pt, p̂t)

)
.

The second term on the right hand side exhibits a telescoping structure, and thus

1
ε

T∑
t=1

(
Dψ(ei, p̂t)−Dψ(ei, p̂t+1)

)
≤ 1
ε
Dψ(ei, p̂1) = 1

ε
ln(1/p1,i).

By Pinsker’s inequality Dψ(p, q) = KL(p, q) ≥ 1
2‖p− q‖

2
1, we have

T∑
t=1

(
Dψ(p̂t+1,pt) +Dψ(pt, p̂t)

)
≥ 1

2

T∑
t=1

(
‖p̂t+1 − pt‖21 + ‖pt − p̂t‖21

)
≥ 1

4

T∑
t=2
‖pt − pt−1‖21,
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where the last inequality is got by regrouping the sum and applying triangle inequality.
Combining all above inequalities ends the proof.

The negative term in the regret bound (13) of Lemma 2 is very essential, which is quite
useful in a variety of problems requiring adaptive bounds. Our analysis is based on the
unified view of Optimistic OMD (Theorem 1), and is much simpler than the original proof
of Syrgkanis et al. (2015) using the mathematical induction from the lens of FTRL.

Appendix B. Adaptive Learning Rate Version

In the main text, our proposed algorithms, Sword and Sword++, deliberately employ a fixed
learning rate for the meta-algorithm.This choice is made to simplify the presentation and
the regret analysis, thereby helping reader to better understand the key idea of facilitating
collaborations in meta and base levels, as highlighted in Remark 8 of the analysis.

Nevertheless, the meta-algorithm learning rate tuning requires the knowledge of gra-
dient variation VT = ∑T

t=2 supx∈X ‖∇ft(x) − ∇ft−1(x)‖22 (for Sword) or its variant V̄T =∑T
t=2‖∇ft(xt)−∇ft−1(xt−1)‖22 (for Sword++), which is not desired. This section demon-

strates an adaptive version using the self-confident tuning framework (Auer et al., 2002)
such that the meta-algorithm does not require such information ahead of time.4

We first extend the collaborative online ensemble framework in Section 5 to an adaptive
version, and subsequently use it to prove the gradient-variation and small-loss dynamic
regret bounds for the adaptive version of Sword++.

B.1 Adaptive Collaborative Online Ensemble

In this part, we provide the adaptive learning rate version of the unified framework presented
in Section 5. Comparing with the fixed learning rate version, the only difference is that we
run the optimistic Hedge with a time-varying learning rate for the meta-algorithm,

pt+1,i ∝ exp
(
−εt

( t∑
s=1

`s,i +mt+1,i
))

, (54)

where the loss vector `t and mt share the same configurations as (28). For any i-th base-
algorithm, we use the same update rule as the fixed learning rate version

xt,i = ΠX [x̂t,i − ηiMt] , x̂t+1,i = ΠX [x̂t,i − ηi∇ft(xt)] , (55)

Then, we can generate the prediction by xt = ∑N
i=1 pt,ixt,i and have the following guarantee.

Theorem 9. Under the same assumptions and parameter configurations as Theorem 5 and
setting the learning rate of the meta-algorithm as

εt = min
{
ε̄,

√
lnN

D2∑t
s=1‖∇fs(xs)−Ms‖22

}
, (56)

4. For simplicity, we only present the adaptive version for Sword++, and the one for Sword can be similarly
obtained (which is actually simpler). Moreover, an important note is that our adaptive version also only
requires one gradient per iteration, hence still feasible for the one-gradient feedback model.
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we have the following dynamic regret bound for the decisions specified by (54) and (55)
against any comparators u1, . . . ,uT ∈ X ,

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ 4
√
D2 lnNAT + 2

√
(D2 + 2DPT )AT + lnN

ε̄
+ 2ε̄D2G̃2

+ 2(D2 + 2DPT )
η̄

+
(
λ− 1

4η̄

)
Sx,i −

1
4ε̄Sp − λSmix. (57)

In above, G̃ = maxt∈[T ]‖∇ft(x) −Mt‖2, AT = ∑T
t=1‖∇ft(xt) −Mt‖22, PT = ∑T

t=2‖ut−1 −
ut‖2, Sx,i = ∑T

t=2‖xt,i−xt−1,i‖22, Sp = ∑T
t=2‖pt−pt−1‖21, and Smix = ∑T

t=2
∑N
i=1 pt,i‖xt,i−

xt−1,i‖22 are base stability, meta stability, and mixed stability.

Remark 9 (Optimistic Hedge with Time-varying Learning Rates). We remark that, in
the fixed learning rate case, one can show that the Optimistic Hedge (24) is identical to
Optimistic OMD with the negative-entropy regularizer. However, the adaptive learning rate
version (54) can only be interpreted as an FTRL algorithm. Thus, it is hard to directly apply
Theorem 1 to obtain the meta-regret. We choose a FTRL-type meta-algorithm instead of
an OMD-type algorithm, in that OMD with time-varying learning rates would suffer linear
regret in the worst case when using the negative-entropy regularizer. While this can be
remedied by the dual stabilization (Fang et al., 2020), we just use FTRL for simplicity. ¶

Proof [of Theorem 9] The proof is almost the same to that of Theorem 5. The main
difference is that we use a counterpart of Lemma 2 to bound the meta-regret for the adaptive
learning rate version (54). Specifically, since (54) is identical to Optimistic FTRL pt+1 =
arg minp∈∆N

〈p,
∑t
s=1 `s + mt+1〉 + ψt+1(p) with regularizer ψt+1(p) = 1

εt
(∑N

i=1 pi ln pi +
lnN),5 a direct application of Orabona (2019, Theorem 7.35) leads to the following lemma.

Lemma 3 (Theorem 7.35 of Orabona (2019)). The regret of Optimistic Hedge with a time-
varying learning rate εt > 0 (see the update specified in (54)) to any expert i ∈ [N ] satisfies

T∑
t=1
〈pt, `t〉 −

T∑
t=1

`t,i ≤ max
p∈∆N

ψT+1(p) +
T∑
t=1
〈`t −mt,pt − pt+1〉 −

T∑
t=1

1
2εt−1

‖pt − pt+1‖21,

where ψt+1(p) = 1
εt

(∑N
i=1 pi ln pi + lnN) is the regularizer.

Then, based on this Lemma 3, we can bound the regret of the Optimistic Hedge by
T∑
t=1
〈pt, `t〉 −

T∑
t=1

`t,i

≤ lnN
εT

+
T∑
t=1

εt−1‖`t −mt‖2∞ +
T∑
t=1

1
4εt−1

‖pt − pt+1‖21 −
T∑
t=1

1
2εt−1

‖pt − pt+1‖21

≤ lnN
εT

+D2
T∑
t=1

εt−1‖∇ft(xt)−Mt‖22 −
T∑
t=2

1
4εt−1

‖pt − pt−1‖21

5. Here, we add an additional constant ln N in the regularizer, which will not effect the solution of the
optimization problem and meanwhile make the regret analysis more convenient.
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≤ 2ε̄D2G2 + lnN
ε̄

+ 4

√√√√D2 lnN
T∑
t=1
‖∇ft(xt)−Mt‖22 −

T∑
t=2

1
4εt−1

‖pt − pt−1‖21,

where the second inequality is due to the Hölder’s inequality 〈`t − mt,pt − pt+1〉 ≤
‖`t −mt‖∞‖pt − pt+1‖1 and the fact that ab ≤ εt−1a2 + b2

4εt−1
holds for any a, b, εt−1 > 0.

The third inequality is by definitions of `t and mt. The last inequality is a consequence of
the inequality lnN/εT ≤ lnN/ε̄ +

√
D2 lnN∑T

t=1‖∇ft(x)−Mt‖22 by learning rate config-
uration (56) and Lemma 11, which provides a clipped version of the self-confident tuning.

By the same meta-regret analysis in the proof of Theorem 5, see (48), we have

meta-regret ≤ 4
√
D2(lnN)AT + lnN

ε̄
+ 2ε̄D2G2 − 1

4ε̄

T∑
t=2
‖pt − pt−1‖21

− λ
T∑
t=1

N∑
i=1

pt,i‖xt,i − xt−1,i‖22 + λ
T∑
t=1
‖xt,i − xt−1,i‖22, (58)

which holds from any base-algorithm i ∈ [N ]. Following the same arguments in the proof
of Theorem 5, we can identify an optimal base-algorithm indexed by i∗ ∈ [N ], whose base-
regret is bounded as base-regret ≤ 2

√
(D2 + 2DPT )AT + 2(D2+2DPT )

η̄ . Combining the
meta-regret and the base-regret of the i∗-th base-learner yields the result in (57).

B.2 Adaptive Version of Sword++

We show that the adaptive learning rate version of the framework (54) and (55) with
Mt = ∇ft−1(xt−1) for t ≥ 2 (M1 = 0) achieves the same problem-dependent dynamic
regret bound (up to constants) as that in Theorem 6.

Theorem 10. Under the same assumptions and parameter configurations as Theorem 6
and set the learning rate of the meta-algorithm as

εt = min
{
ε̄,

√
lnN

D2∑t
s=1‖∇fs(xs)−Ms‖22

}

with Mt = ∇ft−1(xt−1) for t ≥ 2 (M1 = 0). Then, decisions specified by (54) and (55)
satisfy that for any comparators u1, . . . ,uT ∈ X ,

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ O
(√

(1 + PT + min{VT , FT })(1 + PT )
)
. (59)

Proof Under the parameter configurations λ = 2L, η̄ = 1/(8L) and ε̄ = 1/(8D2L), the
dynamic regret bound of the unified algorithm with the adaptive learning rate (c.f. Theo-
rem 9) is almost the same as that of the fixed learning rate (c.f. Theorem 5) up to constant
factors. Thus, the same arguments in the proof of Theorem 6 lead to the desired result.
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Appendix C. Technical Lemmas

This section collects several useful technical lemmas frequently used in the proofs. The
first one is the Bregman proximal inequality, which is crucial in the analysis of first-order
optimization methods based on Bregman divergence.

Lemma 4 (Bregman proximal inequality (Chen and Teboulle, 1993, Lemma 3.2)). Let X
be a convex set in a Banach space. Let f : X 7→ R be a closed proper convex function on
X . Given a convex regularizer ψ : X 7→ R, we denote its induced Bregman divergence by
Dψ(·, ·). Then, any update of the form

xk = arg min
x∈X

{f(x) +Dψ(x,xk−1)}

satisfies the following inequality for any u ∈ X ,

f(xk)− f(u) ≤ Dψ(u,xk−1)−Dψ(u,xk)−Dψ(xk,xk−1). (60)

The second one is the stability lemma, which is very useful in analyzing online algorithms
based on FTRL or OMD frameworks.

Lemma 5 (stability lemma (Chiang et al., 2012, Proposition 7)). Consider the following two
updates: (i) x∗ = arg minx∈X 〈a,x〉+Dψ(x, c), and (ii) x′∗ = arg minx∈X 〈a′,x〉+Dψ(x, c).
When the regularizer ψ : X 7→ R is a 1-strongly convex function with respect to the norm
‖ · ‖, we have ‖x∗ − x′∗‖ ≤ ‖a − a′‖∗.

The self-bounding property of smooth functions is crucial and frequently used in proving
small-loss bounds for convex and smooth functions.

Lemma 6 (self-bounding property (Srebro et al., 2010, Lemma 3.1)). For an L-smooth
and non-negative function f : X 7→ R+, we have ‖∇f(x)‖2 ≤

√
4Lf(x), ∀x ∈ X .

Finally, we present several useful inequalities.

Lemma 7. Let a, b > 0 and x0 > 0 be three positive values. Suppose that L ≤ ax+ b
x holds

for any x ∈ (0, x0]. Then, by taking x∗ = min{
√
b/a, x0}, we have L ≤ 2

√
ab+ 2b

x0
.

Proof Suppose
√
b/a ≤ x0, then x∗ =

√
b/a and we have L ≤ ax∗+ b

x∗ = 2
√
ab. Otherwise,

x∗ = x0 and we have L ≤ ax∗+ b
x∗ = ax0 + b

x0
. Notice that in latter case x0 ≤

√
b/a holds,

which implies ax0 ≤ b
x0

and hence ax0 + b
x0
≤ 2b

x0
. Combining two cases ends the proof.

Lemma 8 (Lemma 19 of Shalev-Shwartz (2007)). For any x, y, a ∈ R+ satisfying x− y ≤√
ax, it holds that x− y ≤ a+√ay.

Lemma 9. For any x, y, a, b ∈ R+ satisfying x − y ≤
√
ax + b, it holds that x − y ≤

a+ b+
√
ay + ab.

Lemma 10 (Lemma 3.5 of Auer et al. (2002)). Let a1, a2, . . . , aT and δ be non-negative
real numbers. Then, it holds that

∑T
t=1

at√
δ+
∑t

s=1 as

≤ 2
√
δ +∑T

t=1 at, where 0/
√

0 = 0.
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Lemma 11. Let a1, a2, . . . , aT , b and c̄ be non-negative real numbers and at ∈ [0, B] for any

t ∈ [T ]. Let the step size be ct = min
{
c̄,
√

b∑t

s=1 as

}
and c0 = c̄. Then, we have

T∑
t=1

ct−1at ≤ 2c̄B + 4

√√√√b T∑
t=1

at. (61)

Proof This proof shares the same spirit with that of Pogodin and Lattimore (2019,
Lemma 4.8). We assume ∑T

t=1 at > B, otherwise we can directly have ∑T
t=1 ct−1at ≤ c̄B.

When ∑T
t=1 at > B, let T ′ = min{t ∈ [T ] |∑t−1

s=1 as ≥ B}. We can decompose the target by

T∑
t=1

ct−1at =
T ′−1∑
t=1

ct−1at +
T∑

t=T ′
ct−1at.

For the first term, ∑T ′−1
t=1 ct−1at = ∑T ′−2

t=1 ct−1at + cT ′−2aT ′−1 ≤ 2c̄B. For the second term,

T∑
t=T ′

ct−1at ≤
T∑

t=T ′

at
√
b√∑t−1

s=1 as
≤

T∑
t=T ′

at
√
b√

1
2
∑t
s=1 as

≤
T∑
t=1

at
√
b√

1
2
∑t
s=1 as

≤ 3

√√√√b T∑
t=1

at,

where the first inequality is by the definition of ct and the second inequality is due to∑t
s=1 as ≤ B + ∑t−1

s=1 as ≤ 2∑t−1
s=1 as for all t ≥ T ′. The last inequality comes from

Lemma 10. We complete the proof by combining the two terms.
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Nicolò Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds for
prediction with expert advice. In Proceedings of the 18th Annual Conference on Learning
Theory (COLT), pages 217–232, 2005.
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